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Abstract—Recently telecommunication industry benefits from
infrastructure sharing, one of the most fundamental enablers
of cloud computing, leading to emergence of the Mobile Virtual
Network Operator (MVNO) concept. The most momentous intents
by this approach are the support of on-demand provisioning and
elasticity of virtualized mobile network components, based on
data traffic load. To realize it, during operation and management
procedures, the virtualized services need be triggered in order
to scale-up/down or scale-out/in an service instance. In this
paper we propose an architecture called MOBaaS (Mobility and
Bandwidth Availability Prediction as a Service), comprising two
algorithms in order to predict user(s) mobility and network link
bandwidth availability, that can be implemented in cloud based
mobile network structure and can be used as a support service
by any other virtualized mobile network service. MOBaaS can
provide prediction information in order to generate required
triggers for on-demand deploying, provisioning, disposing of
virtualized network components. This information can be used
for self-adaptation procedures and optimal network function
configuration during run-time operation, as well. Through the
preliminary experiments with the prototype implementation on
the OpenStack platform, we evaluated and confirmed the feasi-
bility and the effectiveness of the prediction algorithms and the
proposed architecture.

I. INTRODUCTION

Mobile operators are currently focusing on providing tech-
nological solutions for the issues arising from the significant
growth of data traffic due to the continuous increase of mobile
users, devices and applications. Long Term Evolution (LTE)
as the fourth generation (4G) cellular system, standardized by
the 3rd Generation Partnership Project (3GPP), is the most
promising approach to cope with this challenge. Providing high
data rates as well as supporting high-speed mobility are LTEs
momentous peculiarities. Even though LTE promises a faster
and more efficient data network, its core network architecture
still highly centralized and hierarchical, leading to high band-
width requirement and processing load on core network nodes.
Further, it increases delay and network resources consumption
[1],[2]. The huge appreciation received by cloud computing
technologies in latest years pushed mobile network operators
to plan the adoption of virtualization in their future network
aiming at the possibility to share a common infrastructure
among them. The cloud computing model could be applied
in mobile network systems in order to offer decentralized
computing, smart storage, on-demand, elastic and pay-as-you-
go services to third party operators and users.
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Fig. 1: A view of future LTE mobile cellular network.

The EU FP7 Mobile Cloud Networking (MCN) [3] project
integrates the use of cloud computing concepts in LTE system
with the objective of increasing LTEs performance by building
a shared distributed mobile network and optimizing the utiliza-
tion of computation, storage and networking resources. This
vision, as shown in Fig. 1, can be realized by; (i) extending
the cloud computing concept beyond the typical (macro) data
centers towards new smaller (micro) data centers that are
distributed within the E-UTRAN (Evolved UMTS Terrestrial
Radio Access Network) and the EPC (Evolved Packet Core),
and (ii) deploying and running cloud-based E-UTRAN, and
EPC denoted as RAN as a Service (RANaaS) and EPC as a
Service (EPCaaS), respectively. The most important intents
by this approach are the support of on-demand deploying,
provisioning, disposing of virtualized LTE system components,
the support of resource allocation on-demand and dynami-
cally. As the duration of scaling or virtual machine (VM)
migration procedures are higher than the delay acceptable
for the communication of a subscriber (e.g., booting up of
a VM may take 10-20s while the connectivity of a handed-
over subscriber is lost after 30-50ms in LTE due to too large
buffering required), novel mechanisms apart from reacting
to metered values by the monitoring system are required
[4]. In order to give enough time for the system to adapt,
one possible mechanism is adjusting the threshold limits far
enough from the trigger points, to spot early during decision
making procedures. However, this mechanism is highly prone
to errors especially when the duration of a specific trend is
short. Additionally, it may bring a high-level of instability
to the system by not being able to detect ping-pong effects.
Another alternative way is prediction. Utilizing an appropriate
prediction mechanism in order to estimate the system change
state in the future, can enable to place the thresholds at more
extreme values (referring to a future state), and thus to tune
a more accurate threshold value during the decision making
process.

This paper proposes a prediction system architecture, en-
titled MOBaaS, which can be implemented in cloud based
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infrastructures and can be used as a support service by any
other virtualized LTE component. MOBaaS encompasses two
algorithms that can provide prediction information about the
user(s) mobility and link bandwidth availability in the partic-
ular future. The prediction information provided by MOBaaS
can be interpreted as an estimation on geographic and tem-
poral traffic distribution. In particular, this paper focuses on
addressing following challenges associated to the realization
of MOBaaS in cloud based LTE system, which are in a
close relationship with the requirements to be fulfilled by the
MOBaaS system in [4]:

• Proper mechanism to estimate (with higher accuracy)
the location of user(s).

