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Abstract—Distributed tracing plays a vital role in microservice
infrastructure, and learning-based trace analysis has been utilized
to detect anomalies within such systems. However, existing
approaches for learning-based trace-based anomaly detection
face certain limitations. Some assume that trace patterns can
be learned solely from normal executions, while others depend
on anomaly injection to generate labeled traces categorized as
normal or anomalous. However, in practical scenarios, anomalies
may also happen during the normal execution. Moreover, a wide
variety of anomalies may occur in practice, which cannot be
captured solely through anomaly injection. To address these
issues, we propose a Trace-Driven Anomaly Detection (TDAD)
approach based on a Span Causal Graph (SCG) representation,
which trains a model using a Graph Neural Network (GNN) and
Positive and Unlabeled (PU) learning. This technique allows the
model parameters to be optimized by estimating the underlying
data distribution. As a result, TDAD can be effectively trained
using a small number of labeled anomalous traces along with a
relatively large number of unlabeled traces. Our evaluation re-
veals that TDAD outperforms not only the existing unsupervised
trace-based anomaly detection methods by 11.9% in terms of
F1-score but also a supervised learning-based benchmark by 12x
in terms of detection time.

Index Terms—Anomaly Detection, Distributed Tracing, Mi-
croservice, Positive and Unlabeled Learning.

I. INTRODUCTION

Industrial microservice systems typically encompass large-
scale distributed architectures, housing hundreds to thousands
of services within complex cloud infrastructures. These sys-
tems experience dynamic creation and destruction of ser-
vice instances, necessitating prompt and efficient analytics
capabilities within a bounded time. To attain the required
observability in highly intricate and dynamic microservice
environments, it is crucial to trace the flow of requests among
services. To this end, distributed tracing has started to play
a vital role in industrial microservice systems [1]. Typically,
it is implemented as a pipeline that facilitates the collection,
preprocessing, and storage of traces [2]. These traces serve
as the foundation for a range of trace analysis techniques that
aim to comprehend system behaviors [3], detect anomalies [4],
and diagnose faults [5] within microservice architectures.

Detection of application anomalies in a microservice sys-
tem is complicated due to the following challenges. First,
microservice systems are highly dynamic with rapid updates
and continuous integration and deployment of new features.

These systems often run in a containerized environment,
where container states frequently change from busy to idle,
adding to the difficulty of performance diagnosis. Debugging
in microservice systems is exceptionally challenging due to
their intricate and dynamic nature. Developers face the task of
analyzing concurrent behaviors across multiple microservices
and comprehending the overall system interaction topology.
Second, microservice architecture involves multiple intricately
interconnected fine-grained services that are distributed loosely
across the system, resulting in complex tracing paths. Ad-
ditionally, each microservice may have multiple instances to
handle requests, thus further increasing the complexity of trace
paths. Therefore, tracing and visualizing system executions
are fundamental and efficient methods for understanding and
debugging distributed systems [6]. Traces generated from sys-
tem executions provide valuable insights into runtime service
dependencies and facilitate the analysis of request execution
across various services [2]. These traces also capture important
details on service invocations such as status codes and duration
times. As a result, traces are widely used to identify poten-
tial anomalies by examining their structural aspects, such as
the presence of missing service invocations and performance
metrics (e.g., latency).

Recently, a few works have focused on learning-based trace
analysis for anomaly detection in microservice systems [7]–
[11]. Unsupervised learning approaches rely on the assumption
that patterns within traces can be learned only from normal
system executions, while supervised learning approaches de-
pend on injecting anomalies into the system to generate labeled
traces. We note, however, that unsupervised methods struggle
to ensure that normal traces are truly anomaly-free, while
supervised methods require a large number of labeled traces,
and rely on time-consuming anomaly injection processes.

To tackle the aforementioned issues, we propose our Trace-
Driven Anomaly Detection (TDAD), which uses a Graph
Neural Network (GNN) to enable learning vector representa-
tions for traces and Positive and Unlabeled (PU) learning that
allows for training a trace-based anomaly detection model with
a partially labeled dataset. Our proposed TDAD represents
a trace as a Span Causal Graph (SCG) that encompasses
a complex hierarchy structure. In order to detect anomalies
in microservice system traces, we employ a graph-based



approach, where each node in the graph is associated with
three distinct information types, including the semantics of
the operation name, time-related attributes, and status code.
To develop distinct representations for each graph, we use a
combination of a graph attention network and a PU learning-
based model for trace-based anomaly detection. Model pa-
rameters are optimized by estimating the empirical risk on the
historical data, which serves as a measure of the expected loss
on the training data using PU learning. Leveraging historical
anomalous traces, TDAD trains the anomaly detection model
using a small number of labeled anomalous traces along with a
relatively large number of unlabeled traces, thus being able to
detect anomalies in a timely manner. The main contributions
of this paper are summarized as follows.

