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ABSTRACT

Recent advances in mobile technologies have enabled a plethora of new applica-

tions. The hardware capabilities of mobile devices, however, are still insufficient for

real-time stream data processing (e.g., real-time video stream). In order to process

real-time streaming data, most existing applications offload the data and computa-

tion to a remote cloud service, such as Apache Storm or Apache Spark Streaming.

Offloading streaming data, however, has high costs for users, e.g., significant service

fees and battery consumption. To address these challenges, we design, implement

and evaluate Mobile Storm, the first stream processing platform for mobile clouds,

leveraging clusters of local mobile devices to process real-time stream data. In Mobile

Storm, we model the workflow of a real-time stream processing job and decompose

it into several tasks so that the job can be executed concurrently and in a distribut-

ed manner on multiple mobile devices. Mobile Storm was implemented on Android

phones and evaluated extensively through a real-time HD video processing applica-

tion. The result shows that Mobile Storm effectively processes HD Video Stream in

a mobile cloud, which would be impossible on a single mobile device.
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1. INTRODUCTION

1.1 Motivation

Mobile devices are generating multimedia data more and faster than ever. Mobile

users today not only share images or videos stored on their phones, but they also

stream real-time video from one mobile device to another, e.g., Skype, FaceTime,

HangOut. As a result of faster cellular networks, e.g., 3G and LTE, the stream data

can be transmitted seamlessly. However, due to the limited computational power of

mobile devices, processing the stream data in real-time is still impractical.

Offloading real-time stream data to a remote cloud is a widely used technique

to process stream data generated by mobile devices. Major companies like Twitter

use Apache Storm [26] - a real-time stream processing platform, to process large

amount of stream data produced by its users. However, offloading real-time stream

data to a remote cloud has several limitations: i) streaming applications require

high bandwidth communication links. Although the current 3G/4G technology is

capable of handling such traffic, users have to pay for data sent to or received from

the cellular network; ii) the available bandwidth of cellular network depends on the

number of users connected to the cellular tower, so it can be highly unstable. For

example, during the 2009 U.S. Presidential Inauguration, many wireless data services

failed due to millions of people attending this event [23]; iii) as shown in table 1.1,

3G or 4G technologies consume much higher power compared to WiFi [20]; iv) to

meet the increasing demand of mobile users, the bandwidth and processing power of

remote cloud platform also need to be improved regularly. As a result, harvesting

computational resources from local mobile devices, i.e., mobile cloud, becomes an

attractive solution. Instead of pushing streaming data to a remote cloud, one can
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Figure 1.1: Overview of current distributed computing technologies

Up (mW/Mbps) Down (mW/Mbps) Base (mW/Mbps)

LTE 438.39 51.97 1288.04

3G 868.98 122.12 817.88

WiFi 283.17 137.01 132.86

Table 1.1: LTE, 3G, and WiFi data transfer power

distribute stream data to mobile devices in the vicinity and utilize them to process

stream data in real time. This way, the cost of transmission energy, service fees, and

cloud maintenance are all drastically reduced.

To the best of our knowledge, no distributed computing technologies have been

developed for distributed real-time stream processing on mobile devices. As shown in

Figure 1.1, the current distributed computing solutions focus on either batch/stream

2



processing in data centers or only batch processing on mobile devices. Apache

Hadoop and Spark [28] are used in large data centers for batch processing. Apache

Storm and Spark Streaming are developed for real-time stream processing, and are

also used for large data centers. Hyrax [23] is the mobile version of Apache Hadoop

that is used for batch processing on mobile devices.

1.2 Research Challenges

This section describes the challenges involved in bring real-time distributed stream

processing to mobile devices.

As shown in Figure 1.1, there are two intuitive options to bring distributed stream

processing to mobile devices. The first option is to change the design of Hyrax [23]

such that real-time processing of stream data is possible. However, Hyrax is imple-

mented by porting Hadoop’s Data Node to mobile devices, so it is difficult to change

its design to process real-time stream data. The second option is to port the existing

traditional server based real-time stream processing frameworks, e.g., Storm [26] and

Spark Streaming [10], to mobile devices. However, several major challenges prohibit

this:

1) both platforms have a very large code base and are written using different

programming languages (e.g. Storm has 100,000 lines of codes written in Java,

Clojure and Python, Spark Streaming is even more complex and is written using

Scala, Java and Python.

2) many third-party libraries are used in these projects and most of them are

designed and used for traditional servers.

3) they both use JVM (Java Virtual Machine) instances as worker processes.

