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Abstract—This paper proposes an architecture that can
optimize inter-VM communication in an NFV environment
through the creation of direct channels between virtual ma-
chines. Particularly, our prototype can transparently optimize
the data transfer between virtual machines running DPDK
applications by dynamically recognizing the existence of point-
to-point connections in the traffic steering rules, reverting back
to the traditional VM-to-switch-to-VM approach when the
optimization is no longer possible. This paper demonstrates
the huge advantages of this architecture and the possibility
to implement it with localized modifications mainly in Open
vSwitch, without touching the applications inside the VMs.

Keywords-NFV; Open vSwitch; DPDK; performance; inter-
VM communication

I. INTRODUCTION

Network Function Virtualization (NFV) [1] transforms
many network functions (e.g., NAT, firewall) in software
images executed on standard high-volume servers. Complex
services can be delivered by rearranging multiple Virtual
Network Functions (VNFs) in arbitrary graphs (Figure 1(a)),
with multiple VNFs often executed on a single physical
server. Usually, VNFs are instantiated as virtual machines
(VMs)1, while the traffic steering is carried out by a virtual
switch (vSwitch) that classifies and forwards the packets
according to specific rules sent through OpenFlow [3] mes-
sages, as shown in Figure 1(b).

Figure 1(a) shows a generic graph that contains both
point-to-point (p-2-p in this paper) and point-to-multipoint
links. While the latter require the vSwitch to classify and
send each packet to the proper next VNF, p-2-p links, which
are definitely more common in current service graphs, could
be implemented by a direct communication path, hence
taking the vSwitch out of that portion of the data plane.
This, may result in higher throughput and lower latency, as
well as in lower resource consumption thanks to the CPU
saved by avoiding a further pass in the vSwitch.

Starting from this consideration, this paper proposes an
architecture, called “direct VM2VM”, that optimizes inter-
VNF communications by setting up a direct connection

1Although also lightweight containers such as Docker [2] can be used
to run VNFs, they are not considered in this paper. Then, in the following,
the terms VNF and VM will be used interchangeably.
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Figure 1. Traffic crossing several VNFs: (a) the “abstract” service graph;
(b) its implementation on a server.

between two VMs, hence allowing the traffic to bypass the
vSwitch in case of p-2-p links. Our architecture differs from
other existing proposals (e.g., [4] and [5]) because it has
the capability to accelerate transparenty and dynamically the
packets exchange between the VMs, and it is integrated in
a widespread vSwitch.

Transparency refers to the possibility for an application
to exploit the advantages of the direct VM2VM technology
without even knowing it is there, and for an OpenFlow
controller to attach to a vSwitch without noticing it has
been modified. In fact, most of the extensions needed by
this technology are kept in the vSwitch, with minimal
modifications in few other components.

Dynamicity refers to the capability to either establish a
direct VM-to-VM channel or return to a traditional VM-
to-vSwitch-to-VM path on the fly, based on the run-time
analysis of the graph(s) that is being instantiated or modified.

Finally, the direct VM2VM technology has been integrated
in a widespread vSwitch, namely Open vSwitch (OvS) [6];
particularly, it extends the version of OvS based on the Data
Plane Development Kit (DPDK) [7], which exploits the op-
timized packet processing capabilities of that framework to
achieve high throughput on standard high-volume hardware.
For the same reason, this paper focuses on VMs that execute



DPDK-based network applications; in fact, we expect that
in a near future NFV applications will leverage the power
of optimized frameworks such as DPDK for most of the
low-level packet processing tasks.

This paper is structured as follows. Section II analyzes the
related works, while Section III provides an overview of the
technologies exploited in our work. Section IV presents the
prototype architecture, while experimental results are shown
in Section V. Finally, Section VI concludes the paper and
draws our future plans.

II. RELATED WORK

Several works aim at optimizing the communication be-
tween VMs executed on the same server, often through the
creation of a direct channel between such VMs.

At the best of our knowledge, the closest works to our
direct VM2VM architecture are [8] and [4] proposed by Intel,
and ptnetmap [5]. Particularly, while Intel is working on a
traffic bypass mechanism based on an extension of Virtio [9],
ptnetmap allows netmap-based applications [10] (running
in VMs) to transparently use different types of port; hence
they can be connected to physical NICs, to the VALE [11]
vSwitch or to a netmap pipe, which is a direct channel
between two netmap-based applications.

