
∗Department Computer Science

University College London (UCL),UK
†Cisco Systems, San Jose, USA

‡Cisco Systems, Research Triangle Park, USA

Abstract—Cloud Computing is known for its scalability, flex-
ibility and on-demand workload creation. Today, cloud-enabled
data centers utilize VLAN, VxLAN or GRE segmentations but
these techniques, despite being widely deployed, have a variety
of inherent technical and architectural limitations. In this paper
we introduce a novel architecture leveraging UCC and IID for
segmentation, rather than those traditionally used today (e.g.,
VLAN, VxLAN, etc.). The proposed architecture is entirely based
on IPv6 and, for illustrative purposes only, is demonstrated using
OpenStack as the cloud framework. This proposed reference
architecture is based entirely on UCC and IID, two OpenStack-
independent concepts, could easily be realized in outer cloud
frameworks as well. UCC introduces cloud-specific traffic isola-
tion within IPv6 extension headers. IIDs can be incorporated as
a unique identifier within an IPV6 address to identify endpoints.
The combination of both allows network devices to segregate
traffic according to cloud service, cloud tenants and endpoint
affiliation. Here, we highlight current shortcomings of existing
segmentation techniques as well as define design considerations
for the cloud framework in question (i.e. in this case OpenStack)
to circumvent such limitations. The proposed architecture is
depicted and explained in the context of a traffic flow example.

I. INTRODUCTION

Cloud Computing, beside its obvious advantages of building

highly dynamic, flexible and scalable infrastructures, also

provides the means to build environments based on technology

building blocks. The decisions of what technology to use

are often based on the needs and requirements of the cloud

provider, the services offered and its consumers or tenants. On

the networking side cloud providers can choose to segment

their networks based on VLANs, VxLANs or by using GRE

tunnels. Each of these technologies have their own character-

istics and limitations.

These segmentation techniques are often defined by the

scalability of their component technologies, their configuration

simplicity and their ability to effectively interoperate with

other technologies governing network, compute and storage

resources. VLANs, a legacy segmentation technology, are

limited to 4096 segments and require a considerable additional

configuration throughout the network. VxLAN, on the other

hand, can scale to several million segments. However as

an overlay technology adds overhead to the packet and the

requirements within the network. GRE tunnels, an overlay

technology similar to VxLAN, is used to interconnect the

compute nodes with each other and the controller. That results

in a fully-meshed GRE-tunnel topology. Within the tunnel,

the tunnel-ID is used to segment traffic according to its

service affiliation. A tunnel mesh is not scalable as it increases

with each additional compute node. All three approaches, in

addition to their specific limitations, also face challenges when

isolating cloud-relevant entities based on the provider, service

or tenant affiliation.

In this paper we highlight some of those shortcomings

as well as solution-specific considerations of segmentation

technologies.As a means for overcoming these limitations, we

propose an optimized cloud architecture solution leveraging

Universal Cloud Classification (UCC) and the Interface Iden-

tifiers (IIDs), while also eliminating the need for additional

network segmentation technologies completely. This solution

is based on IPv6 and outlines how cloud providers can build

highly scalable environments with very little configuration

overhead and minimal dependence on interoperability with

other network technologies. This treatise underscores the

power and flexibility of this proposed architecture with a

solution based on the open source cloud software OpenStack.

Despite being depicted with OpenStack, it is worth noting that

the solution presented here is independent of any particular

cloud computing framework since it is entirely based on

the underlying network technologies, and consequently, is

implementation independent. It defines reference architectures

for all three segmentation approaches (i.e., VLAN, VxLAN

and GRE).

We first discuss these segmentation strategies and highlight

their limitations and difficulties followed by an introduction

to UCC and IID. We then outline the proposed solution based

on UCC, IID and IPv6 and highlight its novel aspects and the

flexibility and advantages it offers to cloud providers. This in-

novative architecture is simply one of the possible use-cases of

UCC. It provides the flexibility to set up a cloud environment

without the need for any underlying segmentation technology,

therefore eliminating their inherent limitations. The proposed

architecture provides scalability, simplified configuration and

network management. Additionally, it inherits the advantages

of UCC by enabling network services based on the introduced

identifiers.

