arXiv:1509.01330v1 [cs.NI] 4 Sep 2015

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

On Optimizing Replica Migration in Distributed
Cloud Storage Systems

Amina Mseddi*, Mohammad Ali Salahuddin*¥, Mohamed Faten Zhanif, Halima Elbiaze*, Roch H. Glitho*
*Université du Québec A Montréal, Montreal, Quebec, Canada
TEcole de Technologie Supérieure, Montreal, Quebec, Canada
fConcordia University, Montreal, Quebec, Canada
mseddi.amina@courrier.ugam.ca, mohammad.salahuddin @ieee.org,
mfzhani @etsmtl.ca, elbiaze.halima@uqam.ca, glitho@ciise.concordia.ca

Abstract—With the wide adoption of large-scale Internet ser-
vices and big data, the cloud has become the ideal environment to
satisfy the ever-growing storage demand, thanks to its seemingly
limitless capacity, high availability and faster access time. In this
context, data replication has been touted as the ultimate solution
to improve data availability and reduce access time. However,
replica placement systems usually need to migrate and create
a large number of data replicas over time between and within
data centers, incurring a large overhead in terms of network
load and availability. In this paper, we propose CRANE, an
effiCient Replica migrAtion scheme for distributed cloud Storage
systEms. CRANE complements any replica placement algorithm
by efficiently managing replica creation in geo-distributed infras-
tructures by (1) minimizing the time needed to copy the data to
the new replica location, (2) avoiding network congestion, and
(3) ensuring a minimal availability of the data. Our results show
that, compared to swift (the OpenStack project for managing data
storage), CRANE is able to minimize up to 30% of the replica
creation time and 25% of inter-data center network traffic, while
ensuring the minimum required availability of the data.

I. INTRODUCTION

With the wide adoption of large-scale Internet services and
big data, the cloud has become the ultimate resort to cater
to the ever-growing demand for storage, providing seemingly
limitless capacity, high availability and faster access time.
Typically, cloud providers build several large-scale data centers
in geographically distributed locations. Then, they rely on data
replication as an effective technique to provide fault-tolerance,
reduce end-user latency and minimize the amount of data ex-
changed through the network. As a result, replica management
has become one of the major challenges for cloud providers.

In recent years, a large body of work has been devoted to
several challenges related replica management in distributed
cloud storage systems. A large part of the research efforts were
mostly dedicated to replica placement problem, considering
different goals such as minimizing storage costs, improving
fault-tolerance and access delays [1]-[5]. However, replica
placement systems may result in a huge number of data
replicas created or migrated over time between and within data
centers, incurring large amounts of traffic between data centers.
This can be the case in different scenarios: for instance, when a
new data center is added to the cloud provider’s infrastructure,
when a data center is scaled up or down, when recovering
from a disaster or simply when achieving performance or

availability goals, requiring the creation and the relocation
of a large number of replicas.

Naturally, several impacts may be expected when such
large data bulk transfer of replicas is triggered. These impacts
can be summarized as follows:

e As copying data consumes resources (e.g., CPU, memory,
disk I/O) at both the source and the destination machines,
these nodes will experience more contention for the available
capacity, which may slow down other tasks running on them.

e Recent research revealed that traffic exchanged between
data centers account for up to 45% of the total traffic in
the backbone network connecting them [6]. This ever-growing
exchange of tremendous amounts of data between data centers
may overload the network, especially when using the same
paths or links. This can hurt the overall network performance
in terms of latency and also packet loss.

e Replica migration processes are usually distributed and
asynchronous as is the case for Swift, the OpenStack project
for managing data storage [7|]. That is, when a replica is to
be relocated or created in a new destination machine, every
machine in the infrastructure already storing the same replica
will try to copy the data to the new destination. There is no
coordination or synchronization between the sending nodes.
This will not only lead to unneeded redundancy as the same
data is copied from different sources at the same time, but
will also further exacerbate the congestion in the data center
network.

e Replicas are usually placed in geographically distributed
locations, so as to increase data availability over time and
reduce user-perceived latency. When a replica have to be
created/migrated in a new location, it will not be available
until all its content is copied from other existing replicas.
If this process takes too long, it might hurt the overall data
availability, if the number of available replicas is not sufficient
to accommodate all user requests. For instance, in order to
ensure availability, Swift ensures that at least two replicas of
the data are available at any point in time (according to the
default configuration [7]]).

In order to alleviate all the aforementioned problems,
it is critical to make sure that replicas are created as soon
as possible in their new locations without inferring network
congestion or high creation time. This requires to carefully

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

select the source replica from which the data will be copied,
the paths through which the data will be sent and the order in
which replicas are created.