Although these proposals present similarities with our
work (e.g., both of them create a direct channel between
VMs), important differences exist with respect to the direct
VM2VM architecture. First, our proposal is integrated into
a widespread vSwitch (OvS) and is transparent to other
components used in an NFV environment (e.g., OpenFlow
controller, hypervisor). Second, it is able to accelerate the
packets exchange between VMs by dynamically creating
direct channels between them after recognizing the existence
of point-to-point connections in the traffic steering rules.
Third, our proposal is able to revert back to the traditional
VM-to-switch-to-VM approach when the optimization is no
longer possible.

Although also architectures such as ClickOS [12] (based
on VALE and Click [13]), NetVM [14] (based on DPDK)
and [15] aim at improving performance of virtualized ser-
vices, they are orthogonal to our proposal. In fact, they opti-
mize the data exchange between the VMs and the vSwitch,
without considering direct channels between chained VNFs;
hence, in these works all the packets leaving a VM enter
into a vSwitch that classifies and forwards them through the
proper (physical or VM) port.

Finally, it is worth mentioning some works that are not de-
signed to operate in an NFV context, although they create di-
rect channels between communicating VMs. XenSocket [16]
defines a new socket that exploits a shared memory to bypass
the network stack, but requires applications to be modified;
XWay [17] gets the same result by modifying the internals of
the TCP stack and hence supports unmodified applications.
This also applies to XenLoop [18], which intercepts packets
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Figure 2. Sharing DPDK data structures between OvS and VMs.

at the network layer and can send them via shared memory.
Works described in [19] and [20] focus instead on High
Performance Computing (HPC) and propose libraries that
implement a message-passing paradigm based on memory
shared between VMs residing on the same server.

III. BACKGROUND

Among the several types of ports supported by OvS,
dpdkr is considered the fastest one. It consists of a pair
of DPDK queues (rte_rings) that contain pointers to
packets; packets are in fact stored in a piece of memory
(rte_mempool) allocated in huge pages, shared between
OvS and the entities that exploit dpdkr ports. Conse-
quently, dpdkr ports exchange packets in a zero-copy
fashion. Moreover, this port does not have any notification
mechanism, and hence entities connected to its ends (i.e.,
VNF and OvS) operate in polling mode.

A dpdkr port can connect the vSwitch to DPDK ap-
plications executed inside VMs. However, OvS exports to
applications the dpdkr port as two rte_rings (RX and
TX); hence applications have to explicitly write/read packets
to/from such rings, and do not have any concept of network
interface. rte_rings are provided to the VM through the
Inter-VM Shared Memory (ivshmem) technology [21], a
standard interface for the KVM hypervisor [22] that is used
to share memory between the host and the guest operating
systems. The memory region to be shared is exposed to
the guest as a PCI Base Address Registers (BAR); then,
applications can mmap [23] it into their own virtual address
space.

DPDK includes a library [24] to create ivshmem devices;
particularly, this library “inserts” in the device the data
structures forming the dpdkr port to be shared between
OvS and the VMs (e.g., rte_rings), and also some
information about those data structures, such as their virtual
address in the virtual memory of OvS (Figure 2). This
information is used by DPDK in the guest OS to mmap the
shared structures at the same virtual address used by OvS,
which allows the application and OvS to exchange pointers
to packets and de-reference them without any additional
translation, which is a crucial factor in high performance
environments.
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IV. DIRECT VM2VM ARCHITECTURE

The DPDK-based applications we consider run inside
VMs that are connected to OvS through dpdkr ports
terminated in the forwarding engine of the vSwitch. This
module handles packets according to the content of its
forwarding table, which can be configured with OpenFlow
flowmods [3]. All the connections among VMs are imple-
mented in this way, regardless of the nature of the connection
itself, i.e., p-2-p or point to multipoint.

In our proposal, shown in Figure 3, p-2-p links are
implemented using two modified dpdkr ports connected
directly to each other and detached from the OvS for-
warding engine. Although OvS is no longer involved in
moving packets exchanged by VMs, the two modified ports
are still exported by OvS as standard dpdkr ports. This
keeps the compatibility with external entities (applications,
compute/network agents, OpenFlow controller), as they can
continue to issue commands involving those ports as they
usually do (e.g., get statistics, turn them on/off, etc.), without
noticing any change in their actual implementation.