Network Segmentation in the Cloud
A Novel Architecture Based on UCC and IID

Sebastian Jeuk∗†, Gonzalo Salgueiro‡, Fred Baker†, Shi Zhou∗

1

II. BACKGROUND

A. Universal Cloud Classification

The Universal Cloud Classification (UCC) scheme is part

of the authors research in [1] and further evaluated in [2] and

[3]. It is introduced to circumvent the shortcomings seen in

state-of-the-art segmentation technologies, including VLANs,

VxLANs, GRE tunnels and other more application-specific

isolation.

The proposal defines three identifiers (IDs) that are incor-

porated into an IPv6 extension header. The IDs are structured

based on the Digital Object Identifier (DOI) scheme. The first

ID, called Cloud-ID, isolates traffic according to its cloud

provider affiliation. It is a 4 byte long identifier separated into

a registrar and provider sub-ID. To manage cloud provider

IDs on a global basis we suggest the use of a registrar

similar to DNS. This registrar provides the means to guarantee

uniqueness in assigned IDs. The registrar sub-ID can be

used to incorporate its global location. The second ID is

used to define the Services run within a cloud provider. The

Service-ID is 6 byte long identifier separated into sub-IDs to

incorporate metadata on the data center location, the service

itself and optional information. Finally, the tenant or consumer

is identified by a 6-byte long Tenant-ID. Only the Cloud-ID

has global significance, while the Service-ID and Tenant-ID

are locally significant within the provider network identified

by the specific Cloud-ID.

The novelty of the Universal Cloud Classification

scheme can be summarized as follows: A hierarchical

end-to-end classification scheme consisting of three IDs

(Cloud/Service/Tenant) closely reflecting the internal structure

of cloud environments. These IDs are carefully selected and

defined to solve the classification challenges seen in Cloud

Computing. The scheme can be succinctly characterized by

the following high-level points:

• hierarchical

• end-to-end

• optional

• flexible and extensible

• universal

• guaranteed uniqueness

B. Interface Identifiers (IID)

The Interface Identifier (IID) is part of the IPv6 stack and

defined in RFC 4291 [4]. It is used to uniquely identify

interfaces on a link and typically incorporated into an IPv6

unicast address. For unicast addresses the interface identifier

is required to be 64 bit long and describes the host portion of

the IP address.

Uniquely assigning Interface IDs leverages the IEEE EUI-

64 standard for network interface addressing. These addresses

can be derived from IEEE 802 MAC addresses. OpenStack

is managing and assigning unique MAC addresses to new

instances. This observation allows us to use the MAC address

assigned to a VM to derive the IEEE EUI-64 address and use

it as a unique IID to identify tenant specific VMs. To better

understand the procedure on transforming an IEEE 802 MAC

address into a IEEE EUI-64 IID we first outline the structure

of a MAC address and then show the mapping to 64 bit.

IEEE 802 interface identifiers use 48-bit, split into two 24-

bit long sections. The first 24-bit depict the manufacturer ID

while the later 24-bit define the board ID. The combination of

both IDs produces a globally unique 48-bit address.

With IEEE EUI-64 the manufacturer ID is still 24-bits,

however the board ID is now 40 bits long. The conversion

between the 48-bit long IEEE 802 MAC address and the 64-

bit long IEEE EUI-64 address happens by inserting 0xFFFE

(or 1111 1111 1111 1110) in between the manufacturer and

the board section. To be able to use the EUI-64 addresses now

as IPv6 Interface Identifiers (IIDs) the 7th bit of the 1st byte

in the EUI-64 address has to be complemented.

C. OpenStack

OpenStack is an open source cloud framework based on a

modular approach to manage compute, network and storage

resources in Cloud environments. The most prominent com-

ponents are (1) Nova, responsible for assigning and managing

compute resources, (2) Neutron, handling network related con-

figurations and (3) Cinder, defining block-storage resources.