To address these challenges, we start by formulating the
replica migration/creation problem as an Integer Linear Pro-
gram (ILP). We then propose (CRANEE]) an effiCient Replica
migrAtion scheme for distributed cloud Storage systEms.
CRANE is a novel scheme that manages replica creation in
geo-distributed infrastructures with the goal of (1) minimizing
the time needed to copy the data to the new replica location,
(2) avoiding network congestion, and (3) ensuring a minimal
availability for each replica. CRANE can be used with any
existing replica placement algorithm in order to optimize the
time to create and copy replicas and to minimize resources
needed to reach the new placement of the replicas. In addition,
it ensures that at any point in time, data availability is above
a predefined minimum value.

The rest of the paper is organized as follows. Section
surveys the related work on replica placement and migration
in the cloud. Section [l presents an example illustrating how
different replica creation and migration strategy can impact
performance metrics. We then formulate the replica creation
problem in Section Our proposed solution is presented in
Section [V] Finally, we provide in Section [VI] some simulation
results that assess the performance of CRANE and compare it
to Swift and we conclude in Section [VIII

II. RELATED WORK

In this section, we survey relevant works on replica man-
agement in the cloud. Several efforts have been devoted to
put forward effective solutions for replica placement problem.
That is to determine the optimal number and placement of
data replicas in order to achieve several objectives such that
minimizing hosting costs, reducing access delay to the data,
and maximizing data availability [[1]—[5], [8]. Once the replica
placement algorithm is executed, a new placement of replicas
is determined in order to achieve the desired objective. Hence,
some existing replicas should be torn down and some new ones
should be created across the infrastructure.

In this work, we do not focus on the replica placement but
rather on reducing the overhead of migrating from an original
placement of replicas to the new one, which should take place
right after the execution of the replica placement algorithm.
In the last few years, very few proposals have looked at
this problem but overlooked many important parameters. For
instance, Kari et al. [9] proposed a scheme that tries to find an
optimal migration schedule for data in order to minimize the
total migration time. They take into account the heterogeneity
of storage nodes in terms of the number of simultaneous
transfers they can handle. However, they have overlooked
availability requirements as well as network-related constraints
such as bandwidth limits and propagation delays. Other works
[10], [11] proposed different approximation algorithms to
solve the problem; however they always aim at minimizing
migration times without considering the availability of data

ICRANE:(Mechanical Engineering) a device for lifting and moving heavy
objects, typically consisting of a moving boom, beam, or gantry from which
lifting gear is suspended

during the migration process. Finally, Swift, the OpenStack
project for managing data storage [7|], implements a data
replica placement algorithm along a replica migration one.
As a placement strategy, blocs of data (called hereafter as
partitions) are replicated and distributed across the distributed
infrastructure according to the as-unique-as-possible algorithm
[12], which ensure that partition’s replicas are physically stored
as far as possible from each other in order to ensure high
availability. In terms of replica creation and migration, Swift
simply do migrates replicas between data centers without
considering the network available capacity. However, it ensures
a high availability of the data by allowing only one migration
per partition each time interval (usually, one hour) so that only
one replica can be missing at a particular point of time. Of
course, thel-hour waiting time for triggering migrations will
significantly increase the total time needed to reach the new
optimal placement of replicas.

Different from previous work, CRANE takes into account
not only the network available capacity but also data avail-
ability during the creation of the new replicas. Furthermore,
it capitalizes on the existence of multiple replica across the
network in order to carefully select the source of the data and
the transmission path in order to avoid network congestion and
minimize data migration time.

III. MOTIVATING EXAMPLE

To introduce our proposed replica placement solution, a
motivating example is described in this section. Let’s consider
a cloud system composed of two data centers that span multiple
geographic regions. The data centers have different storage
capacities and are interconnected by different capacity links.
This cloud deployment uses Swift as a distributed solution for
managing storage functionalities. Consider a scenario where 4
partitions A, B, C and D with sizes 300 GB, 100 GB, 500
GB and 200 GB, respectively, are configured. Each partition
is replicated 4 times and the replicas are stored across data
centers. Fig. illustrates the initial mapping of the replicas
on the data centers.