• We define a trace representation using an SCG, incor-
porating the hierarchical structure and contextual infor-
mation of spans which can be obtained via a parallel
processing approach.

• We present a trace-based anomaly detection method that
utilizes a combination of GNN and PU learning. This
approach leverages historical anomalous traces and only
relies on a small number of labeled anomalous traces.

• We have carried out a comprehensive experimental evalu-
ation on a real-world microservice benchmark to evaluate
the performance of our proposed TDAD in terms of
detection accuracy and detection time.

The remainder of this paper is structured as follows. Section
II reviews related work. Section III describes the system
model, problem statement, and the proposed method. Evalua-
tion results are presented in Section IV. Section V concludes
the paper.

II. RELATED WORK

Distributed trace-based anomaly detection methods can be
classified into two categories (a) Machine Learning-Based and
(b) Trace Comparison methods. There are several factors that
determine the classifications, including the availability of data,
system requirements, and desired capabilities. In the following,
we review each category in detail.

A. Machine Learning-Based Methods

Machine learning-based anomaly detection methods are
classified into two groups of supervised and unsupervised
learning methods.

1) Supervised Learning: The authors of [8] proposed the
so-called Seer, which is a deep neural network that uses convo-
lutional and LSTM layers to detect performance anomalies in
application services. Seer receives key performance indicators
(KPIs) such as latency, outstanding requests, and resource
consumption from distributed traces and node interactions. The
output neurons identify the affected services. Seer continu-
ously processes traces to detect anomalies, communicates with
the node runtime to identify saturated resources, and notifies
the system manager to mitigate performance degradation by
allocating additional computing resources. In [9], dual neural
networks for service anomaly detection were proposed. The

first network was a variational autoencoder trained on normal
traces to identify anomalies through reconstruction errors. The
second network was a convolutional neural network trained
on failure-injected traces to recognize the specific failure-
causing anomalies. False positives were filtered out during the
post-processing of the autoencoder’s output. The convolutional
network determines the type of anomaly when a service is
considered anomalous. Bogatinovski et al. [10] proposed an
anomaly detection approach based on event dependencies. A
self-supervised encoder-decoder network was trained to iden-
tify events in hidden positions by considering nearby events.
During anomaly detection, the network generated expected
event lists for each position in a new trace. The post-processing
stage flagged genuinely logged events as anomalies if they
were absent from their expected positions. Anomaly scores
were calculated based on the ratio of anomalous events to trace
length, and if the score exceeded a user-defined threshold, a
functional anomaly in the application was indicated.

2) Unsupervised Learning: In TraceAnomaly [7], a deep
Bayesian neural network with the posterior flow was presented
for anomaly detection. The network determines the likelihood
of a trace being normal. It stores observed service call paths
and sequences of service interactions in traces. During on-
line anomaly detection, TraceAnomaly checks for previously
unseen call paths. If found, it evaluates them for functional
anomalies using a whitelist. If no functional anomalies are
detected, the trace is forwarded to a Bayesian neural network,
which determines the probability that the trace is normal. If
the probability is below a threshold, the trace is considered a
performance anomaly. Microscope [11] is an application-level
performance anomaly detection model. It monitors KPIs at the
front-end of a microservice application and compares them
against specified Service Level Objectives (SLOs). Deviations
from the specified SLOs are detected by Microscope as
performance anomalies affecting the application. Jin et al. [4]
introduced RPCA, which is an offline anomaly detection solu-
tion for microservice applications. They analyzed distributed
tracing traces to detect performance anomalies, considering
various metrics such as CPU and memory consumption. Prin-
cipal component analysis was employed to identify services
involved in anomalous interactions. Performance metrics were
collected using unsupervised learning algorithms, and anomaly
values were detected by applying a linear function to the
principal components of anomalous traces. Anomaly scores
were assigned to services connected to anomalous traces, and
a list of impacted services was generated based on a predefined
threshold. Services were ranked according to their anomaly
scores.