There are approximately 10 different components, which we

will not further highlight in this paper, refer to [5] for further

details).

For the purposes of this paper we will briefly highlight the

neutron services as they handle the virtualized networks and

the interconnection to the physical data center. The Neutron

framework consists of several sub-services that manage layer-

3, DHCP, DNS and L2-switching capabilities. Depending

upon the way OpenStack is deployed, these components use

VLANs, VxLAN or GRE to interconnect compute hosts with

network resources.

The following section outlines those three reference Ar-

chitectures and highlights their limitations and challenges

observed in production environments.

D. OpenStack Reference Architectures

This section focuses on outlining the different reference

architectures as used within the open source cloud software

OpenStack. These architectures, even though specific to Open-

Stack, highlight the implementation and usage of VLAN,

VxLAN and GREs in cloud environments. OpenStack uses

the word ”tenant” as a way to describe projects. In this paper,

we will use ”tenant” to describe consumers of a service.

A typical OpenStack deployment [6] consists of multiple

nodes that are interconnected in different ways while perform-

ing different tasks. Here, we will focus on the Neutron network

node, the compute and the controller nodes. The Neutron

network node is responsible for providing required network

services for the OpenStack environment, including L3, DHCP

and NAT functionality. The compute node is typically host-

ing the instances owned by the different services while the

controller node is used to manage the OpenStack environ-

ment providing further services. When looking at reference

2

architectures using VLANs, VxLANs or GRE tunnels these

components are interconnected in different ways. The func-

tionality of OpenStack however remains the same independent

of the transport protocol in use. However, depending on the

technology used, different limitations and considerations are

important to consider when running an OpenStack cloud.

Figure 1 is used as the reference to explain the different

segmentation approaches in OpenStack.

Fig. 1. Reference Architecture

In addition to OpenStack-specific components, cloud envi-

ronments also require switching fabrics that physically inter-

connect the different OpenStack nodes. All of these compo-

nents are affected by the choice of segmentation and different

limitations apply.

First, we show how OpenStack uses VLANs to segment

networks within a project. That is followed by similar outlines

of the VxLAN and GRE architectures. Each section highlights

some of the advantages and disadvantages of using each of

these implementations.

A typical OpenStack implementation consists of a minimum

of four different networks. The public network is used to

communicate with the instances running on the compute node

from outside, that can be the Internet, corporate network or end

users. It provides connectivity to the globally routable address

space used within the OpenStack cluster. The management

network is used for communications between the different

services operated by OpenStack. It provides connectivity

between the network, compute and controller nodes to ex-

change database queries, Advanced Message Queuing Protocol

(AMQP) messages and high availability information. As a pure

OpenStack control plane network it is often physically sepa-

rated from the private and public network. The private network

allows communication within a tenant’s environment, between

tenant VMs. Depending on the transport protocol used, the

public network and the private network are segmented using

VLANs, VxLANs or GRE tunnels.

1) VLAN Architecture: In the VLAN reference architec-

ture, segmentation is based on IEEE 802.1q. The switching

fabric provides the required traffic separation for inter-node

communication. In OpenStack, each network gets assigned

a new Segmentation-ID, which refers to a unique VLAN-

ID. These IDs are then used to segregate traffic both within

and across an OpenStack project. A network in OpenStack

is not bound to a specific compute host, which highlights

one of the major drawbacks of using VLANs to segregate

traffic. The VLAN provisioning has to be managed either from

OpenStack via plug-ins (talking to the switching fabric) or via

other means (e.g., switching fabric controllers, manually by the

administrator, etc.).

In cloud environments, instances residing in the same

802.1q segment are typically not running on the same compute

node. They can reside on any compute node with available

resources. The network node and the switching fabric have to

be aware of the locations of every VM in a segment to provide

the correct 802.1q connectivity. In case VMs move (workload

mobility) the switching fabric has to be reprogrammed to

maintain connectivity. This highlights another shortcoming of

VLAN based cloud architectures. The configuration is both

complex and cumbersome to manage and maintain.