A. Detecting p-2-p links

We extended OvS with a new p-2-p link detector mod-
ule (Figure 3), which analyses each rule (i.e., flowmod)
received by the vSwitch in order to dynamically detect the
creation or destruction of a p-2-p link between two dpdkr
ports. In the current implementation, this operation requires
a time O(N) where N is the number of forwarding rules
installed, but this algorithm could be replaced with a more
efficient version in the future.

When a new p-2-p link is detected, OvS creates two
dpdkr ports mapped on the same piece of memory, which
contains a pair of rte_rings and that will be shared by
both the communicating VMs (the rte_ring used as TX
in one VM, has to be used as RX in the other VM, and
vice versa). This way they are directly connected, and then
packets can be exchanged without the intervention of the
OvS forwarding engine2.

2It is worth mentioning that, when a VM is created, its dpdkr ports
are connected to the forwarding engine of OvS. In fact, at that time no
flowmod involving those ports has still been received, then the vSwitch
cannot know whether they will be used or not in a p-2-p link.
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B. Handling the new ivshmem device in the host

The rte_rings forming a dpdkr port are provided
to the VM as part of an ivshmem device, together with a
metadata file indicating, for each data structure, its address
in the virtual memory of OvS (Section III).

As shown by comparing Figure 2 and Figure 4, we
modified the metadata file included in the new ivshmem
device so that it contains the virtual addresses of the old
rte_rings used by OvS, and not those used for the new
rings contained in the device itself. This allows DPDK to
mmap the new rte_rings at the same virtual address of
the old ones, so that the application can continue to work
without realizing that the rte_rings are changed (more
details in Section IV-C).

After being created, the new ivshmem device has to be
connected to the proper VM. Since OvS does not know
which VM is attached to a specific port (it just knows ports
and the rules used to forward packets among them), for this
operation the vSwitch has to rely on an external component.
In our prototype we adopted two strategies: (i) a meaningful
message is printed on the console with an example of the
proper command that can be issued (manually) to attach the
new ivshmem device to a VM, and (ii) we extended the
compute agent to receive requests from OvS and plug the
new ivshmem device into the proper VMs by interacting
with QEMU. Particularly, in our prototype we exploit the
compute agent of the Universal Node [25], an NFV node
defined as part of the FP7 UNIFY project [26], although
other solutions such as the OpenStack Nova [27] agent can
be exploited as well.

The above procedure is executed both when a new p-2-p
link is recognized, and in case a p-2-p link does not exist
anymore and then the direct channel between two VMs must
be destroyed.

C. Handling the new ivshmem device in the guest: the
remapping process

The remapping process consists in recognizing, then
changing, dynamically and transparently, the pair of
rte_rings an application is using. Then, it allows existing
DPDK-based applications using dpdkr ports to support
our technology without any modification, except for the
necessity to be recompiled with our modified DPDK.



Vanilla DPDK does not recognize when a new ivshmem
device is hotplugged in the VM. Hence, our prototype
extends DPDK in order to register an handler (through
the lib_udev library) that is executed each time a new
ivshmem device is connected to the PCI bus. In this han-
dler, DPDK identifies the old rte_rings to be removed
(thanks to the virtual addresses specified in the metadata
file), and marks them as “to be remapped”. The remapping
process is in fact not actually done in this handler, since its
execution is asynchronous with respect to the application,
which may be accessing the rte_rings to send/receive
packets during the execution of the handler itself.

Algorithm 1 Remapping process in the VM.
1: procedure sendPackets (rte_ring *ring, list *pkts) {re-

ceivePackets is equivalent}
2: if ring ∈ toBeRemapped then
3: for all r ∈ toBeRemapped do
4: munmap(r.virtualAddress)
5: mmap(r.virtualAddress,r.device)
6: r.mapped ← true
7: toBeRemapped.remove(r)
8: end for
9: while not ring.usable do

10: {do nothing}
11: end while
12: end if
13: {send/receive packets as usual}
14: end procedure

The remapping of the rte_rings used by an application
is then done by DPDK when such an application transmits or
receives packets, as shown in Algorithm 1. To this purpose,
we extended DPDK so that, before transmitting/receiving
packets on an rte_ring, it checks whether such a ring
has to be remapped or not (line 2). If so, according to
lines 3-8, it remaps all the rte_rings contained into
the new ivshmem device. This requires to unmap the old
rte_rings and to mmap the corresponding new ones at
the same virtual addresses just released (lines 4-5).