• Proper mechanism to estimate (with higher accuracy)
network link bandwidth availability.

• Some of the most important design considerations
for MOBaaS, so that it can easily be instantiated,
deployed and disposed in cloud computing platform
and be scalable when the number of requests and
overall computational load increases.

• A reference architecture for MOBaaS that can be
simply integrated with any other virtualized LTE com-
ponent to provide prediction information.

The remainder of the paper is organized as follows. Section
II presents the motivation behind MOBaaS, introduces its
architecture and components and describes design consider-
ations. Section III and IV discuss the proposed mobility and
bandwidth prediction algorithms respectively, demonstrate the
obtained results and present some example use cases. Finally,
section V concludes the paper and makes recommendations
for the future work.

II. MOBAAS OVERVIEW

A. Motivations and Service Requirements

Different telecommunication services could benefit from
the prediction results to optimize network performance. For
example, Information Centric Network (ICN), which provides
distributed storage, caching and content relocation features, see
Fig. 2, could optimize the distribution of content according to
the user mobility prediction results, such that the user content
will be available/stored in the location he/she will visit in
the future [5]. This information could be used by RAN in
order to instantiate, deploy, upgrade and scale resources on-
demand where and when they are required, and releasing them
when not needed anymore [6], or during mobility management
procedure to support service continuity and seamless mobility
[7], as well. In addition to user mobility prediction, estimation
of used and available bandwidth will also bring benefits to
mobile telecommunication applications. EPC, for instance,
could allocate network resources and bandwidth in a certain
area in a more targeted manner [8].

MOBaaS, as a support service, can be used by any MCN
service such as RANaaS, ICNaaS and EPCaaS [3], in order to
provide prediction information or generate necessary triggers
for self-adaptation procedures, e.g., scaling of service instance
components and optimal network function placement. This is
realized by defining one entry point, called Frontend, which
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Fig. 2: ICNaaS content relocation based on MOBaaS output.

can either respond with prediction results or issue a trigger
when certain thresholds are met, see Fig. 3. MOBaaS targets at
providing prediction information of: (i) the estimated locations
(cells) of an individual/a group of end-users, and (ii) predicted
information about the bandwidth used/available at a certain
network link in the future. In order to make prediction,
MOBaaS requires a significant amount of users mobility and
network link bandwidth usage information, which could be
provided by another MCN support service, called Monitoring
as a Service (MaaS). Given the above description, MOBaaS
defines the following design requirements:

• An entry point for receiving requests of prediction
(request-based and trigger-based)

• A connection to MaaS for retrieving history data.

• A mobility prediction algorithm block.

• A bandwidth prediction algorithm block.

Based on the proposed architecture, we propose a mo-
bility prediction algorithm that provides prediction informa-
tion about the next location(s) that user(s) may visit in the
future. Mobility prediction can be requested and performed
for an individual/a group of end-user(s) and may be utilized
by any other MCN service. As an example, ICNaaS could
utilize the user mobility prediction information to decide on
content relocation. Based on the network topology design and
implementation, the content may be relocated on the CCNx
routers/repositories which are placed on the eNodeBs and/or
the S/P-GWs (Serving/PDN-Gateway). When a user moves
from one cell (source eNodeB) to another cell (target eNodeB)
which are served by the same S/P-GWs, the content may be
relocated between the CCNx routers/repositories implemented
in the eNodeBs. If the source and target eNodeB are not served
by the same S/P-GWs, the content may be moved between the
CCNx routers/repositories which are placed in the target S/P-
GW, see Fig. 2.

In addition to user mobility prediction, estimation of the
used and available bandwidth will also bring benefits to cloud-
based mobile network. For instance, allocation of network
resources and bandwidth in a certain area could be performed
more intelligently, given the knowledge that the bandwidth
demands are higher than in the normal case. In this regard, we
propose a bandwidth prediction algorithm using a sufficient
amount of traffic usage information, to estimate the available
bandwidth of a certain network link in a specific time. This
information could also be integrated to the results of the
mobility prediction algorithm, to estimate the total bandwidth
in a particular network coverage area.
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Fig. 3: MOBaaS implementation architecture.