However, mobile devices, like Android, use their own VMs, which leads to significant

incompatibilities.
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4) their system design is too heavy for mobile devices with limited memory re-

source and computing power. These will reduce the processing speed, impacting

the real-time aspects of the stream processing. Additionally, they use multiple JVM

processes in each worker node to execute jobs, which is too demanding for mobile

devices;

5) they are designed for and used in large data centers, where devices are connect-

ed using wired networks, which are much more reliable and have higher capacities

than wireless networks employed by mobile devices.

6) their coordination architecture only works for a single cluster. However, in a

mobile environment, multiple clusters may exist. Since it is hard to port existing dis-

tributed real-time stream processing platforms to mobile environment, we designed

Mobile Storm, a new solution from scratch, referencing design ideas and architectures

of existing real-time stream processing frameworks [26] [10]. We also use mobile plat-

form’s programming language and libraries to implement and evaluate it. Compared

with Spark Streaming, Storm’s design is more suitable for mobile devices due to its

simplicity. Consequently, we based our design decisions on Storm.

1.3 Contributions

The contributions of this thesis are as follows:

1) it presents the design of the first real-time stream processing system for mobile

clouds.

2) it argues for the decisions we made during our design of Mobile Storm, which

were based on what could be or not be inherited from the design of Storm.

3) it presents an API that allows mobile application developers to build real-time

stream processing applications easily.

4) it demonstrates the feasibility and performance of our system design through

4



a real system implementation on Android devices.

1.4 Related Work & Background

In this section, we present the state of the art from two perspectives: distributed

real-time stream processing on traditional server clusters, and distributed computing

on mobile devices.

1.4.1 Distributed Batch Processing on Server Clusters

Many distributed batch processing frameworks on traditional server clusters have

been developed and widely used today. One of the most well-known one is Apache

Hadoop [3], which is developed based on MapReduce framework. Hadoop mainly

contains two components, MapReduce framework and HDFS (Hadoop Distributed

File System). The distributed processing is done by two distinct tasks- the Map

Task and the Reduce Task. User implements mapper and reducer interfaces in their

applications. The mapper is responsible for taking the input data set and producing a

set of intermediate <key,value> pairs which are sorted and partitioned per reducer.

These pairs are then sent to reducer which is responsible for producing the final

output. The HDFS is a distributed file system used to provide high-throughput

access to application data.

The high-level architecture of Hadoop is shown in Figure 1.2. It consists of two

different nodes, NameNode and DataNode. The NameNode is the master node of

an HDFS file system. It keeps the directory tree of all files in the file system, and

tracks where file data is kept. The DataNode is the slave node which is responsible

for storing data in HDFS file system. In MapReduce layer, there are two important

modules, JobTracker and TaskTracker. JobTracker is responsible for receiving user

jobs and splitting them into tasks which are assigned to the TaskTrackers in slave

node. TaskTrackers act as mappers and reducers. During the job execution, Job-
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Figure 1.2: Hadoop architecture

Tracker monitors the health status of the execution and re-execute the failed tasks.

In HDFS layer, the data is transferred between DataNodes through network.

Apache Spark [28] is an another distributed batch processing framework. Spark

can run in Hadoop clusters, and can process data in HDFS. It enables programs

run up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Spark is based on two concepts: Resilient Distributed Datasets (RDD) [27] and

directed acyclic graph (DAG) execution engine. RDDs support two different kinds of

operations: transformations and actions. Transformations is responsible for creating

new data sets from the input, which is like what mapper does in Hadoop. And

then actions producing output from the data sets, which is like what reducer does

in Hadoop. The DAG engine can eliminate the MapReduce multi-stage execution

model and improve the performance significantly.

The high level architecture of Spark is shown in Figure 1.3. Spark applications

runs as independent sets of processes, and they are coordinated by Spark Driver.

The Spark Driver is connected to Cluster Manager which is responsible for allocating

6
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resources across applications. Once connected to Cluster Manager, the Spark Driver

sends tasks to the executors in the worker node to run.

1.4.2 Distributed Real-time Stream Processing on Server Clusters

There have been many previous solutions for distributed real-time stream pro-

cessing on traditional server cluster. Yahoo developed its own distributed real-time

stream processing platform S4 [24]. In S4, a stream, which is a sequence of events,

is processed using PEs (Processing Elements). Events are emitted and consumed

by PEs. S4’s framework also provides the capability to route events to appropriate

PEs. Another well-known system is Streaming API project of Apache Spar named

Spark Streaming [10], which can process real-time stream date with low latency. S-

park Streaming runs stream processing as as series of very small, deterministic batch

jobs. Spark Streaming partitions the stream into micro batches of data which are

then used as input for Spark. Spark takes these micro batches of data as RDDs and

processes them using RDD operations.
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1.4.3 Distributed Computing on Mobile Devices

Distributed computing on mobile devices has been previously attempted either

by offloading data and computation to remote cloud servers, or by constructing a

distributed computing cluster with local mobile devices.

