Smart Probabilistic Fingerprinting for Indoor
Localization over Fog Computing Platforms

Andrea Sciarrone’, Claudio Fiandrino*, Igor Bisiof, Fabio LavagettoT, Dzmitry Kliazovich*, Pascal Bouvry*

T Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture (DITEN), University of Genoa, Italy

* Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg

E-mails: {firstname.lastname} @unige.it, * {firstname.lastname } @uni.lu

Abstract—Indoor navigation and localization are becoming
fundamental services nowadays. WiFi-based solutions such as
FingerPrinting (FP) are the most widely adopted techniques
for positioning and provide better results if compared to other
approaches. They require to compare WiFi Received Signal
Strength (RSS) with an pre-computed radio map called finger-
print. The recently proposed Smart Probabilistic FingerPrinting
(P-FP) algorithm reduces the computational complexity of the
traditional FP approach without any accuracy detriment. On
the other hand, fog computing has emerged as a new promising
paradigm in the recent years, which extends traditional mobile
cloud computing capabilities towards the edge of the network
and enables location-aware services. In this paper we propose to
offload Smart P-FP computation over a fog platform exploiting
a novel distributed algorithm. Performance evaluation validates
the effectiveness of the proposed approach with the analysis of:
i) the amount of power saved and ii) the efficiency of candidate
selection process for offloading. Having 2 or more devices in
the vicinity contributing to the computation makes offloading
beneficial from a power standpoint. The offloading effectiveness
increases with the number of devices willing to contribute and
the amount of data to be transferred. Power savings can be as
high as 80% if compared with local computation.

I. INTRODUCTION

In modern societies, people perform the majority of their
activities, including business, entertainment and socialization,
indoors [1]. As a result, the demand for indoor navigation
and positioning services is continuously increasing. Several
technologies provide positioning and navigation services to the
users. Global Positioning System (GPS), 3G/4G, WiFi, and
Bluetooth signals can be employed for either indoor and outdoor
navigation. As GPS signals are usually unavailable inside
buildings, WiFi positioning has become a common solution
for indoor navigation and positioning due to the brought
advantages [2]. It operates relying on the common widely
deployed WiFi infrastructure available almost everywhere.
Furthermore, WiFi-based solutions provide better accuracy
if compared to inertial navigation solutions, which rely on
accelerometer, gyroscope and magnetometer sensors commonly
available in Mobile Devices (MDs) [3].

Currently, two WiFi-based methods for localization exists,
namely multilateration and fingerprinting [2], [4]. Multilat-
eration estimates the position of MDs by computing the
distances between Access Points (APs) and the reference MD
comparing the strength of the signals (Received Signal Strength,
RSS) transmitted by the APs and received by the MD. The
main drawbacks of Multilateration are: i) low localization
accuracy and ii) high energy consumption due to required
heavy computation, which is a crucial issue when MDs are

involved. FingerPrinting (FP) is a two-step procedure. The first
step, carried out offline and also known as training phase, is the
collection of information aimed at obtaining a spatio-temporal
representation of the RSSs in a given area. The training is
based on Reference Points (RPs), usually selected to cover the
entire area of interest through a uniform grid, and on RSS
measurements carried out by an MD and collected for each
RP. The set of measured RSSs at a given RP is used to build
the fingerprint for that RP.

Mobile cloud computing augments performance of mobile
devices fostering task offloading [5]. Offloading stands for the
capability of moving the load from one device to another [6]
and can refer to both traffic offloading [7] or computation
offloading [8]. In the second case, the tasks offloaded are exe-
cuted remotely in the cloud or in the devices in the vicinity [9].
Offloading reduces processing and energy consumption of the
mobile devices and is a valid strategy not only for energy
saving, but can also for expanding data storage and extending
computing capacity. This is especially useful for wearable
devices [8]. Recently, fog computing has emerged as a new
promising paradigm [10]. Fog computing extends mobile cloud
computing capabilities towards the edge of the network and
enables localization-aware services with low and predictable
latency for geo-distributed applications. It is worth pointing
out that, since this paper only presents preliminary results, we
do not consider the impact of the obstacles and the lost of
connection they could provide.