B. Trace Comparison Methods

Wang et al. [5], Meng et al. [12], and Chen et al. [13]
utilized trace comparison as a technique for online anomaly
detection in microservice applications with distributed tracing
instrumentation. The techniques involved collecting possible
traces in a microservice application and then comparing newly
collected traces with the existing ones. This work is based



Fig. 1. Example of trace and spans in TrianTicket microservice application.

on the assumption that the application maintains a consistent
behavior compared to the past runs. Thus, previously collected
traces serve as a reference for comparison. However, anomaly
detection may be less accurate if the runtime conditions of the
application differ from those under which the reference traces
were acquired. Wang et al. [5] and Meng et al. [12] proposed
trace-based anomaly detection methods for microservice appli-
cations. They collect traces in a pre-production environment,
build representative call trees, and detect anomalies by com-
puting tree-edit distances and analyzing response times. These
approaches are computationally expensive and thus suitable
only for offline detection scenarios. In contrast, Chen et al.
[13] introduced a trace comparison-based method using a fast
matrix sketching algorithm. By comparing response times with
sketch vectors, anomalies are detected efficiently with reduced
false positives/negatives. The sketch vectors were updated to
adapt to changing runtime conditions, enabling online anomaly
detection.

The literature on anomaly detection in microservice applica-
tions commonly employs machine learning algorithms, which
are either supervised or unsupervised [7]–[11]. Both unsuper-
vised and supervised learning-based approaches in anomaly
detection have limitations. Unsupervised methods assume that
most training traces are normal, but this assumption may not
be valid in practice, and incorporating historical anomalous
traces is challenging. Supervised methods rely on a large
number of labeled traces, which necessitates the need for a
laborious and time-consuming anomaly injection process and
may struggle to cover diverse types of normal and anomalous
traces. Some works are based on trace comparison methods,
which compare newly generated traces with stored traces to
identify similarities. However, these methods can be time-
consuming, limiting their suitability to promptly detect and
respond to anomalies in real-time, e.g., [5] [12]. The research
gap lies in the need to train the anomaly detection model with
a small number of labeled anomalous traces. Also, there is a

need for efficient real-time anomaly detection methods that can
effectively detect anomalies in microservice applications while
the system is running, thus allowing for a timely response to
failures.

III. SYSTEM MODEL, PROBLEM STATEMENT, AND
PROPOSED SOLUTION

A. System Model and Problem Statement

Distributed tracing systems commonly adhere to the
OpenTracing specification, which establishes a language-
independent data structure and a collection of principles for
distributed tracing1. OpenTracing, a project under the Cloud
Native Computing Foundation (CNCF), provides an API spec-
ification and a range of frameworks and libraries that have
implemented this specification [2]. Fig. 1 presents an illustra-
tive example, depicting an instance of a trace that conforms
to the OpenTracing specification. Based on the OpenTracing
specification, a trace refers to a sequential representation of
the steps involved in processing a request across multiple
service instances. Each step in this workflow is called a span
and captures the context of a service operation. Each trace in
the system is assigned a unique trace ID, and spans within a
trace are identified by their own unique span ID, along with
the ID of their parent span indicating the preceding span in
the sequence. Moreover, a span contains information about
both the caller operation and the callee operation involved
in the current invocation. As shown in Fig. 1, the caller
operation of Span 004 is Span 003, its callee operation is Span
004, and its parent span is Span 003. The span captures the
initiation and completion times of the server-side invocation,
while the parent span records the corresponding initiation and
completion times on the client-side for the same invocation.
For instance, Span 002 captures the server-side initiation and
completion times between Span 001 and Span 002, whereas
its parent span (Span 001) captures the client-side initiation
and completion times for the identical invocation. Trace i is
denoted by Ti =

(
si1, . . . , s

i
L

)
, i ∈ {1, . . . , Z}, from Z time

instant, where sij is span j of trace i and L is the length of Ti,
i.e., the number of spans in trace i . With these considerations
in mind, we aim to solve the problem of determining whether
trace Ti is an anomaly or not in real time with the main
objective of maximizing detection accuracy.

B. Proposed Solution

Fig. 2 illustrates an overview of our proposed TDAD
method, which comprises four main components: (i) Span
Embedding, (ii) Graph Building, (iii) Model Training, and (iv)
Anomaly Detection. First, a vector representation, including
semantic information, is generated for each individual span
through the process of Span Embedding. Second, Graph
Building constructs an SCG for each trace, capturing the
relationship among the spans. Third, the Model Training of
trace-based anomaly detection uses GNN and PU learning,
which enables the learning of a vector representation for

1See https://opentracing.io/ for further information.