Cuervo [17] proposed MAUI, an architecture that improves the energy efficiency

by offloading some code to remote servers. MAUI offloads code to a remote server

only if the remote execution results in higher energy efficiency. Zhang [29] proposed

an elastic application model that enables the seamless and transparent use of cloud

resources to improve computational capability of mobile devices. He designed a cost

model to decide the execution configuration of application during runtime, in order

to optimize power consumption, monetary cost, performance, security and privacy.

Chen [15] proposed an aspect-oriented programming architecture that allows mobile

application developers to easily offload part of the computation to servers in the

cloud. This architecture inserts offloading code into the application’s source code,

based on static and dynamic profiling. They also implemented a proof of concept

system on Android. Many similar works have been described in [19, 22, 25, 16, 18,

14]. They all involve offloading local data to remote servers to improve the mobile

application’s performance. Though they designed their algorithms to minimize the

energy cost of transferring the data to remote servers, they cannot avoid offloading

data to remote servers and are not suitable for real-time stream data. Besides, both

proposed architectures need large investments in remote servers.

Marinelli [23] developed a mobile phone-based cloud computing platform by port-

ing Hadoop’s Data Node to Android phones. Processing data in Hyrax does not

require data transfers to remote servers. In Hyrax, NameNode is running on tradi-

tional servers. The user’s job is submitted to NameNode, and then NameNode send

8



tasks to Data Node running on mobile phones. A similar work also has been done

in [21]. However, these previous works can only do distributed batch processing,

since they are based on Hadoop are not suitable for real-time stream data processing

as Hadoop is only suitable for batch processing.

1.4.4 Overview of Apache Storm

Storm [4] is a scalable and fault-tolerant distributed real-time stream processing

platform that is used by many companies such as Yahoo and Twitter. The high level

architecture of Storm cluster is shown in Figure 1.4, it consists of three parts, Nimbus,

ZooKeeper and Worker nodes. Nimbus, is the master node of the system, responsible

for coordinating the execution of tasks, such as scheduling and distributing tasks

to worker nodes. ZooKeeper [13] stores the information needed for coordination

between Nimbus and Worker nodes, such as the tasks assignment and heartbeat

information of worker nodes. Worker node processes the actual stream data. Each

worker runs a Supervisor daemon that listens to tasks assigned to this node from

Nimbus. Workers are separate Java Virtual Machines, and each one contains multiple

executors (threads) that execute multiple tasks.

In Storm, the unbounded stream data is described as a sequence of tuples. Tuple

is the smallest data entity in Storm that can be serialized and transferred through

networks. As shown in Figure 1.4, Storm uses a topology consisting of Spouts and

Bolts to describe the workflow of a real-time stream processing job [4]. Spouts

read tuples from the stream data source and emits them to bolt. Bolts consume

the received tuples by user-defined processing procedures. Bolts may also generate

new tuples and send them to other bolts. In Storm, a single spout or bolt can

have multiple instances, and each instance corresponds to a single task that to be

executed. Storm provides the following stream grouping policies to decide how to

9



partition and distribute stream data to bolts’ tasks [11]:

• Shuffle grouping : Tuples are randomly distributed to bolt’s tasks to guarantee

each task receives equal number of tuples.

• Fields grouping : The stream is partitioned by the specified fields such that

tuples with the same specified field will be sent to the same task.

• All grouping : Each tuple is sent to all the bolt’s tasks.

• Global grouping : All tuples are sent to a single bolt’s task with the lowest task

ID.

• Direct grouping : The producer of the tuples decides which task that the tuples

should be sent to.

• Local or shuffle grouping : If there are bolt’s tasks existing in the same node,

then send tuples to these tasks randomly. Otherwise, use shuffle grouping.

Storm’s parallelism is expressed in two levels, abstract model level (topology)

and system level (Storm cluster). At abstract level,the parallelism is expressed by

allowing topology’s spouts and bolts to have multiple tasks. At system level, the

parallelism is expressed by having multiple executors to execute bolt’s or spout’s

tasks.

10
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2. SYSTEM DESIGN

In this section we present the design of Mobile Storm and the decisions we made

when investigating what functions/internals of Storm needed to be supported by

Mobile Storm. We present our design from two perspectives: a Logical Level and

a Physical Level. In the Logical Level, we explain how the processing of a real-

time stream job takes place in Mobile Storm; in the Physical Level, we present the

architecture of Mobile Storm.