In this paper we improve and extend the Smart P-FP
algorithm to be run in a distributed manner over mobile devices
in a fog computing platform. For navigation, devices with
low remaining battery charge offload to other devices in the
vicinity the computation of the Smart P-FP algorithm. Being
closer to the device initiating the process, the energy spent for
data transmission is low. As a result, indoor navigation over
fog computing platform is projected to become a sustainable
and effective solution. Performance evaluation conducted with
simulation highlights effectiveness of the proposed solution.
Indeed, offloading becomes beneficial when two or more
devices are in the vicinity and can contribute to relieve the
computing load of the offloader. As reported in Section IV,
power savings can be as high as 80% if compared with power
spent with local computation.

II. BACKGROUND AND MOTIVATIONS

This section provides a background on the fingerprint-based
indoor positioning algorithms, with a particular emphasis on

the recently proposed version [11], [12] and on fog computing.
Probabilistic-FingerPrinting (P-FP) positioning consists of two
steps. The first step, also known as training is carried out
offline and collects information to obtain a spatio-temporal
representation of the RSSs from WiFi Access Points (APs)
in a given area. The training is based on L Reference Points
(RPs), uniformly distributed as a grid to cover the entire area of
interest, and on the RSS measurements carried out by Mobile
Devices (MDs) and collected for each RP. The set of measured
RSSs, at a given RP, is used to build the fingerprint (FP) for
such RP. More in detail, the mean value p,,; and the variance
a2, of the m-th AP sensed at the I-th RP, m € [1, M] and
l € [1, L], are computed and stored. The second step is called
positioning and is performed online. The MD willing to locate
itself, collects a RSS measure, the so called observation vector
o, which is compared with the reference FP of each RP. The
estimated position corresponds to the coordinates, or to a
combination of the coordinates, of the RPs whose fingerprints
are the closest match with the RSS measures. Most positioning
schemes base their action on the computation of the probability
p(oll) to have an observation vector o at a fixed RP [based
on Gaussian probabilities. P-FP is of them: it computes a
Gaussian-based probability p(o|l) entirely during the online
phase [11]. It is identified as Traditional P-FP.

This paper exploits a recently proposed computation scheme
for determining p(o|l), reported in [12]. Reducing the number
of operations saves energy speeds up positioning. Such a
scheme, called Smart P-FP advances Traditional P-FP in the
way p(oll) is computed and was tested over off-the-shelf
Android OS smartphones [11], [12]. To reduce the number of
operations, computation time and energy costs, Smart P-FP
employs an algebraic factorization of the equations of the P-FP
method. This allows to compute and store some necessary
variables directly in the training phase, thus avoiding their
computation during the online positioning phase.

Smart P-FP is a lighter algorithm with respect to its tradi-
tional version, still it could be computationally not negligible,
especially when it is implemented over MDs that have limited
resources.

When MDs exploit D2D communications and share compu-
tational load, they can save energy. Specifically, smartphone
context-awareness through accelerometer and microphone
readings is proved to guarantee considerable energy savings
when the computation is shared by 3 or more devices [13].

Cisco proposed the fog computing concept to extend the
traditional cloud computing paradigm at the edge of the
network [10]. For such a reason, fog computing is also
called edge computing. Fog computing is tailored to serve
applications that are geo-distributed and require low latency
and context awareness. As a result, it is envisaged to play an
essential role in the framework of Internet of Things (IoT) [14].
Several research efforts are undergoing to assess sustainability
and improve resource management of fog platforms for IoT
applications [15], [16], [17], [18]. Fig. 1 illustrates a generic
fog computing architecture. In the front-end, the mobile devices
are IoT devices with various degree of computing, storage and

More computing power
More data storage

Server Cloud

Desktop PC

. Notebook] J =N
e
7 7

Fog Home Gateway

N\

. — — — — — Computing _ _ _ _ _ _ _ _ _ __
L _
\\.Q 8 N
& e“\ By

‘Wearable
Devices

Mobile Device

- - D2D communication
Infrastructured communication
MD = Mobile Device ~ CT = CloudLet
CD = Cloud

Figure 2. An example of a possible reference scenario

networking capabilities. CloudleTs (CTs) are typically local
processing units such as notebook or desktop pcs used for
temporary storage and processing [19]. They can also aggregate
data to be delivered to the cloud in the far end, which provides
centralization of functionalities and backup.