When a new data center is added, partitions are relocated
according to the as-unique-as-possible algorithm, respecting
the capacity of the disks on servers in the data centers. To reach
the new configuration, bulk volumes of replications will be
migrating. Starting from the time where we decide to relocate
the replications, all the Swift components will operate accord-
ing to the new mapping of the replications, directing client
requests to non-existent replicas, resulting in unavailability.
Swift requires a majority of replicas responding to consider
a retrieval operation successful. Thus, to avoid unavailability
of the replicas, Swift specifies in its configuration the number
of hours to restrict moving a partition more than once. In our
scenarios, we assume this parameter to be one hour. Thus,
Swift will not move two replicas of the same partition at
the same time, but wait an hour before moving the second
replica. It is important to note that the second migration is
not triggered automatically. Instead, the cloud administrator
should run a command to recompute the location of the
replications, and then migration starts. Also, in this scenario,
the minimum tolerated availability of replicas of each partition

3
is assumed to be T Fig. |1(b)| shows the optimal locations

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

S Replication Y of the
) partition X

(a) Initial replication mapping

(b) Final replication mapping

Fig. 1. [Initial and final replication mapping

of the different replications according to the disk capacities
and the as-unique-as-possible algorithm. The depicted final
configuration is reached after several calculations of locations
and migrations.

Migration of replications in Swift is a peer-to-peer asyn-
chronous process. Each storage server will sequentially run
through its replications and compare them to the ones on
the servers assigned to hold a copy of this replication. The
migration process uses a push model, so each time a replication
needs to be present in one server and it’s not, this replication
will be copied from the local server to the remote one. And
if a server holds a copy of one replication that shouldn’t be
there it should delete it. Fig. 2(a)] represents an example of the
replication migration sequence. In this figure, the bottom line
represents time in minutes and the replication identifiers of
each partition are represented on the vertical line. For instance
each storage server starts sequentially copying the replicas
to the servers that should hold a copy of them and are not.
However, the following problems arise:

Availability: The number of hours to restrict moving a
replica of the same partition is a parameter defined by the
storage provider. In this scenario it’s set to one hour. But
migration of replications might take more than one hour. This
may have a bad impact on the minimum tolerated availability
of replicas per partition. In the depicted scenario, copying
replica C3 from DCI to create C4 on DC3 have taken more
than one hour, and the new computation of location of replicas
dictated that D3 should be migrated to DC3. So, in the second
migration sequence, we have both C4 and C3 that are not
available on DC3 during the five first minutes. This violates
the minimum required replicas available per partition.

Redundancy: There is a redundancy on the creation of the
replica D4 on DC3. Infact, replication D3 and D4 are copied
from DC1 and DC2, respectively. This redundancy implies
needless bandwidth consumption, which increases replication
migration time. Moreover, the copying of B2 from DC2 to

Xy:DCn = Wz:DCm
Creating replication Wz in DCm from
replication Xy in DCn

:DCn
ﬁ Deleting Replication Zy from DCn

S Size of replicas that are migrating
A Minimum replicas availability per partition
T Time for migration

5:2100GB
A%
T: 15 min

5:1800GB
A:2/4
T:25 min

S:1200GB
A%
T: 65 min

Replication
Manual Swift
rebalance
Manual Swift
rebalance

D4:DC2 D4:DC3 _ X(D4:DC2) D4:DC3 >D3:DC3

"1 D3:0C1 5D4:0C3 D3:DC1 D3:DC3 X(D3:DC1)
d 2722727222272

—
w s
Idle Time

FONN
x

C4:DC3 >C2:DC3

4.DC§ C4DC3 HC3:DC3 | c4:DC3 SC

" c3:pc1 >cainc3 . €3;DC1 >C3:DC3 X(C3: D%’li €3:0C3 >C2:DC3
7777722277222 A7 TS XF:DQ)

w

CL:DC2 $C2:0C3

X(Ba:0g1) _B4:DC3 HB3:DC3
B3:DC2 >B4:DC3 gB:DCl)

B2:DC2 >B4:DC3 B2:0C2 >B3:DC3
2722222} 2222222222222

E

— b N w s e N ow s e N

XEM:DCH A4:DC3 A3:DC3
X(A3:DC2) A3:Dc3J >A2:0C3

A2:DC2 $A3:DC3

>

' A2:DC2 >A4:DC3

10 20 30 4 50 60 70 8 9 100 110 120 130 140 150 160 Time(min)