The third and most severe shortcoming of IEEE 802.1q is

the size of the VLAN ID field, which is limited to 12 bits or

4096 VLANs. Cloud environments demand high scalability,

which is extremely limited by segmenting networks using

VLAN IDs.

To summarize, a VLAN based Cloud environment has the

following shortcomings:

• Configuration overhead across compute, network and

switching fabrics

• Complex management of VLANs, their assignments, in-

stance location and per rack configuration

• Scalability limited to 4096 segments per environment

Having said that, though, one of the advantages of VLANs

is the broad support of IEEE 802.1q on both legacy and state-

of-the art network entities.

2) VxLAN Architecture: The Virtual extensible Local Area

Network (VxLAN) can be defined as an L2 overlay over an L3

network. The overlay network is known as a VxLAN segment

and identified by a 24-bit long VxLAN Network Identifier

(VNI). Tenant traffic is segmented by VNI number, therefore

only VMs within the same VNI are allowed to communicate

with each other.

Even thought VxLAN solves some of the limitation cloud

providers are faced with when using VLANs, it also has its

own shortcomings.

• VxLAN requires a multicast environment to enable dy-

namic MAC-learning for discovery and as means to

establish the tunnels. Cloud switching fabric often are

not enabled for multicast or do not support the underlying

technologies such as PIM or IGMP.

• The MAC-in-IP encapsulation of VxLAN requires a 1600

byte MTU to accommodate the 24-bit header. As a

consequence all network devices carrying VxLAN traffic

have to support jumbo frames.

3) GRE Architecture: GRE, or Generic Routing Encapsula-

tion, as defined in RFC 1701 encapsulates any protocol in any

other protocol. It is considered an overlay or tunnel protocol

that allows interconnecting private subnets over a public

network by encapsulating IP datagrams within IP datagrams.

3

OpenStack uses the IP-in-IP tunneling approach to separate

tenant networks between hypervisors on different compute

nodes and the network node. As a results for every tenant

network a separate tunnel has to be created, causing control

plane overhead on the compute/network node and the switch-

ing fabric. Additionally, due to the IP-in-IP encapsulation the

MTU size in the network has to be increased.

Beside the technical considerations when deploying GRE

tunnels, experience shows that cloud providers do not deploy

GRE tunnels as frequently as the VLAN reference architecture.

III. UCC + IID NETWORK ARCHITECTURE

As highlighted in the previous sections, current network

reference architectures deployable in an OpenStack environ-

ment have several limitations, ranging from scalability to

configuration overhead.

A. Overview

We propose a solution based on Universal Cloud Classifi-

cation (UCC) and the Interface Identifiers (IID) that leverage

IPv6 to eliminate the need for any Layer 2 segmentation

technologies. The proposed base architecture solely relies on

UCC and IIDs to isolate traffic flows based on their service,

Tenant and VM affiliation. Not only do we eliminate the

current architectural limitations but also segment cloud traffic

according to cloud-specific characteristics, rather than relying

on legacy protocols.

Fig. 2. UCC + IID Based Classification

Figure 2 depicts a simple cloud architecture with two com-

pute nodes, each hosting a vSwitch. The nodes are intercon-

nected using a physical switching fabric. The vSwitch is the

first network entity that inspects the packets and matches and

isolates them according to their Cloud-ID, Service-ID, Tenant-

ID and IID affiliation. The vSwitch uses these identifiers

to apply network policies against the traffic flow to define

behavior.

First, we will highlight some of the critical design elements

for Cloud environments. This is followed by an overview of

IPv6 design details describing address types and how they

can be used in a cloud environment. To better understand

the new architecture and how it eliminates the need for other

segmentation technologies, we outline a traffic flow example

based on UCC and IID.

B. Design Elements
A newly proposed architecture should reflect the cloud-

specific requirements including traffic isolation based on cloud

elements (cloud services, cloud tenants and VMs).
The architecture should segment traffic at least as good

as current technologies while also removing their limitations.

Here, we try to tackle scalability, configuration management

overhead and other relevant issues currently seen in OpenStack

architectures.
Additionally, the introduced segmentation approach should

not increase any security concerns over current technologies.