III. INDOOR LOCALIZATION MEETS FOG COMPUTING

Along a day, many people visit public areas. As a result, ex-
ploiting fog computing paradigm and leveraging computational
capacity of devices in the vicinity is an excellent solution to
obtain localization while limiting battery drain at the same
time. Fig. 2 illustrates an example of a possible reference
scenario in which the architecture in Fig. 1 is employed. Users
run the Smart P-FP algorithm introduced in Section II and
detailed below. When their remaining battery charge is below
a given threshold, they can demand the computation of the
algorithm to other devices in the vicinity. For communications,
Device-2-Device (D2D) technologies such as WiFi Direct can
be employed. If no devices in the vicinity can help, the user
performs computation offloading to the closest cloudlet or to
the cloud. As the numerical results will show, merging a Smart
P-FP approach with a fog computing platform allows to further
save energy so extending the smartphone’s battery lifetime.

A. Smart P-FP Algorithm

As said in Section II, most positioning schemes base their
action on the computation of the probability p(o|l) to have
an observation vector o at a fixed RP [based on Gaussian
probabilities. The choice Gaussian PDF to model the RSSI
in a fixed RP is supported by the natural symmetry of the

signal itself, as reported also in [2], [11] and references therein.
Traditional P-FP computes the p(oll) as follows:

M g Lmoma)®

p(of|l) = H ———e mi VIE[L,L].
m=1 4 /27T g 1%% 1

Smart P-FP main idea is to re-structure the process required
to obtain the p(o|l) value so to allow the computation and the
storage of some quantities already in the training phase and
therefore provide time and energy saving. It is based on some
algebraic steps (not reported here for sake of brevity) which
lead to introduce three new quantities:

M 2
_m N P,

2
2 m=1 Um,,l

(D

Qay

ﬂ —(1)M.1. (2)
I — \/ﬂ @7

M
2
M= H O-m7la
m=1

where «;, (§; and ~; are the elements of the follow-
ing three vectors of length L: o =ay, - ,qq,- - ,ar],
/6: [613"' 7Bl7"' aﬂL} and Y= [71»"' y Vs >7L]’ re-
spectively. Since 2, ; and o7, ; are already known after the
training phase, a, B and ~ can be computed without the
knowledge of the observation vector o. Exploiting the quantities
reported in (2), the computation of p(o|l) with the Traditional

algorithm can be re-written as follows:

s w2, tom(om—2n2,)
- m=1"__ 3252
p(oll) = e Hrmat ; ©)

where the parameters (i, ;, 2fim 1, 207, ; and (3 can be pre-
computed and stored in the fraining phase. The computation
in (3) is called Smart. It is important noticing that the result
reported in (3) does not introduce any approximation at all.

B. Smart P-FP Algorithm over Fog Computing Platform

Algorithm 1 Offloading algorithm over fog computing platform
Require: struct[] D
Require: float[] J
Require: float[] P
b =getBatteryLevel();
if (b < () then
D = getDevicesInfo();
if (D.length => 3) then
J = computeCostFunctions(D);
for (i =0; i < J.length; i++;) do
P(i) = computeOffloadingPercentage(J(i));
end for
offloadData(P);
end if
else
computePositionLocally();
end if

Algorithm 1 details the steps required to distribute the
computation load over the fog. The procedure requires four

Table 1
INFORMATION EACH MD SHARES WITH THE FOG

Battery Computation Communication
Level Load Interface
Device 1 0.8 0.9 1
Device 2 0.2 0.3 1
Device 3 0.3 0.8 2
Device N 0.8 0.9 1

steps, namely i) get devices info, ii) compute the cost function,
iti) compute offloading percentages and iv) offload to the
selected devices. For localization, every MD with remaining
battery charge below a threshold § acquires information of
devices in the vicinity related to their cost function. The authors
of [13] have found that when enough devices are employed,
offloading data over the fog is effective in terms of saved
power. Starting from this result, we find out thanks to an
analytical approach described in Section IV-A, that when at
least 2 devices are available the fog approach is able to save
power with respect to local computation. On the other hand,
having less than 2 devices in the vicinity translates in offloading
the computation to the CT.