In order to avoid packet loss and reordering in this
transient, we defined a synchronization mechanism between
DPDK in the guest and OvS, based on two flags inserted in
the rte_ring structure: mapped and usable. As shown
in line 6, DPDK sets the former as soon as an rte_ring
has been remapped. At this point OvS, which was blocked
on such a shared flag: (i) copies the (pointers to) packets
present in the old RX rte_ring into the new one; (ii)
handles the packets already inserted by the application in
the old TX rte_ring; (iii) notifies DPDK in the guest that
the new rte_ring can be used, by means of the usable
flag. At this point (line 9-11) the application can finally
transmit/receive the packets.

As a final remark, the remapping process is exactly the
same both in case a p-2-p channel is going to established or
destroyed.

D. Ports and flows statistics

As already mentioned, in order to keep the direct VM2VM
transparent to external entities, OvS allows them to issue the
same commands (e.g., get statistics, turn the port on/off) on
all dpdkr ports, regardless of the actual port implementa-
tion.

Particularly, the possibility to expose statistics related to
ports and flows implementing a p-2-p link requires to further
extend the DPDK framework. The vSwitch is in fact not
able to count statistics related to p-2-p links by itself, as
it is not involved in moving packets flowing through these
connections.

Then, each time a packet is sent through a direct channel,
DPDK increases the counters associated with that OpenFlow
rule and port, which are stored into the rte_rings used
to transmit the packet. Then, when OvS needs to export
statistics related to p-2-p links, it just reads the proper values
from the specific rte_ring.

V. EXPERIMENTAL RESULTS

We characterized our direct VM2VM prototype on an
Intel Xeon E5-2690 v2 @ 3 GHz (ten physical cores plus
hyperthreading), 64 GB RAM, Ubuntu 15.04, equipped with
two 10G Intel 82599ES NICs. Our code is based on OvS
2.4.9 and DPDK 2.1.0, and it is available at [28].

In the tests, we compare our solution with traditional
connections implemented through the forwarding engine
of OvS, both from the point of view of the maximum
throughput achieved and the latency introduced by service
chains implemented with the two approaches3, and from
the point of view of the number of CPU cores required to
achieve the maximum performance. Finally, we report the
time required by our prototype to detect a p-2-p link and
create the direct path between the two VMs involved.

During the tests, each VM had two dpdkr ports and ran
a single core DPDK application that simply moved packets
from one port to another. Notably, thanks to the transparency
of the direct VM2VM technology, the same forwarding VM
has been used unchanged in all tests.

A. Throughput

Figure 5 reports the throughput obtained with chains
of growing length, when traversed by bidirectional traffic
consisting of 64B packets sent at the maximum speed.

Particularly, Figure 5(a) refers to the scenario shown in
Figure 6(a), in which the first and the last VM of the chain
act as traffic source/sink; this test validates our approach
without the NICs and PCI-e bus bottlenecks. Figure 5(b)
refers instead to the scenario depicted in Figure 6(b), in
which traffic is delivered/drained to/from the chain through
the 10Gbps NICs; in this case the maximum theoretical
throughput is 20Gbps.

3With the term chain, we indicate a graph in which VMs are connected
only through p-2-p links.



 0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8

T
h
ro

u
g
h
p
u
t 
[M

p
p
s
]

 4
 6
 8

 10
 12
 14
 16
 18
 20

 1  2  3  4  5  6  7  8
# VMs

a) b)
Traditional approach (bidirectional 64B traffic)

Direct VM2VM (bidirectional 64B traffic)

Figure 5. Throughput: (a) internal traffic; (b) traffic source/sink connected
through physical NICs.

Open vSwitch 

VM 

DPDK* 
Traffic source/sink 

ivshmem 

dpdkr 

0 ... 6 

VM 

DPDK* 
Traffic source/sink 

ivshmem 

dpdkr 

VM 

DPDK* 
Fordwarder Application 

ivshmem 

dpdkr 

ivshmem 

dpdkr 

Open vSwitch 

 1 ... 8 

VM 

DPDK* 
Fordwarder Application 

ivshmem 

dpdkr 

ivshmem 

dpdkr Traffic 
source/sink 

Traffic 
source/sink 10 GE 10 GE 

a) 

b) 

Figure 6. Test setup: (a) internal traffic; (b) traffic source/sink connected
through physical NICs.