2.1 Logical Level

Our design for Mobile Storm from a Logical Level perspective, as shown in Fig-

ure 2.1, employs Spouts, Bolts and Topologies, similar with Storm. A Topology is a

graph that describes the workflow of a user’s real-time processing of a job. A Topol-

ogy contains two types of nodes: a) a Spout is used to partition the stream data

from a source into tuples, which are then serialized and distributed to Bolts. How

the tuples are generated is defined by the application executing on the Spout; b) a

Bolt is responsible for processing tuples received from the Spout. Users define how

incoming tuples should be processed in the Bolt. The method for distributing tuples

to Bolts, either from a Spout or from a Bolt, is called Stream Grouping. Take the

Topology in Figure 2.1 as an example. The Spout receives the stream data from the

data source, partitions it into tuples, and then distributes them to Bolt 1. After Bolt

1 finishes processing the data, it generates and sends new tuples to Bolt 2. Bolt 2

again processes the incoming tuples by the application defined processing functions.

The tuples generated by Spouts in Mobile Storm are different from those in Storm.

In Storm, the tuple is a list of Java objects which must be serialized before they are

distributed to Bolts. In Mobile Storm, a tuple is format-free which means the user

12
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can define his/her own format for tuples, and the tuples do not need to be serialized.

Users implement the abstract method decode() in Bolt to decode the format-free

raw data that they define. We made this decision based on the following: a) some

data generated by mobile devices do not need to be serialized, e.g. output data of

video/audio codec can be sent directly through the network; b) DVM on Android is

not optimized for serializing or deserializing Java objects, so it can be very inefficient

when a stream of objects need to be serialized or deserialized in real-time.

We designed Mobile Storm to provides two types of Stream Grouping methods:

Shuffle Grouping and Local or Shuffle Grouping. In Shuffle Grouping, tuples are ran-

domly distributed to Bolt’s tasks to guarantee each task receives an equal number

13



of tuples. In Local or Shuffle Grouping, if there are Bolt’s tasks on the same node,

then send tuples to these tasks randomly; otherwise, use Shuffle Grouping. Local

or Shuffle Grouping is very useful in Mobile Storm, as it can reduce the inter-node

wireless communications to conserve energy on mobile devices. We leave for future

work the implementation of other Stream Grouping methods, which are not as pop-

ular as the aforementioned two. Other grouping methods include: Fields Grouping,

in which the stream is partitioned by the specified fields such that tuples with the

same specified field will be sent to the same task; All Grouping, in which each tuple

is sent to all the Bolt’s tasks; Global Grouping, where all tuples are sent to a single

bolt’s task with the lowest task ID; and Direct Grouping, in which the producer of

the tuples decides which task that the tuples should be sent to.

2.2 Physical Level

In this section we present the architecture of Mobile Storm, as shown in the

bottom of Figure 2.1, and its components: Clusters, Worker Nodes, Nimbus and

ZooKeeper.

2.2.1 Cluster

Mobile Storm is designed for environments where mobile devices, organized in

Clusters, are connected to each other through local wireless networks. E.g., mobile

users in Starbucks who connect their devices to the same router can form a cluster.

Multiple clusters may exist in mobile environments as shown in Figure 2.1. We use

a Cluster to organize a collection of Worker Nodes (i.e., mobile devices). A user’s

job can only be executed on the cluster to which his mobile device belongs. To

manage clusters, each cluster is assigned a unique cluster ID. Only with this ID,

a mobile device can join the cluster. Clusters must have access to Nimbus and

ZooKeeper services, which we decided to place in a remote cloud. In our design of

14



Mobile Storm, Nimbus and ZooKeeper are deployed on remote Cloud servers as the

memory, computation, and link capacity requirements of ZooKeeper are significantly

more demanding than what is available on mobile devices. ZooKeeper and Nimbus

coordinate Worker Nodes of Mobile Storm and their performance directly impacts

the performance of the entire system.

Although running Nimbus and ZooKeeper on remote servers requires all mobile

devices to have a connection to the servers, this is no longer a problem for today’s

mobile phones, as most of them have internet connections through 3G/4G wireless

networks. Additionally, the communication with Nimbus and ZooKeeper does not

require a high-bandwidth network connection, as both of them only transmit/receive

configuration data which only happens at the beginning of a job execution, and not

the stream data to be processed during the job execution.

2.2.2 Worker Node

A Storm cluster consists of multiple Worker Nodes. Each Worker Node mainly

has two components: a) a Supervisor, which is responsible for receiving tasks from

Nimbus and assigns task to Workers; b) multiple Workers, which are independent

JVM processes, with each containing multiple threads that execute tasks assigned

by the supervisor.

In Mobile Storm, the worker nodes are Android devices whose application runs

on a single Dalvik Virtual Machine (DVM) [5] instance. Storm needs to create

multiple JVM processes for each Worker Node. Similar to Storm, Mobile Storm

creates one Service Process [2] for each worker node where each process has separate

memory address space and can communicate through Inter-Process Communication.