Get Devices info: When a MD has low battery level, i.e.,
below a given threshold 6, it scans the surroundings, looking for
other devices and demand computation of Smart FP algorithm.
The devices within the fog emit beacon packets periodically,
called metric vectors, to inform other devices in the vicinity
about their current status of battery level, CPU load level and
communication interface. The first two parameters assume real
values in the range [0,1] where 1 denotes high availability
of battery and CPU. The last parameter is an integer number
defining the interface the MD exploits, namely 1 corresponds
to BlueTooth (BT) and 2 corresponds to WiFi Direct. Table 1
contains some examples of the overall information contained
within the metric vector.

Compute the cost function: Having information from devices
in the vicinity, a MD can determine the cost function. Devices
with high offloading potential are the best candidates contacted
by the MD for offloading. Let 7" be the total number of MDs
available and let my be the metrics vector for the ¢-th device,
t € [1,T], containing all the information. Its single element
mye,; with ¢ € [1,3] is the i-th metric for the ¢-th device
(e.g., m4, is the battery level of the fourth founded device).
Similarly, let w = [wy, we,w3] be the weight vector where
each element w; is the weight associated to each metric m;.

The cost function J (m,w) is therefore defined as follows:
J(m,w)=>"m; w;, =m-w,

0<w; <1; 4)

|

w| =1.

subject to {

Having computed the offloading potential, the selected devices
are the 2 with highest score in the set of candidates. It is worth
noticing that to speed-up the identification step, in the set of

Table II
A NUMERICAL EXAMPLE OF THE OFFLOADING ALGORITHM PARAMETERS.
THE EMPLOYED VALUE AREW = [£, 1, 1], € = 0.5 AND L = 156.

Device 1 | Device 2 | Device 3

Battery
Device Level 0.7 03 0.9
Info Computation 0.9 02 0.9

Load

Communication

Interface ! ! 2
Math J (m, w) 0.87 0.5 1.27
Functions Pn (%) 41% 13% 46%
RP for RPstart 1 63 83
offloading RP.pq 62 82 156

candidate devices only those with offloading potential higher
than a threshold e are considered, i.e., J (m,w) > e.

Compute offloading percentages: Having selected at least
2 devices for offloading, it becomes necessary to divide
the computation. The offloading percentages are computed
exploiting the weighted mean of the metrics related to the
battery level and the CPU availability. Being N < T the
number of devices for offloading, the corresponding offloading
percentage p,, of the n-th device is determined as follows:
M, * W1+ M2 - W2 - 100. (5)

b 22;1 Mp,1 - W1+ Mp 2 - W2
Offload to the selected devices: When determined the
percentage of computation each selected device will perform,
the last step practically distributes the load. Exploiting the
Smart-FP p(o|l) formula in (3), we proposed to divide the
overall load by assigning the number of Reference Points
(RPs) that it must cover in computing p(oll). According to the
offloading percentages p,, and the total number of considered
RPs L, we define r,, as the amount of RPs that the n-th selected
device for offloading must cover. This parameter is defined as
follows:

Tn:Lp7L'LJ- (6)
Let RP.,,,, and RP! . the first and the last RP that the i-th
device must consider for p(o|l) computation. The generic MD
i computes the value of (3) starting from the RP RP?,, ., and
ending at the RP RP! ,. In formula:

% A
RPlypy = tn; RPL = rn—ri+1. ()
n=1 n=1

For the sake of clarity, a complete numerical example is
reported in Table II with parameters w = [%, %, %} e=05
and L = 156. The example shows the case where 3 MDs are
selected for offloading. Device 1 has an offloading percentage
of 41%, Device 2 of 13% and Device 3 equal to 46%. These
three percentages correspond to the specific amount of RP that
each of them must manage. Device 1 will compute the p(oll)
from the first RP to the 62-th. Device 2 will take care of RPs
from the 63-th to the 82-th and Device 3 will manage RP from
83 to 156. When all the three devices have finished to compute
their p(oll), they send back their results to the device initiating
the process. Such device can infer its location exploiting one