Partition——

Replication
Number

(a) Example of Swift replication migration sequence

5:900G8 5:900G8
A%

T:15 min

5:600G8B.
A%
T:10 min

Update replicas
locations on nodes

Update replicas
locations on nodes

A%
T:40 min

&

D4:DC2 >D4:DC3_X(D4:DC2) _Dé'D§3 >D3:0C3

I
4 } xhoz DC1) }
3 | |
°9, I |
I I
I
1 X(C4'DCZ]K\C4 DC3 >C3:0C3 }
V o Holes e % Hv Yo NN H(CEDCA 3063 62003
fpzzzz272222222772727277727
¢ 3 } } X[c2:DC1)
I |
|2 ‘ !
I
s X(B4:0C1) 84:0C3 >B3:0C3
4 l ’qhﬁz:ncl) !
I |
83 ! |
I
1\2 B1:DC1 B4:DC3 } }
,1 1 X(A4:DC1) | A4:DC3 $A3:DC3
4 W 2z
I X(AZ:DCZII‘ A3: DC3‘9A2'DC3
a3 7 a2002 Sn00c3 | T 'X&Az.ncz)
) Wt | |
L I I
I |
4 . -
— R
T
! 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 ™"
£85
£3¢
“g52
&

(b) Novel replication migration sequence

Fig. 2. Replication migration sequences

DC3 is delayed. Indeed, all the storage servers were copying
the first replica in their list, that is, B2 started to be copied
only when the server was finished copying D4.

Migration time: Each storage server on Swift starts copying
the replicas of the partitions that need to be migrated without
any calculation on the delays that this task would take.
Therefore, one storage server could end up copying a replica,
even though, there exists another server with a replica of the
same partition, which could have performed the replication
faster. For example, in order to create D4 in DC3, copying
D3 from DCI takes less time than copying D4 from DC2.
This could be due to the difference on the available bandwidth
on the links and the propagation delays between data centers.

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

Moreover copying a replica within the same data center will
lead to better migration time.

Idle time: We notice there is always an idle time between
two sequences of migration.

To avoid the aforementioned drawbacks, we propose an
enhanced migration solution illustrated in Fig. Note,
avoiding the redundancy of copying replicas increases avail-
able bandwidth and thus decreases migration time. Also, smart
selection of copying source further reduces the migration time
significantly. In fact, creating replicas from within the same
data center or from a distant data center with links having
better propagation delay and less bandwidth consumption will
lead to a faster migration time. Furthermore, the minimum
replica availability tolerated per partition should be maintained.
Finally, automating the recalculation of the location after each
sequence of migration leads to avoiding idle time and faster
convergence to the final mapping of replicas in data centers.

IV. THE REPLICA MIGRATION PROBLEM
A. Problem Statement

Given a network represented by a graph G = (S, E),
where S = {s1,52,...,8i,.... Sk, ..., S|} is the set of all
servers across data centers. We assume that data centers are
connected through a backbone network. The backbone’s links
are represented by a set of edges E. Each edge e € FE
is characterized by a bandwidth capacity B.. Let P =
{p1,p2,...,j, ..., p|p|} denote the set of partitions, replicas of
which are stored across the servers where |p;| is the size of
replica of partition p;. We define a configuration as a particular
placement of the replicas of partitions within servers. Given
an initial and a final configuration, denoted respectively by C'
and CF', our goal is to find the optimal sequence of replica
migrations that minimizes the migration time from C! to CF
while meeting the minimum partition availability threshold A
and abiding by edge bandwidth capacities. We model this
as an Integer Linear Programming (ILP) problem. Tables I
and II show respectively the inputs of the ILP and its variables.

TABLE 1. PROBLEM INPUTS
Input Definition
g Set of servers across data centers, where S =
815825 4003 8iy o0y Sky ooy S| S|

Set of edges connecting servers in .S

E
B Bandwidth capacity Ve € F
P

Set of partitions, where P = {pl,pg, < Djs ...,p‘p‘} and |p;| is
the size of partition p;

|S| x |P| matrix representing an initial configuration, where Cf,j =
c! 1, if replica of p; is stored on s;
0, otherwise

|S| X |P| matrix representing a final configuration, where Cf-?‘
ct 1, if replica of p; is stored on s;
0, otherwise

T Worst-case migration time
G |S] x |S| x |E| matrix representing edges used in a path, where
1, if edge e is used in shortest
Gi ke = path between s; and sy
0, otherwise
B A big constant

TABLE II. PROBLEM VARIABLES
Variable | Definition
[ST X TP] X [S] X T matrix representing migration sequence, where
X o o 1, if s; is migrating replica of p; to sy at time ¢
bkt = 0, otherwise
[S] X [P] x [S] matrix representing a need for partition migration,
Y 1, if s; is the provider of replica of p; to sy

where y; j = .
Yirg.k 0, otherwise

[S] % [P] x T matrix representing replica placement, where
VA = 1, if s; has replica of p; at time t
it = 0, otherwise