Fig. 2. Overview of TDAD.

each trace derived from its SCG representation. By using
PU learning, the model can be trained using a small number
of labeled anomalous traces, estimating the empirical risk
based on the available data. Next, the trained model is fed
with the SCG, employing a signum function in the output
layer to generate the final outcome. Finally, TDAD produces
a prediction indicating the presence of anomalies. In the
following, we describe each component in more detail.

1) Span Embedding: A trace comprises multiple spans
that depict the causal connections between various service
invocations. These spans are associated with each service
invocation, recording details such as service and operation
names, start time, duration, and status code. The process
of span embedding involves capturing and encoding these
invocation contexts to form the trace graph representation.
Specifically, it encodes service and operation names, start and
duration times, and status codes separately. These components
are then combined into a vector representation for each span,
which serves as a basis for further analysis and processing of
the trace data. Span embedding comprises three main steps:
(i) Semantic Embedding, (ii) Time Embedding, and (iii) Status
Code Embedding, which are explained in greater detail next.

a) Semantic Embedding: The semantics embedding
part is responsible for generating a vector representation
for each span of a trace including the concatenated service
name and operation name. Firstly, we split the names
into words using common separators in microservices
(e.g., “/”, “-”, “:”). Next, all words are transformed to
lowercase, removing non-verbal symbols such as punctuation
marks and numbers. For instance, the name “ts-travel-
service/POST:/api/v1/travelservice/travelPlan/cheapest”
becomes “ts”, “travel”, “service”, “post”, “api”, “v1”,
“travelservice”, “travelplan”, “cheapest”. To handle
the dynamic nature of service and operation names in
microservices systems, we employ the WordPiece algorithm
[14] for tokenization, which splits words into tokens based
on character combinations. This helps address the presence
of out-of-vocabulary (OOV) words. For example, “traveldate”
and “trainnumber” can be split into tokens like “travel”,
“date”, “train”, and “number”. Based on the obtained
sequence of tokens, we employ a pre-trained BERT model

[15], which is a transformer-based language representation
model, to generate a vector representation. Specifically, we
use the BERT-Base model [16], which uses 12 transformer
encoder layers and a hidden layer with 768 dimensions. This
model generates a 768-dimensional vector representation for
each span, effectively capturing the semantics of its service
and operation name. Employing the BERT-Base model [16],
which is equipped with 12 transformer encoder layers to
capture intricate patterns and dependencies in trace data
alongside its 768-dimensional hidden layer for representing
nuanced features, has proven beneficial for tasks demanding
a deeper comprehension of language semantics and potential
performance improvement.

b) Time Embedding: Every span within the system cap-
tures essential information about a service invocation, includ-
ing the start time and duration of the interaction between
the caller and callee. In order to enhance the detection of
anomalies related to time, we extract four distinct time-
related attributes from these recorded timestamps, namely,
(1) duration time, which refers to the span duration, (2) waiting
time, which indicates how long the callee waits for a response
from other services, (3) local execution time, which represents
the time taken by the callee to perform the current invocation,
excluding the waiting time, and (4) relative start time, which
is the time difference between the start time of the current
span and the start time of its root span.

Given the use of the BERT-Base model, each span is rep-
resented by a 768-dimensional vector. This vector represents
the span and includes the embedding of service and operation
names. However, if each time feature occupies only a single
dimension within this 768-dimensional vector, there is a pos-
sibility of overlooking the time-related attributes in the span
representation. Moreover, the considerable variation in time
across different traces (which may range from a few dozen to
several thousand milliseconds) poses challenges in achieving
weight convergence and training efficiency of the model. To
address these issues, we project a single-dimensional time
feature t into a d-dimensional vector space denoted by Etime.
Subsequently, we use the softmax function to create a soft
one-hot encoding, where each element lies between 0 and 1
and the sum of all elements is equal to 1. The soft one-hot



encoding vector s is obtained as follows:

s = τ(tW + b), (1)

where τ(·) is the softmax function, W ∈ Rp is the weight
matrix, and b ∈ Rp is the bias. Next, we project the vector
s into a vector space specifically designed for time embed-
dings. The soft one-hot encoding s is multiplied by the time
embedding vector Es ∈ Rp×d, which results in p-dimensional
vector Etime as follows:

Etime = s⊙Es, (2)

where ⊙ denotes the element-wise multiplication of two
vectors of the same length. Finally, to create a comprehensive
representation of the time-related attributes within a span, we
concatenate the four time embedding vectors, i.e., duration
time, waiting time, local execution time, and relative start
time (which are defined above). This combined representation
effectively captures and encodes the temporal information
associated with the span.

c) Status Code Embedding: The HTTP/1.1 standard [17]
outlines a comprehensive list of 63 status codes categorized
into five distinct groups. We utilize one-hot encoding to
embed status codes, wherein each status code is represented
by a 63-dimensional vector. This means that each dimension
corresponds to a specific status code. For instance, a status
code 200 can be represented as a vector with a value of 1 on
the 5th dimension and 0 on all other dimensions. Similarly, a
status code 404 can be encoded as a vector with a value of
1 on the 28th dimension and 0 on all other dimensions. This
method of encoding status codes enables an efficient analysis
of HTTP traffic.