B. MOBaaS Reference Architecture Model

Fig. 3 demonstrates different components of MOBaaS and
their roles are listed below:

• M.P./B.P.: These blocks represent the mobility pre-
diction and bandwidth prediction algorithms, respec-
tively.

• History Data Retriever: The thread to continually
retrieve raw monitored data from MaaS. It also main-
tains a copy of a users’ mobility and network links’
traffic usage data history in the local data storages by
deleting old or unused history.

• Data Converter : A logic that defines rules about how
to process raw monitored data and convert them to the
format usable by the algorithms.

• Data for M.P./B.P. algorithm: The processed history
data in a format usable by the algorithms.

• Request Queue: A library on how to queue a request
when specific data is missing in the history.

• Frontend: It is the main thread which ties all internal
components of MOBaaS together. It handles predic-
tion requests and starts algorithm threads, as well. If
the Frontend receives a prediction request for which its
required history information is currently not available,
it will store the request to the ”Request Queue”, and
that request will be postponed until the missing data
becomes available. The Frontend also handles the
trigger-based prediction, which means it periodically
calculates the future states of users’ movement and
network links’ bandwidth and decides if the registered
consumers need to be informed.

• Service Orchestrator (SO) : The SO is responsible for
managing the service instances of MOBaaS, which in-
cludes service initialization, disposal, run-time scaling
operations, etc. It also calls the Frontend program to
start the internal logics of MOBaaS.

C. Mobility and Bandwidth Prediction As a Service

As a cloud-based supporting service, MOBaaS should pro-
vide requested information on-demand. Accordingly, several
cloud computing principles have to be supported, in which

on-demand service provisioning and scalability are the most
important two issues.

The proposed architecture fits well for virtualization in a
cloud environment and the different MOBaaS components can
be provisioned on-demand, which includes Frontend, mobility
prediction and bandwidth prediction algorithms, data storage,
and other related functions. The configuration of internal
components and the adapters related to the specific services
can also be easily modified and updated if it is required.
Furthermore, SO can release all the related resources after the
service’s life-cycle.

Scalability is another critical concern for MOBaaS, which
should be able to automatically scale-up/down and scale-in/out
depending on the number of prediction requests. The current
proposed architecture can only handle vertical scaling for both
processing power and storage. The architecture is not suitable
for horizontal scaling due to the dependence on a local data
storage. One of the responsibilities of the Frontend is to restrict
the number of calculation threads. It communicates with the
SO when there is need more processing power due to the
increased amount of requests. Whenever the SO observes that
the computing overheads for making prediction is getting high
and are above certain threshold values, a scale-up decision
will be made. Requesting history mobility and bandwidth data
requires a lot of storage. Depending on the number of requests
coming in and the amount of storage available, SO can scale-
up the storage to have more resources available.

III. MOBILITY PREDICTION

A large number of different algorithms have been proposed
in the literature for predicting the future position of mobile
user(s) in mobile networks. Most often, the prediction mecha-
nisms have been developed to address a prediction problem for
a specific type of scenario, which mainly are based on location,
movement history, movement patterns, velocity, and etc., see
e.g., [9],[10]. Generally speaking, propounded schemes carry
out forecasting based on mobility models that can be cate-
gorized in three main classes: Temporal Dependency, Spatial
Dependency, and Geographic Restriction [10]. The mobility
models represent the movement of mobile nodes, and how
their location, velocity and acceleration change over time.
Prediction schemes based on Temporal Dependency mobility
model assume that mobile node trajectories may be constrained
by some physical characteristics such as acceleration, velocity,
direction, and also affected by their movement history, see
e.g., [11],[12]. In case of the latter, estimation is performed
based on the assumption that mobile nodes desire to travel in
a correlated manner and mobility of one node is affected by the
mobility pattern of other neighboring nodes, see e.g., [11],[13].
The solutions relying on Geographic Restriction, assume that
node trajectories are subject to the environment and motion
of mobile nodes are bounded by geographic restrictions such
as freeways, local streets, buildings and other obstacles, see
e.g., [14],[15].

One of the intuitive methods to determine a mobile user’s
movement pattern, leading to predict its future behavior, is
the attempt to trace and capture some sort of regularity in the
user mobility. Many studies in the field, show that most often a
mobile user has the tendency to regularly behave the same way.
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Such behaviour regularity could be considered as user’s profile
and utilized to estimate places a user may visit in the future.
The prediction schemes, relying on history of mobile node
trajectories, are classified in Temporal Dependency category.
The mobility prediction algorithm proposed in this paper falls
into this category.