Figure 2.2 illustrates an example of one worker process and one supervisor process

running on a single worker node (one Android device). Each worker node has one
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Figure 2.2: Processes running on worker nodes

worker process and each worker process has n Executors (threads) where n is the

number CPU cores on the mobile device. These executors are managed by Android

thread manager.

In each work node, a Zookeeper client is running on the background and listen-

ing to the assignment directory in Zookeeper server. Zookeeper keeps checking the

communication channels with a work node, and once a node lose connection for a

particular time, this node will be identified as being off-line. In worker node, there

are communication server and client which are responsible for receiving and emitting

tuples, respectively. The communication server and client is supported Netty [8]

which is an asynchronous event-driven network application framework. Netty has

very good performance and is also used in Storm for inter-node communications.
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/--- root

/--- cluster 1 (cluster id)

/---assignments

/---topology1

/---task1->worker node 1 

/---task2->worker node 2 

/---nodes

/---node1 

/--task1

/--battery Info.

/---node2

/---task2

/---battery Info.

/--- cluster 2 (cluster id)

Zookeeper Directory

…
…

Figure 2.3: Zookeeper directory

2.2.3 Nimbus

Nimbus, the master node in Storm and Mobile Storm is responsible for scheduling

and coordinating task executions. It has two functions: a) it schedules Topology’s

tasks to available Worker Nodes inside a cluster. The default scheduler of Storm

distributed tasks to nodes in a round-robin manner; b) it monitors the execution of

tasks and recovers the system from node failures.

In Mobile Storm, we modify Storm’s default scheduler in order to reduce energy

consumption caused by wireless communications among different mobile devices. Our

strategy is to classify tasks into several groups. Tasks within a group communicate

with tasks in the same group. We then try to assign a group of tasks to the same

Worker Node. So in this way, we can reduce a lot of inter-node communication which

is very expensive for mobile devices.
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In Mobile Storm, the failure recovery process is also different from that in Storm.

In Storm, when a Worker Node dies, Nimbus assigns all its tasks to free Workers. In

Mobile Storm, we first assign the dead node’s tasks to available Executors of the busy

Workers in the same topology. Then we assign the remaining tasks to new Workers.

In this way, we can utilize the limited number of Executors more efficiently.

2.2.4 ZooKeeper

In Storm, ZooKeeper is responsible for the coordination between Nimbus and the

Worker Nodes in the cluster. It mainly uses two types of information for coordination:

a) Assignments information for this cluster : ZooKeeper maintains an assignment

directory that stores the [task, worker] assignment information for each topology; b)

Worker Node information: the tasks currently executing on a node and the heartbeat

information of a node. The directory name for each node contains its IP address and

port number.

As aforementioned, multiple clusters exist in Mobile Storm. In order to manage

these clusters, Mobile Storm gives each cluster a unique cluster ID and creates a

corresponding directory using this ID, as shown in Figure 2.3. Under each cluster’s

directory, Mobile Storm stores the information about the assignment for this cluster

and node’s information in this cluster. It also stores worker node’s battery infor-

mation on ZooKeeper which will be used by the scheduler in Nimbus. All these are

updated periodically.

2.2.5 Parallelism

High processing speed is achieved by processing data in parallel. In Storm, each

Spout or Bolt can have multiple instances where each instance is considered a task.

Tasks of a Spout/Bolt can be executed in parallel by Executors in the cluster. When

specifying the Topology, a user sets the number of tasks (instances) and the number
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of Executors for each component (Spout of Bolt). If the number of tasks is set higher

than the number of Executors, some Executor will execute more than one task. In

Mobile Storm, we set the number of tasks equal to the number of Executors for each

component. We made this decision for simplicity and to avoid overloading the mobile

nodes.

2.2.6 Programming Model

The use of Mobile Storm API is straightforward and flexible. Developer only

needs to create Spouts and Bolts for his real-time stream processing job’s workflow

graph. When creating Spout, developer first needs to implement execute() method

to obtain stream data and chop up it into tuples, and then call emit(tuple, taskID)

to distribute these tuples to particular tasks. When creating bolts, developer have

to implement decode() method to reconstruct tuples from the received raw data.

The received tuples are processed by Bolt’s execute(tuple) method. In Bolt’s

execute(tuple) method, developer defines his own way of processing data pieces.

Once the Spouts and Bolts are created, developer can use topologyBuilder’s

setSpout() and setBolt methods to map the relationships between distributors and

processors to a directed workflow graph. Use And then call submit() to submit this

topology to Nimbus.

We demonstrate this using a real-time video stream decoding job an example.