2) Graph Building: Traces exhibit a hierarchical structure
that includes service invocations or spans. In our proposed
TDAD method, this hierarchical structure can be effectively
represented by SCG, which is a directed acyclic graph (see
Fig. 2). In this graph, each node represents a span within the
trace, while the edges indicate the parent-child relationship
between spans. To capture the characteristics of each span, its
vector representation is used as an attribute of the correspond-
ing graph node.

3) Model Training: In our proposed approach, trace-based
anomaly detection is formulated as a PU learning problem,
leveraging historical knowledge of anomalous traces while
minimizing the number of labeled traces used for training.
PU learning involves training a binary classifier using a small
number of positive samples (i.e., anomalous traces) and a
relatively large number of unlabeled samples. Essentially,
traces are represented as SCGs with span embeddings as node
attributes. To obtain meaningful representations of the traces,
we employ a graph neural network called Graph Attention
Network (GAT), which leverages the multi-head self-attention
mechanism [18]. We employ GAT mainly because it aligns
well with the characteristics of the trace data (graph structure),
learning trace vector representations, and the need for captur-
ing complex relationships and dependencies within the graph.
These graph neural networks learn vector representations of

the traces, as depicted in Fig. 2. In order to train the binary
classifier for trace-based anomaly detection, we employ the
non-negative risk estimator (nnPU) algorithm [19], which
exhibits robustness against overfitting.

Let g = {V,A,X} represent an SCG, where V is the set
of nodes, A is the adjacency matrix indicating the edges and
X is the node attribute set with each attribute xi representing
the node’s vector representation. In the context of an SCG,
the GAT layer calculates attention scores for adjacent nodes,
indicating their relative importance. We obtain the attention
score eij from node j to node i as follows:

eij = ψ
(
aT · (Whi∥Whj)

)
, (3)

where ψ(·) is the LeakyReLU activation function, ∥ represents
concatenation, hi and hj denote the vector representations of
node i and node j, respectively. The weight matrix W ∈
RF ′×F corresponds to a shared linear transformation, where
F is the dimensionality of the input node features and F ′ is
the dimensionality of the transformed features. a is a learnable
attention vector. To obtain the attention coefficients αij from
node j to node note i, the softmax operation is applied to
normalize the importance among all neighboring nodes of i:

αij =
exp (eij)∑

k∈Ni
exp (eik)

, (4)

where Ni represents the neighborhood of node i. The GAT
utilizes multi-head attention to enhance the stability of the
attention mechanism’s learning process. The attention coeffi-
cients are used to compute the output node representation h′i
as follows:

h′i = ∥Kk=1σ

∑
j∈Ni

αk
ijW

khj

 , (5)

where K represents the number of involved attention heads.
Each attention head αk

ij possesses its own attention score. The
weight matrix Wk corresponds to the linear transformation
associated with attention head k. Additionally, σ(·) denotes
the activation function.

After performing the calculations through m GAT layers,
TDAD acquires vector representations for all nodes. The
overall graph representation vg is obtained as the average of
the vectors over all nodes:

vg =
1

Ng

Ng∑
n=1

hmn , (6)

where Ng denotes the number of nodes in graph g. The vector
representation hmn represents the output of node n from the
embeddings of GAT layer m.