[E] x T matrix representing load l.,; on edge e at time ¢, where
le,t < Be

[ST x TP] x [ST x T matrix, where 7; ; .+ represents the

R bandwidth allocated for migrating replica of p; from s; ro s, at time ¢
[ST X [P] matrix representing the replicas that are to be deleted at
time T', where

D 1, if replica of p; will be deleted froms;
dij; = ;

’ 0, otherwise
v [ST x TST X T matrix, where v; ¢ represents the capacity of the

path between s; to s at time ¢

A vector of size T, where

w 1, if migration is in progress at time ¢
wy = :
0, otherwise

B. Constraints

Given the initial and final configurations, any discrepancy
in the configurations necessitates either the migration or the
deletion of the partition replicas. Consider that the migration or
deletion of the replica is identified by variables y; ; , and dj j,
respectively. Then, if a server s; has replica of partition p;
in the initial and final configuration and no action is required,
then there should be no migration of replica of partition p;
from any server s; to sg, that is, Zgl Yi ik = 0, and there
should be no deletion of replica of partition p; from server
S, that is, di; = 0, as in @) However, if the replica of
partition p; is present on server s in the initial configuration
and not in the final configuration, then the partition should be
eventually deleted, hence, d ; is set to 1, with constraint @)
Most importantly, in constraint (3) we capture the need for a
replica migration, if the server s; does not have the replica
of partition p; in the initial configuration. In this case, there
should be some server s; that delivers the replica of partition

p; to server sy, therefore Zl‘ill Yij b = L.
IS|
I F .
Chyt+ > ik — dej=cf; VI<E<|S],1<j< [P
i=1

ey

dej > chj— ¢y VISE<|S[,1<ji<|Pl (2

[S|
Sk zch;—ch; VISES|S,1<5< P (3)
=1

Before we can initiate the migration, we have to identify the
servers s; that hold the replica of partition p; at time ¢, in
variable z; ;j; in constraint (). To begin the migration, only
those servers s; can participate in the replica migration that
hold a replica of partition p; in the initial configuration.

I
Cij < 5‘Zi,j,t

The variable z; ;; that indicates potential sources of replicas
that indicates potential sources of replicas is updated in each
time instance ¢, as servers s may begin to hold a copy of
the replica of partition p;, due to migration in earlier time

VI<i<|[S],1<j<|Pl1<t<T (4)

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

instances, as in constraints (5) and (€). A server holds a copy
of the replica when the sum of all the bandwidth allocated,
7 .k, to the migration of that replica of partition p; from
source s; to destination s, in previous time instances Vvt < t,
equals the size of the partition p;. Then, in following time
instances, server si could potentially participate in the replica
migration. 1| .

pjl — Z Z Tight S B (1= 2kj,t+1)

k=1,itk ¢ —1
WL<i<|S|,1<j<|P1<t<T -1 (5

pj| = Z Z Tight' = 1= 2k gt

k=1,i#k ¢/ =1
VI<i<|S],1<j<|P|,1<t<T—1 (6)

The bandwidth allocated for migration of replica of partition
p; at time ¢ from source s; to destination server sy, in variable
i j.k,t» 15 dependent on the capacity of the shortest path from
s; to sy, in variable v; . 4, or the remaining size of the partition
replica to be migrated in constraint (7).

[S] t—1
rigke = argmin{|p;| — > Y rijkvikst
k=1,ik t'=1

VI<ik, i#k<|[S|,1<j< [P, 1<t<T (7)

The capacity of the shortest path between s; and s;, is inferred
from the load on the edges traversed in the path. The edge
with the least capacity, bounds the capacity of the path from
above. The available path capacity at time ¢ is in constraint (g).
The edges can be traversed by multiple paths, that is, multiple
paths between different source destination pairs can share
common edges. Therefore, the load on an edge, not exceeding
edge capacity, is conjured as the sum of all partition replicas
migrating in the network across all source and destination
servers at time ¢, on edge e in the shortest path between s;
and sy, by constraints (9).
Vit = argmin{(Be —lct) - gike 1 <e< |E|}

lea =Y GikeTijht V1<e< [B[,1<t<T

i=1j=1k=1
©)

Once the model has been initialized with potential providers,
need for migration and the bandwidth allocated for the mi-
gration of partition replicas, we can initiate migration by
associating the replica of partition migration indicator variable
% k¢ with need for migration of replica of partition p;
from s; to s, in variable y; ; x, in constraints and (TT).
Consequentially, from (I0) and , we ensure only sequential
migration of replica of partition, since concurrency is set to 1.
Furthermore, in constraint (I2), we bind the source server s;,
such that, only those servers that hold complete replica of
partition p; can initiate migration.