In the context of the LTE system, the Mobility Manage-
ment Entity (MME) is one of the key components of the
EPC. It is responsible for variety of important key functions
(e.g., subscribers authentication, keeping location information
of users, gateway, roaming and handovers). By monitoring and
tracing information from MME, it would be possible to derive
movement history of users.

The next section presents the mobility prediction scheme
proposed in this paper. This approach utilizes the trace of
mobile user trajectories, to predict the next location that may
be visited.

A. Description of Mobility Prediction Algorithm

The proposed mobility prediction algorithm benefits from
the Dynamic Bayesian Network (DBN) model presented in
[16]. The rationale behind using DBN is that, the next location
(cell) visited by a user depends on: (i) it’s current location, (ii)
the current time, and (iii) the day of the week that the user is
in the movement. The proposed DBN model is illustrated in
Fig. 4.

Service Orchestrator(SO) 

T-eNodeB

S/P-GW

S-eNodeB

H
an

do
ve

rin
g

CCNx-R

CCNx-R

CCNx-R

S-S/P-GW

CCNx-R

CCNx-R

T-S/P-GW

M
ov

in
g

H
an

do
ve

rin
g

CCNx-R

CCNx-R

S-eNodeB

T-eNodeB

Content 
Relocation Content 

Relocation

Content 
Relocation

Mobile End 
User

Radio Access 
Network

Data 
Center 

Future Mobile Cloud Networking

Core Network

Current Cloud 
Computing

M
ov

in
g

9:05_Cy 9:10_Cz

P1 P2

9:00_CxTt D
t t+δ t+2δ 

Ci’

Tt’ D

Ci’’Ci

17:10_Cx

P3 P4

17:05_Cy 17:00_Cz

D
t t+δ t+2δ 

D

Tn_Ci Tt’_Ci’Tt_Ci Tt’’_Ci’’

MOBaaS

Frontend

M.P. B.P.

Request 
Queue

History Data 
Retriever 

Consumer 1 Producer of history 
data (MaaS)

Consumer 2

Start Start

Answer

M
issing 

D
ata

Requests/
Answers Requests/

Answers

Register/
Tr igger

Incoming Data
Meta Info

Missing 
Data Request

Data for M.P 
algorithm

Data for B.P 
algorithm

Data
Convertor 

Raw 
Data

 Local Storage

(a) DBN model
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(b) Modified DBN model

Fig. 4: The model used to drive the Markov Chain states.

In Fig. 4, Ci represents a cell with ID i, Tt defines the time
of day D, D shows the day of the week (e.g., Monday), and
δ determines the future time. As it is shown in Fig. 4a, the
conditional distribution of the next location (cell) visited by a
user comprises the current location, time, and the week day.

P (C(t+ δ) = Ci′ | C(t) = Ci, T (t) = Tt, D) (1)

Expression (1) can be considered as a location dependent
distribution, providing a given time and day, and can be
modeled as a simple first order Markov Chain (MC) that
encodes the frequency (probability) of transitions between
the cells. The DBN model can be simplified by integrating
the transition time step (e.g., each minute) and the cell ID
to derive a customized MC model, see Fig. 4b. In order to
derive the transition probability matrix of the MC, we calculate
the probability of moving from one cell to other(s) for each
individual user, by counting the number of transitions from one
cell to another, in regular tunable intervals (e.g., each minute)
on the given days of the week (e.g., all Mondays, all Tuesdays,
and etc.) in the trace files. Fig. 5, as an example, shows two
various transitions from one cell (Cy) to other cells (Cx or Cz)
derived in two different times in the customized MC model.
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(a) The direction from home
to work (e.g., at morning)
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(b) The return direction
(e.g., at evening)

Fig. 5: Examples of customized MC states.