During the training phase, our proposed TDAD employs the
non-negative risk estimation derived from nnPU [19], which
is a large-scale PU learning approach to iteratively optimize
the GAT parameters. In each epoch, the training set is divided
into N mini-batches, and TDAD adjusts the GAT parameters
based on the risk estimation for each mini-batch. Suppose we
have a two-layer perceptron (MLP) function f with an output



dimension of 1. Let L represent the sigmoid loss function. In
each mini-batch, there are np labeled anomalous traces. We
use the symbol p to denote the positive data, while u represents
the unlabeled data. The estimated risk R̂+

p associated with
labeled anomalous traces is obtained as follows:

R̂+
p =

1

np

np∑
i=1

L (f (vpi ) ,+1) . (7)

Similarly, the estimated risk R̂−
p associated with unlabeled

anomalous traces is obtained as follows:

R̂−
p =

1

np

np∑
i=1

L (f (vpi ) ,−1) . (8)

We calculate the estimated risk R̂−
u for unlabeled traces by

treating them as normal as follows:

R̂−
u =

1

nu

nu∑
i=1

L (f (vui ) ,−1) , (9)

where nu is the number of unlabeled traces. Finally, the
empirical risk estimation R̂pu is given by:

R̂pu = πpR̂
+
p + R̂−

u − πpR̂
−
p , (10)

where the hyperparameter πp denotes the class prior prob-
ability of anomalous traces. Let β be the hyperparameter
which ensures the risk is non-negative. If R̂−

u −πpR̂
−
p ≥ −β,

TDAD uses Adam [20] optimization to minimize R̂pu and
optimize GAT parameters; otherwise, Adam is used to min-
imize πpR̂

−
p − R̂−

u and optimize the GAT parameters. It is
worthwhile to mention that we employ PU learning, which is
a well-known semi-supervised approach, for the purpose of
learning representations for each graph and optimizing model
parameters by estimating the empirical risk based on the data.

4) Anomaly Detection: The anomaly detection component
is responsible for generating the final outcome. After being
fed to the trained model, the trace is considered normal when
the outcome is equal to or greater than 0; otherwise, it is
considered as anomalous.

IV. RESULTS

In this section, we first describe our implementation details
and then present our findings.

A. Implementation Details

We provide an overview of our experimental testbed, the
benchmark application in use, load generation and trace
collection procedures, anomaly injection specifications, and
the parameter settings and coding environment utilized for
implementing the solution under study.

1) Experimental Testbed: We have set up a lab testbed envi-
ronment within Ericsson Research’s private cloud, also known
as Xerces. The Xerces private cloud operates a vast infrastruc-
ture of around 300 servers managed by an Infrastructure-as-a-
Service (IaaS) OpenStack platform. Our testbed comprises a
Kubernetes cluster composed of four Virtual Machines (VMs)
running Ubuntu 20.04. In the central site cluster, one VM takes
on the role of the master node, while three VMs serve as
worker nodes. The monitoring of VMs within the Kubernetes
clusters and data collection were performed using Jaeger2.

2) Benchmark Application: In our evaluations, we con-
sidered TrainTicket [6], which is a dynamic real-world mi-
croservice benchmark. This benchmark encompasses the es-
sential functionalities of train ticket booking, including ticket
inquiries, reservations, payments, changes, and user notifica-
tions. TrainTicket follows microservice design principles and
incorporates various modes of interaction such as synchronous
and asynchronous invocations as well as message queues. The
system comprises 41 business logic microservices (excluding
database and infrastructure microservices) with the explicit
purpose of facilitating the examination and experimentation
of existing microservice and cloud-native technologies.

3) Load Generation and Trace Collection: We simulate
various user behaviors to create realistic workloads. These
behaviors include users who only visit the homepage and
search for trains, while others log in and book tickets. Also, we
dynamically adjust the number of simulated users per behavior
over time. This approach generates a mixture of different
request types that change dynamically, closely resembling
real-world scenarios. We utilize Production and Performance
Testing-based Application Monitoring (PPTAM) [21] as our
load generator, which incorporates 5 distinct user types. We
made slight modifications to PPTAM to ensure that the number
of users for each request type changes continuously during
runtime. Workloads were uniformly generated for each request
type, covering all microservice benchmarks (see Fig. 2). We
employ OpenTracing to track the sequential traces of request
processing across multiple microservices. In order to ensure
uniformity in the data format for collecting execution trace
information, we used Jaeger, which is a distributed tool specif-
ically designed to support OpenTracing. We collect 189,486
execution traces from the microservice application.

4) Anomaly Injection: We implemented an anomaly injec-
tor, providing configurability for the injection targets, anomaly
types, injection time, duration, and intensity. The injector is
specifically developed to be packaged within microservice
containers as a file-system layer, allowing for remote activation
during the training phase. It includes different types of anoma-
lies that have the potential to violate the SLOs, as shown in
Table I. Anomalies of different types are randomly injected
into containers, with adjustable injection timing and intensity.
The time interval for anomaly injection follows an exponential
distribution with a rate parameter of δ = 0.33s−1, while the

2https://www.jaegertracing.io/



TABLE I
CATEGORY OF INJECTED ANOMALIES INTO TRAINTICKET.