This job’s topology has one Spout and on Bolt. Spout obtains H.264 encoded stream

video from somewhere and chops up it into GOPs (Group of Pictures) which can

decoded independently. Bolt decodes GOPs into original frames. So in distribu-

tor’s execute() method, developer reads video stream data from either local file

or remote server and chops up it to GOPs according to the H.264 encoded stan-

dard, and each GOP is sent to Bolts as a tuple. Accordingly, in Bolt’s decode()
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Figure 2.4: Steps for creating a new Mobile Storm Cluster

method, developer needs to extract GOPs from raw received stream data. In Bolt’s

execute(data piece)method, developer can use some third-party libraries to de-

code received GOPs. Using topologyBuilder methods to create a new topology and

submit this topology to Nimbus.

2.3 Mobile Storm System Operations

In this section we present four fundamental operations in Mobile Storm: the

creation of a Cluster, a new node joining an existing Cluster, the execution of a job,

and recovery from node failure.

2.3.1 Set up a New Cluster

Figure 2.4 depicts the steps needed for the creation of a new cluster by a node.

Step 1: The node sends a request to Nimbus, to create a new cluster.

Step 2: Nimbus replies back with a unique cluster ID to the node.
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Step 3: Nimbus creates a new directory on ZooKeeper using the cluster ID as

directory name.

Step 4: Once the node receives the cluster ID, its supervisor sends a request to

Zookeeper server to create a new subdirectory under /cluster ID/nodes/ on ZooKeep-

er.

2.3.2 Join an Existing Cluster

To join an existing cluster, the user needs to know cluster’s ID. With this infor-

mation, the node’s Supervisor will send a request to Zookeeper, which contains its

IP address and port number. And then Zookeeper will create a new subdirectory

under /cluster ID/nodes for this new node. At the same time, nimbus will receive

an notification, since a new node comes. It record this new node’s information such

as battery life and available number of executors. And then Nimbus add this new

node to the free node list.

2.3.3 Job Execution

Figure 2.5 illustrates an example of how a user’s job is executed and the Topology

of the job. In this cluster, there are three Worker Nodes and each node is one mobile

device. Out of these three Worker Nodes, Node 1 executes Spout’s tasks, Node 2

and Node 3 execute Bolts’ tasks. Each node has two Executors. The step by step

workflow is as follows:

Step 1: User submits the job’s Topology and application code file (.apk file)

to Nimbus, and waits for a response from Nimbus. The Topology is serialized to

JSON [7] format, and will be deserialized on Nimbus side. The code file consists of

two parts, class file (.dex file) and libraries. The class file contains the user-defined

Spouts and Bolts and the native libraries they need to reference. User can use tools

provided by Android to convert .jar file to .dex file very easily.
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Figure 2.5: Steps for executing a job in a Mobile Storm Cluster
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Step 2: If there are enough free Executors for the tasks requested by the Topol-

ogy, Nimbus assigns one Executor for each task and all tasks can execute in parallel.

However, if there are not enough free Executors for the requested tasks, the number

of concurrent tasks that Nimbus can start is at most equal to the number of free

Executors. Nimbus then notifies the user that the submitted Topology is ready to

execute.

Step 3: Nimbus writes assignment information to the assignment directory of

user’s cluster on ZooKeeper. All the nodes that are assigned tasks to are added to

the busy node list.

Step 4: Once the assignment of the new job is ready, ZooKeeper notifies the

Supervisor on each Worker Node. Supervisors then download the assignment infor-

mation from ZooKeeper.

Step 5: Supervisors also download application code file from Nimbus.

Step 6: Once a worker node has downloaded the necessary code files, the su-

pervisor starts a worker process (Android service process). In worker process, the

communication server and client first begin to work. We need to analysis the user’s

input and assignment from Nimbus, and figure out which nodes we need to set up

connections. And then communication client begins to set up communication with

other nodes according to assignment information and user’s topology. A map is also

constructed which is used to tell which task we need to send the received tuple to.

Step 7: After all these initializations are done, the worker process then starts

multiple Java threads where each thread corresponds to an Executor. Each Executor

loads the code files required by the task (Spout/Bolt) and starts executing the task.

Step 8: Once the Mobile Storm cluster starts to execute a Topology, the Spout’s

tasks continuously retrieve stream data from the data source.

Step 9: Spout’s tasks generate user-defined tuples and distribute them to Bolt1’s
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tasks, and Bolt’s tasks begin to process the received tuples according to user defined

method.

Step 10: After Bolt1’s tasks finish processing, they generate and distributed new

tuples to Bolt2’s tasks. And then Bolt2’s tasks begin to process these new tuples

and generate the final results.

2.3.4 Stop Job Execution

Step 1: User send a request to Nimbus to stop the execution for the previously

submitted topology.