Table IIT
SIMULATION SETUP

PARAMETER VALUE
Number of considered RPs 156

Number of considered APs From 1 to 100
Number of simulation runs 106

Prx 0.5 [mW]

Pp 0.1 [mW]
Brx 250 [MBp]
Drx 0.5 [Kbyte]
Indoor Environment Size 30m x 30 m
Number of Users 200

User Arrival Rate {2,3,...,8} user per minute
Threshold 8 0.3
Threshold e {0.1,0.2,...,1}

of the following methods:

NN approach: Denoting with C; = (z;,y;) the coordinates
of the I-th RP and with £ the set of the RP indexes with
cardinality |£| = L , the NN approach estimates the MD
position as follows:

C = (i" g) = (Ilnuxw Y ylnLum) I’ (8)
where:
(Tl ns Ylnww) St lnaz - arlgrréax {p(o|D)}. 9)
c

K-NN Approach: K-NN approach estimates the MD coor-
dinates as:

. 1 & 1
C=(2,9) st.@= ?;xj and §j = Ejzzlyj, (10)

where:

(xj,y;) st j:argmax{p(o|l)}. (11)
leLk
The set £* C £ is defined as:
£r = {1\ {5 L} and £ =L, 12
b s = lmaI} Vk e [1,K].

LF cardinality is [£*| = L — k.

KW-NN Approach: The KW-NN method requires the
computation of the vector ® whose elements are the inverse
of the probabilities p(o|l), VI € [1, L].

1 1 1 1
p(o[1)” p(of2)” "p(oll)” "plo|L)]

The KW-NN approach corresponds to the K-NN approach,
but the average of the coordinates is weighted with the K
correspondent weights of the vector ®.

K K
> =1 85T 4i > =1 %5Y;

T=—F—"and §y=—F7—"-
K K)
> j=1 b; > j=1 ®;
where the quantity ¢; represents the j-th component of the
vector P.

13)

(14)

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed fog computing
approach for indoor localization, we propose two analysis.
The first study verifies energy gains the fog enables. The
second study analyzes effectiveness of the policy used to

-104

|- I I -
1.5 —eo— Estimated u

m Actual

1.25

0.75
0.5
0.25 |-

Transmission time 7p (ms)

| | | |
0 100 200 300 400

Data Dry (Byte)

(@)

Values of Eq. (16)

1 2 3 4 5
Number N of MDs in the vicinity

()

Figure 3. Benefit of fog computing. Analysis of transmission time vs amount
of data to be offloaded (a) and power saving with increasing number of devices
in the vicinity (b).

select candidates devices for computation offloading. Table III
presents the details of the simulation setup.

A. Analysis of Energy Consumption

Exploiting the mathematical model proposed in [13], it is
possible to compare the power spent to determine the position
locally or through offloading. First, using the Least-Square
(LS) approximation method, we estimate the time necessary
for the processing as a function of the amount of data to be
transferred during offloading. To achieve a robust estimation,
we have performed 10° positioning runs. In Fig. 3(a) the
squares are the actual values and the continuous line over
the rounds is the obtained estimation of the offloaded data
Dprx against the processing time 7T’p. To obtain an exploitable
mathematical relationship between time and data, an LS third-
degree polynomial interpolation is employed. The coefficients
are reported in the following formula:

Tp=—291-10"%. D}y +0.191-10~* - D%+

+1.70-107* - Dpx +0.11

Using the analytical model proposed in [13], we compare
the power spent when the computation is performed locally or
distributed over the fog platform. Let N be the number of MDs
in the fog, Prx and Pp the power (in W) spent for transmission
and processing, respectively while Brx is the transmission
rate. From an energy point of view, it is convenient to offload
computation if the inequality (16) holds. Note that the term
Tp from (15) was included in addition to the basic model
proposed in [13]. Table III lists the values of all parameter
used. Equation (16) was solved numerically for several values
of N. Fig. 3(b) plots the results obtained. As it is possible to