Anomaly
Category

Anomaly Type Example

Network
Anomaly

Network loss
Network delay

A network congestion incident
arises, resulting in a notable surge
in network latency.

Pod
Anomaly

Pod failure
CPU stress
Memory stress

The container experiences memory
depletion, resulting in a notable rise
in the response time of service
invocations.

Application
Anomaly

service invocation
failure,
Incorrect return
results

An error in the implementation of a
service introduces a flaw that leads
to inaccurate responses during ser-
vice invocations. For example, mod-
ifying the pricing algorithm in the
pricing service results in incorrect
ticket prices being calculated and
returned.

anomaly type and intensity are chosen randomly. 28.7% of the
entire trace data consists of anomalous traces.

5) Parameter Setting and Coding Environment: We imple-
mented our TDAD solution using PyTorch 1.10 and Python
3.10.9. The GAT was implemented using PyTorch Geometric
2.2, while the large-scale PU learning algorithm was adapted
from nnPU [19], an open-source implementation. Semantic
embedding utilized the pre-trained BERT-Base model [16] and
WordPiece tokenizer [14]. Time features were projected to
100 dimensions for time embedding. In TDAD, the model
parameters are set as follows. The GAT consists of three
layers. The first two layers use three attention heads, while
the last layer employs one attention head. Batch normalization
was applied after each GAT layer. During training, a batch size
of 128 was used, and the prior probability πp of positive data
was set to 0.15. The hyperparameter β was set to 0 throughout
the training process. The training involved 50 epochs using
the Adam [20] optimization algorithm with a learning rate of
0.001. We randomly partitioned traces into training, validation,
and testing sets with a ratio of 3:1:6. Within the training set,
∼ 10% of the anomalous traces were designated as positive
samples, accounting for roughly 2% of the entire training set.
For the Self-Supervised approach [10], we utilized the same
training, validation, and testing sets, but labeled all traces in
the training set. To ensure a fair comparison with RPCA [4],
TraceAnomaly [7], and Microscope [11], which assume that
the training set predominantly consists of normal traces, we
adopt a different division strategy. The traces were randomly
distributed into three subsets, following a ratio of 3:1:6. The
first subset exclusively contained normal traces and served as
the training set. The third subset was designated as the testing
set. To balance the increase in anomalous traces within the
testing set, all the normal traces from the second subset were
incorporated into the testing set.

B. Experimental Results

1) Evaluation Metrics: We consider precision, recall,
and F1-score to evaluate the performance of different trace-

TABLE II
PERFORMANCE OF DIFFERENT TRACE-BASED ANOMALY DETECTION

METHODS.

Model Precision
(%)

Recall
(%)

F1-score
(%)

Detection
Time (ms)

RPCA [4] 71.2 92.2 80.2 2.695

TraceAnomaly [7] 65.9 58.0 61.5 1.860

Microscope [11] 39.6 94.3 55.7 4.791

Self-Supervised [10] 92.3 90.2 91.3 0.349

Proposed TDAD 87.1 93.0 89.8 0.131

based anomaly detection methods under study. Moreover, time
efficiency is measured using the detection time, which is the
time required for processing a single trace data including the
time needed for anomaly detection.

2) Anomaly Detection Results: As described in Sec-
tion IV-A5, in TDAD, we adopt a randomized approach to
select a subset of 10% anomalous traces from the training
set. The selected traces are subsequently labeled as positive
samples for the training process. This procedure is repeated
in 10 iterations, with each iteration involving training a model
using the modified training set and evaluating its performance
on the testing set. Each shown result is the average over
10 iterations. Table II depicts the obtained recall, precision,
and F1-score for different anomaly detection solutions. The
proposed TDAD achieves a precision of 87.1%, recall of 93%,
and an F1-score of 89.8%. Although TDAD underperforms
Self-Supervised [10] in precision and F1-score, it outperforms
RPCA [4], TraceAnomaly [7], and Microscope [11] signifi-
cantly in terms of precision, recall, and F1-score. The infe-
rior performance of the unsupervised approaches, RPCA [4],
TraceAnomaly [7], and Microscope [11], is evident in their
low F1-score 80.2% and 61.5%, and 55.7%, respectively.
These approaches rely on sequence-based trace representation,
which lacks the ability to capture the causal relationships
between spans. Additionally, they do not account for status
codes. In contrast, Self-Supervised [10] achieves high preci-
sion and F1-score mainly because it uses fully labeled training
data.