The spatial granularity of this algorithm is at the cell level,
which means the algorithm outputs the possible future cell(s)
of a user with particular probabilities. The temporal granularity
of the algorithm is dependent on the application requirements
and could be tuned in scale of minutes. In order to evaluate
performance of the proposed algorithm, we used the mobility
data trace provided by Nokia for academic research [17]. From
this set we picked data from 100 users ranging over 2-6 months
of time. For each user, we separated available data into two
parts, the learning data set (L), and the testing data set (T). Data
set L, is the 70% of user’s data trace and utilized in order to
derive the MC states and to calculate its transition probability
matrix. Data set T contains the rest 30% of data trace, which is
used to test and evaluate the proposed algorithm. For instance
if the length of a data trace is 2.5 months (i.e., it includes
trace data for 10 Mondays), we use the data trace of the first
seven Monday during the learning phase and the rest for the
test phase.

B. Evaluation of Mobility Prediction Algorithm

The number of valid states (with a time step and cell ID)
in the derived MC for each user depend on the quality of
data trace in each day. In order to evaluate accuracy of the
proposed algorithm, for each user we selected randomly 10%
of states, out of the MC states derived for each particular day
of a week from the data set of L. Afterwards, for each of
the selected states prediction calculation is performed to find
the future possible cell(s) in the next δ minutes (e.g., δ=20).
These states have been chosen as the random test points (times
and ID of the cells that user was there) during evaluation
process. We checked the probability of possible transitions for
the same selected states in the data set T as well. Afterward,
the Mean Absolute Error (MAE) for the possible transitions
in the corresponding test points, chosen from the learning and
testing data sets, is computed in order to obtain accuracy of
the prediction for each user in a particular day of the week.

MAE =
1

M

M∑
i=1

|PiL − PiT | , Accuracy = (1−MAE)× 100 (2)

In Eq. (2), M represents the number of all possible
transitions

Fig. 6: Accuracy of algorithm for some users per day.

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

135



in the selected states, PiL and PiT define the calculated
probability for each possible transition in the test points chosen
from data set L, and the checked probability of possible
transitions for the same selected states in the data set T,
respectively. Fig. 6 shows accuracy of the prediction calculated
per day, for some users as an example.

Fig. 7 displays the overall accuracy for 100 users. For each
user it represents the average of accuracy calculated for each
single day of the week.

Fig. 7: The overall accuracy of prediction for 100 users.

Accuracy of prediction effectively pertains to the quality
of data trace used to derive the transition probability matrix.
Fig. 8, as an example, illustrates two users’ data trace, leading
to low (for user 6025) and high (for user 5960) prediction
accuracy, see Fig. 7.

(a) user 6025 traced data (b) user 5960 traced data

Fig. 8: Quality of data trace for two different users.

C. Mobility Prediction use cases

In the context of MCN project, mobility prediction infor-
mation can be generated and provided in the following ways.

• Single user and multiple users prediction: Performing
a prediction in this case is relying on a request-based
approach, in that a HTTP server running at MOBaaS
constantly waits for requests from consumers, see
Fig. 3. For the single user request, prediction estima-
tion is performed based on the user’s current location
(cell ID) at a given time (time and day). For the
multiple users prediction, by providing a given time
and day in the request message, the algorithm makes
the prediction of which cell the users may be located at
a certain future time. Moreover, it can provide details
about where (the cell IDs) the users were moving.

• Group users prediction: Notification mechanism for
the generated information in this case is based on the
trigger-based approach. Group users prediction targets
at providing probability distribution of the number of
users in a certain cell at the given times (e.g., t+δ,
t+2δ, ...), knowing the probability distribution of lo-
cation(s) that users were at time (t). Eq. (3), defines

the probability that M users may visit cell Ci at time
(t+δ). The parameters used in this equation are listed
in Table I.

TABLE I: Group users prediction parameters

Parameter Name Parameter Definition
C = {C1, C2, .., Ci}, |C| = I Set of cells
U = {U1, U2, .., Uj}, |U | = J Set of users
NCi

(t) Number of users in cell Ci at time (t) (e.g., m)
NCi

(t+ δ) Number of users in cell Ci at time (t+δ) (e.g., M)
n1 Number of users that may move to Ci at time

(t+δ)
n2 Number of users that may move from Ci at time

(t+δ)
4m = M −m = n1 − n2 The difference between the number of users in cell

Ci at time (t) and (t+δ)
FC

i′ (t)
Subset of all users out of Ci at time (t)

FCi(t)
Subset of all users in Ci at time (t)