Step 2: Nimbus will check the record to find out all the nodes that are currently

executing this topology. And then it delete the tasks information on Zookeeper and

add these nodes to free node list.

Step 3: All the involved nodes receive a notification, since the tasks informa-

tion is deleted. These node stop the all the executor threads, close any inter-node

communications. and then delete the code file and any other related files.

2.3.5 Recovery from Node Failure

We describe the operations for recovering from Worker Node failures using the

Cluster and Topology shown in Figure 2.5 as examples. We assume Worker Node

3 disconnects from the system, maybe because its battery discharges completely.

Mobile Storm performs the following recovery operations:

Step 1: ZooKeeper detects node failure when Worker Node 3 becomes unrespon-

sive for a specified timeout. ZooKeeper than notifies Nimbus that Worker Node 3

has failed.

Step 2: Nimbus tries to reassign the unfinished tasks of the failed node to other

worker nodes that also execute the same topology/job as the failed node. E.g.,

if Worker Node 2 has two free Executors and is executing the tasks from the same
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Topology as Worker Node 3, Nimbus reassigns two of the unfinished tasks from Node

3 to Node 2.
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3. SYSTEM IMPLEMENTATION

We implemented Mobile Storm for a Cluster of consisting six Nexus 5 Android

phones (partially shown in Figure 3.1). The Android phone has a Qualcomm S-

napdragon 800 CPU, 2GB RAM, Adreno 330 GPU and runs Android 5.0.1 OS. All

nodes are connected through a 5GHz 802.11n, 300Mbps Wi-Fi network.

In our implementation, the Nimbus and ZooKeeper are deployed on an Amazon

EC2 instance. All Worker Nodes in our implementation of Mobile Storm cluster are

executing on Android phones, and each phone acts as a single Worker Node. Two

Android service processes run continuously on each Worker Node. One process is the

Supervisor and the other process is the Worker, which contains multiple Executors

(Java Threads). The Supervisor uses the Java ZooKeeper library [12] to commu-

nicate with ZooKeeper, and the Worker uses the Netty [8] library for inter-node

communication.

When implementing ZooKeeper clients on Android phones, we tried different

versions of ZooKeeper API on Android. We found version 3.4.6 works best. Never-

theless, we had to disable SASL (Simple Authentication and Security Layer) from

environment variables, so that the ZooKeeper client can work, as it is not supported

by Android SDK. This can be done through system properties setting.
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Figure 3.1: Cluster of Android phones used in our implementation
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Frames

Spout (GOPDistributor) Bolt (Decoder) Bolt (FaceDetector)

Figure 3.2: Mobile Storm Topology used in our evaluation
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4. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of Mobile Storm when pro-

cessing a real-time video stream on the Cluster/hardware mentioned in the previous

section.

We implement a real-time facial feature extraction application that utilizes our

Mobile Storm framework. This type of real-time video processing application is too

computationally intensive to run on a single mobile device. Figure 3.2 shows the

topology of this video processing job. GOPDistributor (Spout) reads GOPs (groups

of pictures) [6] from the video source and emits them to Decoder (Bolt); Decoder

decodes GOPs into separate frames which then are consumed by FaceDetector (Bolt);

FaceDetector extracts features of faces that appear in the decoded frames.

In this topology, FaceDetector is the most computationally intensive task and is

the bottleneck for performance. We try to maximize the throughput of FaceDetector

while ensuring that its upstream tasks (GOPDistributor and Decoder) can provide

the input data fast enough. The number of tasks (instances) for FaceDetector is

set to the number of nodes in the Cluster because each phone can run at most one

FaceDetector task due to the limitation of image processing library. The number of

tasks for Decoder is also set to the number of nodes in the cluster as each Decoder

essentially connects to one FaceDetector. The number of GOPDistributor’s task is

set to one because there is only one video source. The FaceDectector can also do

blink detection, gaze tracking, smile value and face orientation measurement.

We leverage the hardware acceleration for both video decoding and face detecting.

The decoding is supported by Android codec library [1], and the face detecting is

supported by Qualcomm SnapDragon SDK [9]. There are two different mode when
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using this SDK to do face detection, static and video mode. In static mode, we

extract facial properties for each input frame. In video mode, we only extract facial

properties every 15 frames and keep tracking face between the first and fifteenth

frame. We use video mode to improve the face detection speed, however, in the

following evaluation result we can find the processing speed is still very slow when

video’s resolution become higher.

GOPDistributor uses Shuffle Stream Grouping to distribute GOPs to Decoder to

ensure that each node receives equal number of GOPs. However, because the output

of Decoder are large size raw image frames which can reach to several megabytes per

frame, to reduce inter-node wireless communications, Decoder uses Local or Shuffle

Stream Grouping to distribute raw frames to FaceDetector, so the raw frame will be

only transferred inside the same node.