This includes privacy, spoofing and other related concerns.
Based on the shortcomings highlighted for VLAN, VxLAN

or GRE deployments we define a couple of critical consid-

erations to take into account when designing an OpenStack

Network Architecture.
Here, we assume that the cloud network environment is en-

tirely based on IPv6. Companies such as Google and Facebook

are moving towards IPv6-only data centers within the next one

to three years [7] [8]. Such moves demonstrate the feasibility

and imminent unavoidability of IPv6 in highly scalable and

dynamic cloud deployments.
One of the most critical elements of this architecture is its

complete lack of dependence on any of the legacy encapsu-

lation technologies. If desired, cloud operators can choose to

deploy additional segmentation technologies, but this would

be for optimization purposes only. These methods are however

not required for the proposed design.
To summarize, our newly proposed OpenStack based net-

work architecture fulfills the following design requirements:

• Data center entirely based on IPv6 (no longer requiring

dual-stack support)

• No need for legacy segmentation technologies (VLAN,

VxLAN, GRE)

• Cloud-specific classification

• Improved segmentation while tackling current limitations

• Equivalent or superior security over current segmentation

technologies

Based on these requirements, we outline the proposed

architecture over the next sections.

C. IPv6 Design Details
IPv6 defines multiple address types that can be assigned

to a single interface. The following list highlights the most

common ones in order of their usability scope.

• Link Local Address (LLA): This address type is typ-

ically configured automatically and used for hosts to

communicate on their local segment only. Similar to

RFC 1918 IPv4 addresses the Link Local Address is

not routable, hence routers would never forward these

addresses outside a certain segment. A link local address

always starts with FE80.

• Unique-Local Address (ULA): This address contains the

Interface identifier and should be globally unique. Its

usage however should be limited to local communica-

tions. A unique-local address always starts with a prefix

4

of ”1111 110” followed by the L bit set to 1 (locally

assigned), hexadecimal defined as ”FD”. The first 8

bits are followed by a 40-bit Global ID and a 16-bit

long Subnet-ID. The remaining 64-bits are used for the

Interface Identifier (IID).

• Global Unicast Address (GUA): A globally unique and

routable unicast address that is equivalent to IPv4’s public

address. This address type is split into a 48 bit global

routing prefix, a 16-bit subnet-ID and a 64-bit Interface

Identifier (IID). The Global Routing Prefix is assigned

specific to autonomous systems.

The OpenStack kilo release, [9] introduces several key

features for IPv6 support in cloud-enabled data centers. Ad-

dress assignment for tenant networks is now supported us-

ing Stateless Address Auto-configuration (SLAAC) [10] or

DHCPv6 [11]. In addition, the Kilo release introduces support

for provider networks with Router Advertisements (RAs) [12]

messages generated by an external router.

In our proposal we make use of the OpenStack features

allowing the assignment of several IPv6 address prefixes to

a single interface. By default, an interface receives an LLA

to handle traffic within its local segment. Additionally, that

interface can also be assigned one or more GUAs for end-to-

end connectivity.

We also leverage the enhancement within Kilo that elim-

inates the need for NAT by assuming that each OpenStack

instance gets at least one globally routed address and can

communicate directly using pure L3 routing. This removes the

additional processing overhead within the ”neutron-l3-agent”

OpenStack service performing NAT on north-south or inter-

subnet traffic.

The advancements in the latest OpenStack release, Kilo,

make it possible to design a network architecture solely based

on IPv6. Combining this with the UCC and IID identifiers

creates a novel OpenStack IPv6 based architecture.

D. Discussion

The most prominent advantage of the introduced archi-

tecture is the capability to provide visibility within a cloud

network down to the consumer (tenant) level allowing network

services and related policy enforcement on a per-tenant basis.

The proposed architecture is based on UCC and IIDs while

leveraging OpenStack as a possible cloud framework. UCC

is defined to eliminate shortcomings currently seen in seg-

mentation approaches by introducing a Cloud-ID, Service-ID

and Tenant-ID that can be used end-to-end, provides globally

unique identifiers and reflects the typical cloud hierarchy.