Pj1 , Uj1 ∈J P{Uj1 is in Ci′ at time (t)} ×
P{Uj1 moves to Ci at time (t+δ)}

Pj2
, Uj2

∈m P{Uj2
is in Ci at time (t)} ×

P{Uj2
moves from Ci at time (t+δ)}

P
{
NCi

(t+ δ) = M
}

=
∑
m

P
{
NCi

(t+ δ) = M | NCi
(t) = m

}
×

P
{
NCi

(t) = m
}

=
∑
m

〈
∑

n1,n2,n1−n2=4m

P
{
Nin,Ci

(t+ δ) = n1

}
×

P
{
Nout,Ci

(t+ δ) = n2

}
〉 × P

{
NCi

(t) = m
}

(3)

In Eq. (3), P {Nin,Ci
(t+ δ)} and P {Nout,Ci

(t+ δ)},
describe the probability of n1 users that may move into cell
Ci and n2 users that may move out from Ci at time (t + δ),
respectively. These probabilities can be calculated using Eq.
(4).

P
{
Nin,Ci

(t+ δ) = n1

}
=

∑
A1∈FC

i′ (t)

∏
j1∈A1

Pj1

∏
j′1∈A

c
1

(
1− Pj′1

)
P
{
Nout,Ci

(t+ δ) = n2

}
=

∑
A2∈FCi(t)

∏
j2∈A2

Pj2

∏
j′2∈A

c
2

(
1− Pj′2

)
(4)

The group users prediction information could be integrated
to network link bandwidth estimation and could be utilized by
EPCaaS to optimize placement of the components in the cloud,
or to dynamically adapt those components, while taking into
account number of users and traffic loads.

IV. BANDWIDTH PREDICTION

An important task for network operators is to properly
provision the capacity of their links. Under-provisioned links
might result in network performance degradation, which can
ultimately affect Quality of Service (QoS) as perceived by
end users. Aiming at adequate QoS, operators continuously
monitor link usage. A commonly adopted approach is to read
interface counters via Simple Network Management Protocol
(SNMP) and use this information to roughly estimate required
link capacity for current traffic [18]. While easy to use and
readily available in most devices, the measured data lacks
accuracy at shorter timescales, which leads mostly to loss of
resources due to unnecessarily large safety margins. Higher ac-
curacy for the estimation of required capacity at any timescale
typically comes at the cost of more expensive measurements,
such as packet-level. Operators however, tend to not deploy
such approaches due to operational and financial challenges
of such measurements. A compromise between easiness of

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

136



use and accuracy is achieved by approaches that use packet
sampling or flow-level measurements for estimating required
capacity. Next we describe our proposed solutions to estimate
required capacity from commonly found measurement data
nowadays, namely flows.

A. Description of Bandwidth Prediction Algorithm

The starting point of our approaches is the dimensioning
formula originally proposed in [19] and further validated in
[20], [21]. Our dimensioning approach aims at link trans-
parency, and assures the provided link capacity C satisfies
A(T ) ≥ CT ≤ ε. The provided link capacity C satisfy the
condition A(T ), where A(T ) denotes the total amount of traffic
arriving in intervals of length T , and ε indicates the probability
that the traffic rate A(T )/T is exceeding C at timescale T .
The dimensioning formula requires that traffic aggregates are
Gaussian (i.e., A(T ) are normally distributed) and stationary.
The link capacity C(T, ε), given by the adopted dimensioning
formula, that satisfies the condition above, is calculated by
adding to the mean traffic rate ρ a safety margin that depends
on the traffic variance υ(T ) of A(T ):

C(T, ε) = ρ+
1

T

√
−2 log (ε) · υ(T ) (5)

Relying on the variance υ(T ), this dimensioning formula
is able to take into account the impact of possible traffic
bursts on the required link capacity. In addition, it is very
flexible: network operators can choose T and ε according to
the QoS level they want to provide to their users. Although
accurate, the dimensioning approach from [19] originally re-
quires continuous packet capture to calculate ρ and υ(T ). We
developed alternative approaches to estimate these statistics
from measurement data largely found at today’s networks:
flow-level data. Note that our definition of flows follows the
typical 5-tuple of NetFlow v5 [22], consisting on source
and destination IP, source and destination ports and transport
layer protocol. Due to its aggregation nature, this type of data
offers less information by nature, and mainly the estimation
of υ(T ) from this data becomes a challenge. Flow data, such
as NetFlow [22] or IPFIX [23] flows (or equivalents such as
J-Flow [24]) aggregates the information of packets belonging
to the same connection and, therefore, it lacks information
on individual packets size and their inter-arrival times. We
developed two approaches to estimate required capacity from
flows: a pure flow-based approach and a hybrid flow-based
approach.