T
> @ijue < Byije VI<ik iFk<|S[,1<5< [P
t=1

(10)

T

D it Zyigh V1<ik i k<|S], 1<) < |P
t=1

(11)

[S]
S wijre S zige VI<i<|S,1<j< |P1<t<T
k=1

(12)
To ensure continuous sequential migration of replica of parti-
tion p;, from same source server s; to same destination server
s for next time instance ¢+ 1, we set the indicator of migration
is progress, in variable x; ; 1 ¢++1, to 1, until the entire replica of
the partition has been migrated. This is depicted in constraints

(T3) and (T3). t
BTy ki1 = Ip;| — Z Tkt
t'=1

VI<ik i#k<|§[,1<j<|Pl,1<t<T—1 (13)

Tijkte1 < [Pl — Z Tig.k,t'
t'=1
V1<ik, i£Ak<|S[,1<j<|P|,1<t<T -1 (14)

During the migration process the servers must maintain the
minimum availability threshold for each partition with con-
straint (T3)).
S|
D a2 AVI<i<|P[,1<t<T (19
i=1
The total migration time is extended to include all migrations
in progress in constraint and stopping the migration
process in constraint (17)).
Wy 2 Tkt
V1<ik, i£#k<|S[,1<j<|P,1<t<T (16)

C. Objective
T
minimize Z wy (18)
t=1

We minimize the total migration time in (I8). As the optimiza-
tion minimizes migration times, it will select source servers
for replica migration that reduce migration time, such that
it selects source-destination pairs that have minimum over-
lapping edges in the shortest path, while ensuring sequential
migrations, meeting minimum partition availability threshold
and abiding by edge bandwidth capacities.

V. SOLUTION DESIGN

In this section we will describe CRANE, our heuristic
solution for the replicas migration problem. Given an initial
and a target replicas mapping in data centers, the goal of this
algorithm is to find the best sources for copying the replicas
and the best sequence to send them so as to minimize the
total replica creation/migration time. To this end, the following
sights can guide the replication replica creation/migration
sequence : (1) avoid redundancy, (2) select the source of data
and paths having more available bandwidth, and (3) avoid idle
time between sequences.

Our heuristic solution is described in Algorithm 1. Given an
initial and target placement configurations (i.e., C! and CT),
Algorithm 1 returns a set) of sequences (; for migration.

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

Each sequence contains an ordered set of replicas to be
migrated/created such that the required minimum availability
per partition is satisfied. After each sequence of migrations
Q;, cloud storage components will be updated with the new
placement, so that data user requests can be redirected to the
right partition locations. The final replica placement is reached
once all the sequences ();,7 < n are executed.

Initially, P contains the set of partitions that need to be
created/migrated. This set can be computed based on the initial
and the final partition locations (i.e., C! and C*). We then
initialize @) that should contain the sequence of replicas to be
migrated. In line 3, we initialize a variable ¢ that denotes the
number of the sequence. The core of the algorithm aims to
iteratively add a partition replica on ordered sequence @Q;. We
create a new sequence whenever it is not possible anymore to
add a replica creation/migration to the current sequence (not
possible because otherwise we do not satisfy the minimum
replica availability per partition).

The variable available is true if there still some replica
that can be added to the sequence ;. As long as available
is true, we iterate over all partitions in P and we choose
the replica 1, from the set of replicas R, of each partition
p that minimizes the migration time. For that we use the
variable Tq, g, min that denotes the minimal migration time
of the sequence (); when a replica of partition p is included.
We compare this variable to T, ,, the migration time of the
sequence @; if replica r is included (line 15). This allows us to
select the best replica 7, of the partition p. From the selected
replicas, we need to select the one that minimizes migration
time (denoted by 7). To do so, we use the variable T, min
which denotes the minimal migration time after adding a new
replica to the sequence @; (line 9). We then choose from all
previously selected replicas the one that minimizes migration
time after adding a new replica (line 20 to 23). The chosen
replica is then added to @; (line 26). The partition p whose
replica ry was selected is then removed from the set P.

To detect that we cannot add any more replica to the
sequence ();, we iterate over all partition until the variable
available becomes True. At that time, we add the sequence
to (), and start a new one as long as we still have partitions
in P to migrate/create.