Both tests show that a chain of VMs exploiting our direct
VM2VM approach provides better throughput than the same
chain implemented using the traditional approach. Moreover,
the throughput is almost constant when the direct VM2VM
is used, while it presents mostly a decreasing trend when
all the connections are implemented through the forwarding
engine of OvS.

B. Latency

Figure 7 shows the latency measured in the test scenario
depicted in Figure 6(b), tuning the TX speed in order to
avoid packet loss in the chain. Particularly, the picture
reports the median value of the samples; the margin of error
is of ±0.4µs in the worst case at the 95% confidence level
and hence not visible in the graph.

According to the graph, latency introduced by both the
approaches is almost the same until 5 chained VMs, then
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the values start to diverge, resulting in an improvement of
about 80% in case 8 chained VMs with the direct VM2VM
architecture.

C. Number of CPU cores

Figure 8 compares the direct VM2VM proposal with the
traditional approach in terms of CPU cores, and reports
both the number of cores ideally needed to maximize
performance, and the number of cores actually used to get
the throughput of Figure 5(b). According to the graph, the
direct VM2VM prototype always requires the same, or a
smaller, number of CPU cores than the traditional approach,
resulting in the possibility to consolidate more VMs on the
same physical server. Moreover, while we were always able
to use the ideal number of cores with our prototype, this was
not possible with vanilla OvS (in case of 7 and 8 chained
VMs).

To understand the reported numbers, it is worth men-
tioning that OvS ideally requires one polling core per each
receiving queue of (physical and dpdkr) ports connected to
it. Particularly, the same polling core takes care of receiving
all the packets from a specific receiving queue, processing
and finally transmitting them through the proper output port.
Then, in case the number of cores assigned to the vSwitch
is lower than the number of receiving queues, the same
core takes care of handling packets entering from multiple
queues, potentially resulting in performance degradation.

If we consider the test scenario depicted in Figure 6(b),
where all the ports have been configured with a single re-
ceiving queue, the traditional approach requires one core per
physical port, and three cores per each running VM (one per
dpdkr port plus one core running the VM itself); in other
words, it requires a number of cores that is (2+3∗#VMs).
Instead, with the direct VM2VM approach, dpdkr ports
between VMs are no longer connected to the forwarding
engine of OvS, and then they do not require any dedicated
core in the vSwitch. Then, this solution just needs two cores
for the physical ports, one core for a dpdkr port of the first
VM and one core for a dpdkr port of the last VM of the
chain, plus one core per VM. This results in a number of
cores that is (2 + 2 +#VMs).

D. Direct channel setup time

Figure 9 reports the time needed to establish a direct
channel between two VMs, from the moment in which OvS
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receives a new rule (flowmod) that triggers the creation
of a p-2-p link, to the moment in which the forwarding
application starts to use the new direct dpdkr port. This
time depends on different components such as DPDK, OvS,
compute agent, guest OS and the QEMU/KVM hypervisor.
Results show that the (by far) dominant contributors are OS-
level components, namely the time needed by QEMU/KVM
to plug the ivshmem device and the guest OS to recognize
it. Instead, the weight of the p-2-p link detector module is
negligible, questioning the necessity of a more optimized
algorithm.

VI. CONCLUSION

This paper proposes an architecture that is able to opti-
mize inter-VNF communications by bypassing the vSwitch
in case of p-2-p connections between VMs. Our architecture
can accelerate the packets exchange between the VMs
transparently, i.e., without modifying the applications and
by keeping the compatibility with all the services (e.g.,
OpenFlow controller) deployed in an NFV environment,
and dynamically, i.e., it can optimize direct paths when
those are detected and revert back to the traditional VM-
to-switch-to-VM communication when the optimization is
no longer possible. Our extensions have been integrated
in a widespread vSwitch, bringing the advantages of this
technology to a broad set of use cases.

Our tests confirm the goodness of the approach and the
possibility to implement this idea by touching a limited num-
ber of components, namely OvS, DPDK and (optionally)
the compute agent. Future work will explore the possibility
to extend the usage of direct paths also when accessing to
physical NICs, e.g., through SR-IOV.
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