By combining UCC with the IID of a VM’s interface

provides adequate classification details to match each flow by

its source, including the service, tenant and VM it originated

from. This allows intermediate network entities to classify

flows accordingly and isolate them from any other tenant

traffic.

By using IPv6 as the addressing scheme for endpoints

the architecture eliminates the need for Network Address

Translation (both static and dynamic) and allows multiple

addresses (both local and global) per VM interface.
In addition to highlighting the architectural advantages we

also outline opportunities for further investigation.
wide-spread adoption of UCC
To realize the capabilities of the proposed architecture there

needs to be a willings to abandon incumbent classification

technologies.
While there has been extensive testing on both UCC [2] and

IID independently, the architecture as a whole has not been

verified in production environments. The authors, however,

strenuously emphasize that the introduction of the combination

of UCC and IID data sets have no impact on cloud perfor-

mance, scalability and other metrics.

E. Flow Example
To better understand how flows can be distinguished based

on their UCC + IID information we depict a flow example for

a data center internal traffic stream.

Fig. 3. UCC + IID Enabled Flows

Based on figure 3 we define three different traffic flows.

Here we focus our explanation on Traffic flow (1) between

tenant 2 of service 3 and service 2. The diagram depicts

a typical cloud-enabled data-center including the physical

switching fabric. Two compute nodes are used to host VMs

used by different services (these VMs can offer SaaS or PaaS

applications). The compute node also contains some flavor

of a virtual switch. The nodes are interconnected via two

physical switches forming the fabric. We highlight six points

within the virtual and physical network to show how UCC+IID

segmentation is designed and used.
Traffic flow 1 originates on VM-1 hosted on Compute Node

1. Tenant 1 of service 1 is trying to access information of

service 3.

1) Universal Cloud Classification information are defined

on the originating VM 1. Here, the Service-ID is set

to service 1 while the Tenant-ID identifies tenant 1.

These details are incorporated into the hop-by-hop IPv6

extension header so that all intermediate devices are able

to classify traffic accordingly.

2) Every flow leaving a VM incorporates the Interface

Identifier that is included in the VMs IP address. This

is done using SLAAC.

5

3) The virtual switch, here OVS, can use the classification

information included within the IP header to distinguish

traffic flows and authorize flows between source and

destination. As OpenStack is aware of MAC address

assignments and therefore of Interface Identifiers it

can program the virtual switches to permit/deny flows

accordingly. Additionally, the Service-ID and Tenant-ID

information are used to isolate traffic on a per-service

and per-tenant basis

4) Here, (4a) and (4b) are similar but define ingress and

egress behaviors on the physical switch. All three clas-

sification information are inspected at the ingress port

on the physical switch. This enables the switch to define

forwarding decisions per-service, tenant and IID.

5) After the stream is forwarded to compute node 2, the

virtual switch inspects the header information to gather

the IDD, Service-ID and Tenant-ID details. These can be

used to authorize traffic between the source and the local

destination. In addition, service and/or tenant specific

policies can be applied locally before the traffic is send

out to the VM.

6) As the service and tenant information are source spe-

cific they can be used to verify flow information and

authenticity.

The above points demonstrate how the proposed solution

realizes network segmentation on a per-service, consumer and

endpoint basis.

IV. CONCLUSION

Cloud Computing is a scalable, flexible and highly-dynamic

way providing resources to services and their tenants. One

of the key networking requirements in cloud environments is

the provisioning of scalable and isolated tenant networks. In

todays cloud-enabled data centers segmentation is achieved

using either VLANs or overlay technologies such as VxLANs

or GRE tunnels. In this paper we highlighted the shortcom-

ings cloud providers face when architecting the scalable and

dynamic cloud using VLANs, VxLANs or GRE tunnels.

OpenStack is an open source cloud orchestration solution

consisting of several projects. Each project is used to manage,

administer and implement tenant resources such as compute,

storage or networks. On the network side, OpenStack currently

deploys three different reference architectures based on either

VLANs, VxLANs or GRE tunnels. These technologies are

used to segment tenant networks both within the virtual

networks but also on the physical switching fabric.