The pure flow-based approach, initially proposed in [25],
estimates required capacity solely from flow-level measured
data under the (naive) assumption of uniformly distributed
bytes within flows. Traffic variance υ(T ) is calculated from
a flow-level time series and then applied to Eq. (5). This
approach results in accurate estimations of required capacity at
timescales as short as 1s. The hybrid flow-based approach [26],
however, is able to accurately estimate required capacity at the
millisecond timescale. This approach combines flow data with
mathematical models that model the behavior of individual
packets within flows. The downside of the hybrid approach
is that for tuning the parameters of the models, we need
occasional and short term packet captures. Nonetheless, once
tuned, parameters remain valid for very long periods (up

to months), making the hybrid approach measurement-wise
lightweight if compared to a fully packet-based approach.

B. Evaluation of Bandwidth Prediction Algorithm

In the following, we present some results on the validation
of the developed approaches. Results from more extensive
validations can be found at [27]. To validate the accuracy of
the flow-based link dimensioning approaches we used packet
traces captured from real ISPs networks. The packet traces
allowed us to calculate the ground-truth Cemp(T, ε), which is
defined by the (1 − ε)-quantile of the empirical CDF of the
aggregated data rate, given by :

Cemp(T, ε) := min {C : #{Ai(T ) | Ai(T ) > CT}/n ≤ ε} (6)

A1(T ), . . . , An(T ) are the n empirical traffic aggregates on
timescale T , and ε is the bandwidth exceedance probability.
In these experiments we have set in the dimensioning formula
ε = 0.01 and T to 10ms and 1s. We processed the same
packet traces using YAF [28] to obtain the flow-level data
of the captured traffic. Note that for the flow creation we
used active timeout of 60s and inactive timeout of 20s. From
the created flow data, we estimated CpureF low(T, ε) and
Chybrid(T, ε) using, respectively, the pure flow-based and the
hybrid approaches.

Fig. 9 shows the data rate time series at T = 10ms
and T = 1s for an example trace from our dataset, and the
estimations of required capacity using the different flow-based
approaches. This figure clearly shows that, on the one hand, at
very small T the pure flow-based approach is not accurate
enough, since CpureF low(T, ε) is lower than the minimum
required capacity defined by Cemp(T, ε). At larger T though,
this straightforward approach does provide CpureF low(Tε) ≡
Cemp(T, ε). On the other hand, the hybrid approach supported
by the mathematical models with tuned parameters accurately
estimated required capacity at T = 10ms.

(a) T = 10ms (b) T = 1ms

Fig. 9: Estimation of required capacity for each of the proposed
approaches, at different T , using a sample traffic trace from
our data set. At any of the considered values of T , this sample
trace has γ > 0.9 (i.e., the traffic is sufficiently Gaussian).

C. Bandwidth prediction use cases

Within the context of the MCN project, or cloud infrastruc-
tures in general, bandwidth prediction is applicable in various
scenarios. Due to the dynamic nature of the RANaaS and EP-
CaaS, where resources will be scaled up/down, dimensioning
links properly in a timely and accurate manner is essential.
Not only is bandwidth a resource itself, it is also necessary
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to enable other resources to be deployed. For example, VMs
that need to be moved to other parts of the network to realize
service continuity, have bandwidth requirements on certain
links. With a priori known bandwidth capacities of links, the
infrastructure is aware of available bandwidth at a specific
point in time. This information can then be used to choose
certain deployment strategies over others, possibly reducing
costs or improving end-user experiences.

V. CONCLUSION

Implementing cloud-based LTE systems requires on-
demand deploying, provisioning, and disposing of virtulized
LTE components. In this paper, we proposed an architecture
for MOBaaS, as a service component, which provides user(s)
mobility and link bandwidth availability estimation only based
on users’ trajectory information and network link’ bandwidth
usage data. The proposed algorithms attempt to capture some
sort of regularity in the data trace to predict the future behavior
of the mobile user and the network link. The designed archi-
tecture have been successfully implemented on the OpenStack
platform as proposed and used by the MCN architecture.
Extensive experiments have been performed and evaluation
results show that the prediction system is feasible and the
proposed prediction algorithms achieve high accuracy. In the
future, we plan to analyze the performance of MOBaaS in
scenarios with other virtulized LTE services, such as ICNaaS
and EPCaaS.
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