VI. PERFORMANCE EVALUATION

In this section, we compare the performance of Swift using
CRANE for replica migration with the traditional Swift, with
respect to migration time, amount of transferred data and
partition availability.

A. Deployment scenarios

Our evaluation environment consists of five data centers,
each consisting of five storage servers. We use the NSFNet
topology as a backbone network interconnecting the data
centers [[13]. We use the standard Swift configuration stipu-
lating that for each data partition, three replicas have to be
created and placed according as-unique-as possible algorithm.
Furthermore, swifts assumes that if 2 out of the 3 replicas
are available, the data is assumed to be available (i.e., all user

Algorithm 1 CRANE

require: Initial configuration C7.
require: Final configuration C'F
output: Sequence for migration

1: P < partitions to be migrated

2. Q+ {0}

31+ 0

4: while P # {0} do

50 Qi+ {0}

6: available < True

7. while available == True do

8: available + False

9: TQi,min < o0

10: for each p € P do

11: if p can be included in @Q; then
12: available < True

13: TQi,Rp,min — 00

14: for each r € R, do

15: if TQ“T < TQi,RP,min then
16: TQi,Rp,min = TQi,r

17: Ty =T

18: end if

19: end for
20: if TQi,Rp,min < TQi,min then
21: TQf;,min = TQi,Rp,min
22: Ts =T}
23: end if
24: end if
25: end for
26: Qz = Q’L Urs
27: P = P — {partition p of replica rs}
28: end while
29: Q=QUQ;

30: 1+1+1
31: end while
32: return Q

requests can be accommodated). Hence, the minimum required
availability per partition is set to 2/3.

In our simulations, we consider four scenarios as depicted
in Table Each having different number of partitions placed
across the data center with different partition sizes. In the
beginning of each experiment, we consider only 4 data centers.
After that, a new data center is connected to the infrastructure,
which triggers the placement algorithm in order to re-optimize
the location of replicas. We then use whether swift combined
with CRANE or the traditional swift to migrate or create new
replicas. For instance, in scenario 1, we originally have 512
partitions (i.e., 1536 replicas) distributed across the infrastruc-
ture. When the fifth data center is added, 656 replicas should
be migrated or created across the fifth data centers (Table [[TI).

B. Results

For each scenario, depicted in Table we compare
(Swift + CRANE) with traditional Swift with respect to the

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

1000 T T T 100 T T T T 17 T T T
Swift | | 5 Swift [| * Swift
/Egoo L Swift + CRANE B2 O ool Swift+CRANE EZEEE8 | "\ Swift+ CRANE —=—
-é' o 08 AN 1
= =3 .
5 = h
5600 S 60 06 « 1
= k=] [a)
=1 ° Q
.%400 “q‘g 40 =04+ * 1
5 3 a
§200 £ 20 02f .
&
[_4
0 E 0 0
1 2 3 4 1 2 3 4 65 70 95 100
Denlo

vment scenarios

(a) Migration Time (min)

Devlovment scenarios

(b) Amount of transferred data (1000Gb)

Fig. 3. Performance comparison between CRANE and traditional Swift.

TABLE III. DEPLOYMENT SCENARIOS

Scenario Total number of | Number of repli- Range of replicas

partitions cas to migrate size (Gb)

1 512 656 50-100

2 1024 1316 20-50

3 2048 2632 20-50

4 4094 5264 10-20

following performance metrics: (1) the total migration time,
(2) the amount of inter-data centers exchanged data, and (3)
the availability of replicas per partition.

Figure [3(a)] shows the total migration time for the
considered scenarios. As we can see, in all scenarios,
(CRANE + Swift) outperforms the Swift algorithm by a good
margin. For scenario 1, the swift algorithm takes 315 min to
create all the replicas compared to 217 min for CRANE, which
constitutes around 30% of improvement. For scenario 2, the
replicas are migrated within 300 min with swift and 200 min
with CRANE, which constitutes around 30% improvement. For
scenarios 3 and 4, CRANE achieves 25% improvement. These
results are as expected, because CRANE always chooses to
copy the replica incurring the minimal transmission time.