5)

100
& lin=2 lain=3 lain=4 lan=5
5 80| a
>
o0
g 60| a
(5]
)
o 40 a
o0
<
=
S 20 a
S
Ay
50 100 500

0 L o
10 1000
Amount of data Dgy to be offloaded (Byte)

Figure 4. Percentage of power saved

see from the graph and from the related enlargement, having
more than one fog device contributing to computation becomes
beneficial of the offloader. This confirms the effectiveness of
the proposed method: demanding the computation of the user’s
position within the fog environment is always convenient with
at least 2 MDs are available.

D
NQ(N_ 1) [PRX . BRX

] + Pp - Drx
RX

[1.3-107%(N3 — 1) = 3.24- 10 *N(N? — 1)+
0.38N*(N —1)] >0
Fig. 4 analyzes the amount of power performing offloading
saves in comparison with local computation. The graph plots the
savings, in percentage, with the increase of /V and for different
amounts of data to be offloaded. The savings increase with
the the amount of data offloaded and N. Having Drx > 500
bytes, the power saved performed offloading is in the order
of 50% with respect to perform Smart P-FP locally. When 5
other devices are available and Drx > 1000 bytes, the power
savings are above 80%.

(16)

B. Analysis of Candidate Device Selection Process

When the remaining battery charge of a MD is below
the threshold J, computation offloading takes place. For the
experiment, J is set to 0.3. The number of users is 200 located
in an indoor environment of 30m x 30m. Users arrive following
a Poisson distribution with mean {2—8} users per minute. Each
user holds an MD only, whose remaining battery charge and
computing capacity are set at the beginning of the evaluation
period uniformly between [0, 1].

In the first experiment, we analyze the impact of user arrival
rate for successful offloading. For the experiment, the threshold
€ is set equal to 0.5. For each user with battery charge below ¢,
we count the number of successful offloading cases. Successful
offloading occurs when 2 or more users in the vicinity have an
offloading potential higher than e and have arrived at most 1
minute before the reference user. The latter hypothesis allows to
consider a worst case scenario with few other devices available.
Fig. 5(a) shows that the average number of successful offloading
increases with the increase of the user arrival rate. The error
bars represent the confidence interval with 95% confidence
level. The result is expected as having more users at disposal
augments the chances to find at least 2 suitable devices for
offloading.

10 %{}I‘—

Avg. num. offloading cases
o
T
|

41 |
2 |- —
0 1 1 1 1 1 1 1
2 3 4 5 6 7 8
User arrival rate (users per minute)
(@)

150 | = [l 0 Users with battery charge < § ||
= |l 0Suitable users J (m,w) > &
z
2 100 - B
o
5]
§
z S50

AL

T T T
0.1 02 03 04 05 06 07 08 09 1
Threshold €

(b)

Figure 5. Analysis of device selection. Successful offloading with increasing user arrival rate (a) and threshold e (b).

In the second experiment, we analyze the impact of the
threshold e for candidate selection. For the experiment, the
user arrival rate is fixed to 2 users per minute. Similarly to the
previous study, error bars represent the confidence interval with
95% confidence level. The number of users with low remaining
battery charge remains constant during the evaluation period.
Indeed, this parameter does not depend on €. The number of
potential candidates for offloading decreases with the increase
of the threshold e. Indeed, high values of ¢ make suitable
for selection only the devices with high remaining battery
charge and computing capacity. It is worth noting that values
of € < 0.7 fully satisfy the demand for offloading of devices
having battery charge below J.

V. CONCLUSIONS

In this paper, we propose to distribute computation of the
Smart P-FP algorithm over a fog. Devices with low remaining
charge of battery exploit the computing capacity of other
devices in the vicinity by offloading computation of the Smart
P-FP algorithm. The results highlight the effectiveness of
the proposal in two directions, namely energy and candidate
selection process efficiency. With 2 or more devices, offloading
is beneficial from a energy standpoint and the amount of
energy saved can be as high as 80% if compared with local
computation.