The input video video stream is encoded with the H.264 encoder and has 1

Mbps bit rate and 15fps frame rate. Three different resolutions are evaluated: 1)

low resolution (800×600); 2) medium resolution (1280×720); and 3) high resolution

(1920×1080).

We are interested in the processing speed of our Mobile Storm. In particular, we

evaluate the performance of Mobile Storm under input data with different resolu-

tions, frame rates, and degrees of parallelism (i.e., cluster size). To demonstrate the

necessity of Mobile Storm, a stand alone video processing application that runs on

a single mobile phone was also implemented. This stand alone application, which is

referred as Local Mode in this section, serves as a performance baseline for Mobile

Storm.

For a data stream application to meet the real-time requirement, it must consume

the stream data at least as fast as the speed the stream data is generated (e.g., if a

video source delivers 15 frames per second (15fps), the video processing application
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Figure 4.1: Processing speed of Mobile Storm and Local Mode for a video stream at
1920×1080 resolution

must be able to process 15 frames per second). If the processing speed lags behind

the data generating speed, the application can not handle the video in real-time.

4.1 Effects of Video Stream Resolution on Processing Speed

As shown in Figures 4.1, 4.2 and 4.3, Mobile Storm is able to meet the input

frame rate requirement in all experiments, while the Local Mode can only handle

the low resolution video stream. It can be seen that the processing speed of Mobile

Storm decreases as the video resolution increases. Similarly, the processing speed

increases with the number of Worker Nodes (i.e., cluster size).

Figure 4.1, 4.2 and 4.3 also suggest the needed cluster size for a specific video

type. For example, given a low resolution video with 15fps, using a single phone is

the best choice (from Figure 4.3); if the video is high resolution, then a cluster of
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Figure 4.2: Processing speed of Mobile Storm and Local Mode for a video stream at
1280×720 resolution

4 nodes is sufficient (from Figure 4.1). The linear improvement of processing speed

makes Mobile Storm highly scalable.

Figure 4.4 shows that the frame transfer speed is fast enough to transfer generated

video frames in a real-time manner. We also find that the increase in the cluster’s

size slows down the transfer speed slightly, due to the overhead introduced by the

added Worker Nodes.

4.2 Effects of Video Stream Frame Rate on Processing Speed

To understand the computation capability of Mobile Storm, we purposely in-

crease the video frame rate to overload the system. The results are shown in Fig-

ure 4.6, 4.7, 4.8, 4.9 and 4.10. As shown, as the input frame rate increases, Mobile

Storm eventually reaches a bottleneck (time when its processing speed reaches the
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Figure 4.3: Processing speed of Mobile Storm and Local Mode for a video stream at
800×600 resolution
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Figure 4.4: Frame transfer speed
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Figure 4.5: The maximum frame transfer speed
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Figure 4.6: Processing speed change while increasing the input frame rate when
cluster size=1
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Figure 4.7: Processing speed change while increasing the input frame rate when
cluster size=2
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Figure 4.8: Processing speed change while increasing the input frame rate when
cluster size=3
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Figure 4.9: Processing speed change while increasing the input frame rate when
cluster size=4
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Figure 4.10: Processing speed change while increasing the input frame rate when
cluster size=5
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maximum). From our experiment, a Mobile Storm Cluster of 5 nodes is capable to

handle low, medium, and high resolution video stream at 82fps, 39fps, and 19fps

respectively. In contrast, a Mobile Storm Cluster of just 1 node can only handle low

resolution video stream at 17fps. Neither high resolution, nor medium resolution

video streams can be processed on this 1 node Cluster.

4.3 Network Throughput

We also measure the network throughput by overloading the system. Figure 4.5

indicates that the maximum frame transfer speed for low, medium and high resolution

video streams are 900fps, 771fps and 675fps, respectively. The increase of cluster size

leads to more communication overhead, which reduces the maximum frame transfer

speed.
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5. CONCLUSIONS

This paper presents the design, implementation and evaluation of Mobile Stor-

m. It is the first distributed real-time stream processing system for mobile cloud.

Without offloading computation to remote servers, Mobile Storm processes real-time

streaming data using a cluster of mobile devices in a local network. We implemented

Mobile Storm on Android phones and developed a video stream processing applica-

tion to evaluate its performance. The evaluation results show that Mobile Storm is

capable of handling video streams of various frame rates and resolutions in real-time.

The future development in our roadmap is to further optimize energy efficiency

and design a dynamic scheduler that accounts for processing capability, communica-

tion capability, and battery level of each individual mobile device.
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