The amount of transferred data inter-data centers is re-
ported in figure [3(b)} For the 4 different scenarios the CRANE
algorithm have less amount of data transferred. The improve-
ment is around 25%. This improvement is explained by the
avoidance of redundant copy of the replicas of the same
partition. This have also induced the improvement in migration
time showed in figure [3(a)]

Finally, figure [3(c)| shows the Inverse Cumulative Distri-
bution Function (ICDF) of the availability. For a given avail-
ability, it provides the probability of having that availability
or higher. The required minimum availability per partition
(2/3 = 0.66) is always met for both algorithms as we can see
that the probability of having an availability higher than 66%
is 1. However, the probability of having a high availability is
always higher for the CRANE algorithm than the traditional
Swift. For instance, the probability of having an availability
higher than 80% is 0.60 for Swift whereas it is around 0.76
for CRANE. When comparing the two curves, we can see that,
on average, CRANE improves availability by up to 10%.

It is clear that CRANE performs significantly better than
the basic Swift algorithm as it carefully selects the replica from
which the data should be copied, the paths used to transmit that

75 80 85 90
Availabilitv (%)
(c) Availability

data while avoiding redundant copy of replicas and eliminating
idle time.

VII. CONCLUSION

Data replication has been widely adopted to improve
data availability and to reduce access time. However, replica
placement systems usually need to migrate and create a large
number of replicas between and within data centers, incurring a
large overhead in terms of network load and availability. In this
paper, we proposed CRANE, an effiCient Replica migrAtion
scheme for distributed cloud Storage systEms. CRANE com-
plements replica placement algorithms by efficiently managing
replica creation by minimizing the time needed to copy data
to the new replica location while avoiding network congestion
and ensuring the required availability of the data. In order
to evaluate the performance of CRANE, we compare it to
the standard swift, the OpenStack project for managing data
storage. Simulations show that CRANE is able to to reduce up
to 30% of the replica creation time and 25% of inter-data center
network traffic and provide better data availability during the
process of replica migration.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”

in ACM SIGOPS operating systems review, vol. 37, no. 5, 2003.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in IEEE Symposium on Mass Storage Systems
and Technologies (MSST), 2010.

R.-S. Chang and H.-P. Chang, “A dynamic data replication strategy
using access-weights in data grids,” The Journal of Supercomputing,
vol. 45, no. 3, 2008.

Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM: A
cost-effective dynamic replication management scheme for cloud stor-
age cluster,” in IEEE International Conference on Cluster Computing
(CLUSTER),, 2010, pp. 188-196.

D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W. Wang, “Modeling
a dynamic data replication strategy to increase system availability in
cloud computing environments,” Journal of Computer Science and
Technology, vol. 27, no. 2, pp. 256-272, 2012.

Y. Chen, S. Jain, V. Adhikari, Z.-L. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via Yahoo! datasets,” in IEEE
INFOCOM, April 2011, pp. 1620-1628.

O. foundation. (2015) Swift documentation.
http://docs.openstack.org/developer/swift/

S. Zaman and D. Grosu, “A distributed algorithm for the replica
placement problem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, Sept 2011.

(2]

[4]

(31

(6]

[7] [Online]. Available:

(8]

http://docs.openstack.org/developer/swift/

This paper has been accepted for presentation in 4th IEEE International Conference on Cloud Networking (IEEE CloudNet 2015)
to be held on 5-7 October, 2015, Niagara falls, Canada. This is an author copy. The respective copyrights are with IEEE.

[9] C. Kari, Y.-A. Kim, and A. Russell, “Data migration in heterogeneous
storage systems,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2011, pp. 143-150.

[10] S. Khuller, Y.-A. Kim, and Y.-C. J. Wan, “Algorithms for data migra-
tion with cloning,” in ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ser. PODS, 2003.

[11] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. Karlin, J. Saia,
R. Swaminathan, and J. Wilkes, “An experimental study of data
migration algorithms,” in Algorithm Engineering, ser. Lecture Notes
in Computer Science, 2001, vol. 2141.

[12] J. Dickinson. (2013) Data placement in swift. [Online]. Available:
https://swiftstack.com/blog/2013/02/25/data-placement-in-swift/

[13] NSFNET. (2015) National science foundation network

(nsfnet). [Online]. Available: http://hpwren.ucsd.edu/~hwb/NSFNET/
NSFNET-200711Summary/

https://swiftstack.com/blog/2013/02/25/data-placement-in-swift/
http://hpwren.ucsd.edu/~hwb/NSFNET/NSFNET-200711Summary/
http://hpwren.ucsd.edu/~hwb/NSFNET/NSFNET-200711Summary/

	I Introduction
	II Related Work
	III Motivating Example
	IV The Replica Migration Problem
	IV-A Problem Statement
	IV-B Constraints
	IV-C Objective

	V Solution Design
	VI Performance Evaluation
	VI-A Deployment scenarios
	VI-B Results

	VII Conclusion
	References