Based on the listed limitations we identified several design

requirements for a novel approach in architecting cloud en-

vironments. We argued that a new network design should be

(1) solely based on IPv6, (2) shouldn’t require any legacy

segmentation approaches, (3) should classify and isolate traffic

cloud specific, (4) should tackle current limitation and (5)

provide equivalent or superior security characteristics.

Based on the authors previous research, Universal Cloud

Classification, this paper introduces an IPv6 OpenStack based

network architecture and Interface Identifiers. Here, we try to

show both the feasibility and usefulness of the Universal Cloud

Classification approach while also defining a novel approach

to architecting network resources.

This paper shows how Universal Cloud Classification

(UCC) can be used in conjunction with Interface Identifiers

to create a network architecture that does not rely on other

segmentation technologies. UCC introduces three identifiers

to isolate traffic according to its cloud provider, service

and tenant affiliation. These IDs, incorporated into an IPv6

extension header, tackle limitations of current segmentation

technologies.

To conclude, the proposed solution enables (1) visibility

within a cloud network down to the consumer level, (2) is

based on UCC + IID introducing a classification scheme

reflecting the typical cloud hierarchy and (3) by using IPv6

eliminates the need for NAT by assigning globally routable

addresses.

REFERENCES

[1] S. Jeuk, J. Szefer, and S. Zhou, “Towards cloud, service and tenant
classification for cloud computing,” in Cluster, Cloud and Grid Com-
puting (CCGrid), 2014 14th IEEE/ACM International Symposium on,
May 2014, pp. 792–801.

[2] S. Jeuk, G. Salgueiro, and S. Zhou, “Universal cloud classification (ucc)
and its evaluation in a data center environment,” in Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on, Dec 2014, pp. 469–474.

[3] ——, “A novel approach to classify cloud entities: Universal cloud
classification (ucc),” in Cluster, Cloud and Grid Computing (CCGrid),
2015 15th IEEE/ACM International Symposium on, May 2015.

[4] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,”
RFC 4291 (Draft Standard), Internet Engineering Task Force, Feb.
2006, updated by RFCs 5952, 6052, 7136, 7346, 7371. [Online].
Available: http://www.ietf.org/rfc/rfc4291.txt

[5] (2015 (accessed 18 May, 2015)) Openstack.org. [Online]. Available:
https://www.openstack.org/

[6] Oracle. (2012 (accessed 17 May, 2015))
Cloud reference architecture. [Online]. Available:
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-
ref-arch-1883533.pdf

[7] (2014 (accessed 18 May, 2015)) Case study: Facebook
moving to an ipv6-only internal network. [Online]. Avail-
able: http://www.internetsociety.org/deploy360/resources/case-study-
facebook-moving-to-an-ipv6-only-internal-network/

[8] A. Tore, “The case for ipv6-only data centers,” url,
2012, http://fud.no/talks/20120209-V6 World Congress 2012-
The Case for IPv6 Only Data Centres.pdf.

[9] N. Yechiel. (2015 (accessed 15 May, 2015)) What’s coming
in openstack networking for the kilo release. [Online].
Available: http://redhatstackblog.redhat.com/2015/05/11/whats-coming-
in-openstack-networking-for-the-kilo-release/

[10] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862 (Draft Standard), Internet Engineering
Task Force, Sep. 2007, updated by RFC 7527. [Online]. Available:
http://www.ietf.org/rfc/rfc4862.txt

[11] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” RFC
3315 (Proposed Standard), Internet Engineering Task Force, Jul. 2003,
updated by RFCs 4361, 5494, 6221, 6422, 6644, 7083, 7227, 7283.
[Online]. Available: http://www.ietf.org/rfc/rfc3315.txt

[12] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861 (Draft Standard), Internet
Engineering Task Force, Sep. 2007, updated by RFCs 5942, 6980,
7048, 7527. [Online]. Available: http://www.ietf.org/rfc/rfc4861.txt

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