ACKNOWLEDGMENT

C. Fiandrino, D. Kliazovich and P. Bouvry would like
to acknowledge the funding from National Research Fund,
Luxembourg in the framework of ECO-CLOUD and iShOP

projects.
REFERENCES

[1] Ericsson ConsumerLab, “The indoor influence,” Consumer Insight
Summary Report, April 2015.

[2] S. He and S. H. G. Chan, “Wi-Fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 466—490, Firstquarter 2016.

[3] Y. Zhuang, Z. Syed, J. Georgy, and N. El-Sheimy, ‘“Autonomous
smartphone-based WiFi positioning system by using access points
localization and crowdsourcing,” Pervasive and Mobile Computing,
vol. 18, pp. 118 — 136, 2015.

[4] C. Yang and H. r. Shao, “Wifi-based indoor positioning,” IEEE Commu-
nications Magazine, vol. 53, no. 3, pp. 150-157, March 2015.

[5] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84 —
106, 2013.

[6] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy cost models
of smartphones for task offloading to the cloud,” IEEE Transactions on
Emerging Topics in Computing, vol. 3, no. 3, pp. 384-398, Sept 2015.

[7]1 C. Fiandrino, D. Kliazovich, P. Bouvry, and A. Y. Zomaya, “Network-
assisted offloading for mobile cloud applications,” in IEEE International
Conference on Communications (ICC), June 2015, pp. 5833-5838.

[8] C. Ragona, F. Granelli, C. Fiandrino, D. Kliazovich, and P. Bouvry,
“Energy-efficient computation offloading for wearable devices and smart-
phones in mobile cloud computing,” in IEEE Global Communications
Conference (GLOBECOM), Dec 2015, pp. 1-6.

[9] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:

Leveraging mobile devices to provide cloud service at the edge,” in IEEE

8th International Conference on Cloud Computing (CLOUD), June 2015,

pp. 9-16.

F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A

platform for internet of things and analytics,” in Big Data and Internet

of Things: A Roadmap for Smart Environments. Springer, 2014, pp.

169-186.

I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Energy efficient

WiFi-based fingerprinting for indoor positioning with smartphones,” in

IEEE Global Communications Conference (GLOBECOM), Dec 2013,

pp. 4639-4643.

I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Smart probabilis-

tic fingerprinting for WiFi-based indoor positioning with mobile devices,”

Pervasive and Mobile Computing, pp. —, 2016.

I. Bisio, F. Lavagetto, A. Sciarrone, T. Penner, and M. Guirguis, “Context-

awareness over transient cloud in D2D networks: Energy performance

analysis and evaluation,” Transactions on Emerging Telecommunications

Technologies, 2015.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, ser. MCC *12. ACM,

2012, pp. 13-16.

S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of

fog computing in the context of internet of things,” IEEE Transactions

on Cloud Computing, vol. PP, no. 99, pp. 1-1, 2015.

M. Aazam and E.-N. Huh, “Fog computing micro datacenter based

dynamic resource estimation and pricing model for iot,” in IEEE 29th

International Conference on Advanced Information Networking and

Applications (AINA), March 2015, pp. 687-694.

R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Martinez,

J. Serra, C. Verikoukis, and R. M. noz, “End-to-end sdn

orchestration of iot services using an sdn/nfv-enabled edge

node,” in Optical Fiber Communication Conference. Optical

Society of America, 2016, p. W2A.42. [Online]. Available:

http://www.osapublishing.org/abstract.cfm?URI=OFC-2016-W2A.42

V. Miliotis, L. Alonso, and C. Verikoukis, “Offloading with ifom: The

uplink case,” in 2014 IEEE Global Communications Conference, Dec

2014, pp. 2661-2666.

M. Chen, Y. Hao, Y. Li, C. F. Lai, and D. Wu, “On the computation

offloading at ad hoc cloudlet: architecture and service modes,” IEEE

Communications Magazine, vol. 53, no. 6, pp. 18-24, June 2015.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