Next, we evaluate the detection time performance of our
proposed TDAD method. We observe from Table II that the
proposed TDAD outperforms RPCA [4], TraceAnomaly [7],
Microscope [11], and Self-Supervised [10], with significantly
shorter detection times of only 0.131 ms. In comparison,
RPCA [4], TraceAnomaly [7], Microscope [11], and Self-
Supervised [10] had higher detection times of 2.695, 1.860,
4.791, and 0.349 ms. This is mainly due to the fact that the
process of network units, represented by the nodes in an SCG
in our proposed approach, benefits from parallel processing.
Even though the Self-Supervised method [10] achieved a
higher F1-score, it is outperformed by our proposed TDAD in
terms of detection time (see Table II). This is because the Self-
Supervised method employs a softmax function for generating
the final prediction, whereas TDAD uses a signum function.
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Fig. 3. Precision, recall, and F1-score of our proposed TDAD method vs.
ratio (%) of labeled anomalous traces.

Fig. 4. Precision, recall, and F1-score of our proposed TDAD method vs.
the number of GAT layers (ratio of labeled anomalous traces=10%).

3) Impact of Configuration Parameters on the Output:
We evaluate the impact of the number of labeled anomalous
traces on the performance of our proposed TDAD method.
Specifically, we employ TDAD to train a model using 5%,
10%, 15%, 20%, and 25% of labeled anomalous traces from
the training set. Fig. 3 illustrates the performance metric of the
proposed TDAD method for different percentages of labeled
anomalous traces. It is apparent that TDAD’s performance
can be enhanced by increasing the number of labeled anoma-
lous traces. With only 10% anomalous traces labeled in the
training data, TDAD significantly outperforms the RPCA [4],
TraceAnomaly [7], and Microscope [11], and only slightly un-
derperforms the Self-Supervised [10] which uses fully labeled
training data. When 20% of the anomalous traces are labeled,
TDAD achieves an F1-score of 97%, which is comparable to
that of Self-Supervised with an F1-score of 98.5%. However,
a further increase in the number of labeled anomalous traces
results in a decline in model performance. We attribute this
decline to the fixed value of hyperparameter β during model
training. As the number of labeled anomalous traces increases,

the proportion of normal traces within the unlabeled data
also grows. This leads to a more precise estimation of the
risk associated with the unlabeled data, denoted as R̂−

u in
Eq. (10), without subtracting a substantial portion of πpR̂−

p as
previously done. However, πpR̂−

p remains unchanged, leading
to reduced learning from the unlabeled data and eventually
causing underfitting. In order to address this issue, we suggest
adjusting the value of β appropriately when the number of
labeled anomalous traces increases. This adjustment ensures
that the model parameters are optimally tuned, even in cases
where R̂pu is slightly below 0.

Fig. 4 illustrates the impact of varying the number of GAT
layers on TDAD’s performance. Notably, the performance of
TDAD initially improves and subsequently declines as the
number of layers increases. The highest F1-score can be
obtained when the number of GAT layers is 3. This is due to
the dynamics of interaction within the SCG. When the number
of GAT layers is small, the flow of information between nodes
in the graph might be inadequate, which can result in incom-
plete learning of the graph’s features. Conversely, an excessive
number of GAT layers can lead to over-smoothing [22], where
the model becomes excessively generalized and therefore
incapable of distinguishing the learned representations among
diverse graphs.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed TDAD, a novel approach that
combines GNN and PU learning for the accurate detection
of anomalous traces. Our approach demonstrates high per-
formance even with a small number of labeled anomalous
traces and a relatively large number of unlabeled traces. TDAD
employs an SCG to capture the intricate hierarchical structure
of traces effectively. The graph ensures the preservation of
span relationships and embeds three types of information
into the corresponding node representation vectors, including
the semantics of the invoked service name and operation
name, time-related attributes, and the status code. By utilizing
the SCG, TDAD employs a graph attention network and a
trace-based anomaly detection model based on PU learning.
The training process involves the utilization of both a small
number of labeled anomalous traces and a relatively large
number of unlabeled traces. Our trace-driven evaluation on
a microservice benchmark demonstrates that the proposed
method outperforms not only the existing unsupervised trace-
based anomaly detection methods by 11.9% in terms of F1-
score but also an existing supervised learning-based approach
by 12x in terms of detection time. An interesting future work
is to evaluate TDAD across diverse microservice systems as
well as develop new techniques that can consider microservice
application logs, resource metrics, and trace data to address the
challenges associated with anomaly detection in large-scale
complex microservice systems.
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