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Abstract—Water monitoring is one of the critical battles of
sustainability for a better future of humanity. 44 countries are
considered at high risk of the water crisis, 28 of which are
developing countries and have limited capacity to deploy a
national scale solution. As a response to the United Nation’s
sustainability goals and initiatives, this paper proposes an in-
telligent water monitoring service which acts as a foundational
infrastructure for all future water management systems. It also
provides municipalities, Non-Governmental Organization and
other private initiatives with the tools needed to establish local
water monitoring in the scale of villages or rural areas with a
very small initial investment.

Index Terms—Cloud computing, data streams, data quality,
sampling techniques, Software as a Service (SaaS).

I. INTRODUCTION

In 2015, the United Nations General Assembly approved
the following: "Transforming our world: the 2030 Agenda for
Sustainable Development" [1]. In order to guide the actions
of the international community towards global sustainability,
several objectives related to resource management and its
consequence were defined. The water-related goals were the
following: (1) Eradicate hunger, ensure food security and
nutrition, and promote sustainable agriculture (2) Ensure the
availability and sustainable management of water and sanitation
for everyone, and finally, (3) Protect, restore and improve
the sustainable use of terrestrial ecosystems, manage forests
sustainably, combat desertification, etc.

ICT solutions for water management have become extremely
important as a global initiative. Intelligent water management
systems [2], dynamic water pricing systems [3], peer-to-peer
water trading systems [4], and e-agriculture [5] are at the
core of UN’s sustainability goals and are becoming very hot
research topics. The development of efficient ICT solutions for
water management relies on continuous updates of accurate
and timely information, but the literature is short on water

monitoring systems specialized in providing such information.
It is inefficient and impractical to require every ICT solution
to collect and process massive streams of data as a prerequisite
to performing its task. The overhead resulting from adding
a water monitoring component to every water management
system is simply too expensive.

In this work, we are interested in designing an intelligent
water monitoring service that helps in complementing the water
management ecosystem and facilitates the development of ICT
solutions for water management. The designed service collects,
processes and delivers accurate, meaningful, timely, dynamic,
and cost-efficient data, through standardized interfaces, to the
systems needing it, as shown in Figure 1.

To do so, we propose a new cloud service that offloads
the complexity of the central monitoring system with all
its overheads to the cloud. These overheads include huge
initial investment which could prevent NGOs and private
initiatives from deploying a functional monitoring system,
scalability issues, and maintenance issues. This service supports
new business models and an ecosystem that can be created
around the generated data while providing water network
operators with a plethora of tools to make their decisions
smarter, faster, or automatic. Artificial Intelligence can be
designed to utilize standardized interfaces. The standardized
interface is fundamental for the cloud computing ecosystem. It
provides end-users with the capability to access cloud services.
Analytics tools, big data applications, security management,
and monitoring tools are among the commonly provided
services. In the rest of this paper, we refer to Intelligent
water management systems, dynamic water pricing systems,
peer-to-peer water trading systems, and e-agriculture by water
management systems.

The rest of the paper is organized as follows. Section II



Fig. 1: Water management ecosystem.

presents the related works. Section III discusses the require-
ments for a functional central monitoring system. Section IV
introduces our contribution, the "Native Filtering as a Service
(NFaaS)". The paper ends with a conclusion.

II. RELATED WORKS

Cloud computing for environmental monitoring consists of
using cloud infrastructure to control the data streams generated
by Wireless Sensor Networks (WSNs). The adoption of cloud
technology allows users and businesses to save time and costs
since the cost of storage and the efforts of the infrastructure
installation, configuration, and maintenance drops dramatically
and become negligible. In addition, the estimation and planning
of the required resources, and the use of excessive storage and
computation capacities are no longer required as the resources
can be flexibly adjusted as needed.

In [6], a cloud-based system has been proposed to monitor
the changes that occurred in the environment. The system
generates an alert and notifies the user when an anomaly
is detected. The main benefit of this system is to reduce
the amount of time needed to retrieve and analyze the data
when compared to the traditional data analysis systems. [7]
presented a cloud-based system for weather monitoring. It
is composed of two layers: an interface layer to allow the
interaction between the users and the cloud through a web
server, and a database layer to allow storing and fetching the
data coming from the WSNs base stations. [8] implemented a
cloud system to store, process, and monitor the data related to
the air quality and detect specific compounds and contaminants.
Several parameters related to the air are observed and sent
to the cloud by the sensors. [9] designed a semantic Extract-
Transform-Load (ETL) framework on the cloud platform for
monitoring and predicting air quality. At first, different data
analysis techniques are applied to clean the data and remove
duplicated values. Secondly, a semantic model is built so that
to have a significant relationship between the data. Finally,
several data mining algorithms are used to analyze and predict
air quality.

A framework based on blockchain technology for dynamic
water pricing has been proposed by [3], in which the water
price is a function of the energy prices, which drops as the
price of the energy required to pump the water drops. The
deployment of water management systems in African countries
requires several specifications such as continuous monitoring,
remote control of water distribution, etc. The impact of using
blockchain on intelligent water management systems in these
areas was investigated by [2]. In [10], the authors concluded
that it is difficult to deploy an Integrated Water Resources
Management (IWRM) in real life. The required monitoring,
management, and maintenance operations, on a national scale,
required are very expensive.

III. CENTRAL MONITORING SYSTEM REQUIREMENTS

In this section, we show the infrastructure requirements for
a functional central monitoring system as calculated in our
previous work [11]. As will be shown, these requirements can
be an obstacle facing the deployment of a water monitoring
system by states, municipalities, NGOs, or private initiatives
in developing nations, who are in desperate need of such a
system.

The calculated infrastructure includes the computational
resources required to run the central monitoring system which
is responsible for data cleaning and summarization, and the
number of servers needed to ensure high availability of the
service. The used dataset is issued from the water sensors
deployed in the Paris region. The recorded data are structured
data streams that have both spatial and temporal characteristics.
Each record observation is composed of two fields: the
recording date of the measure, and the value of the measure
(water consumption volume). These data are regularly generated
by the sensors with a frequency of one observation every 15
minutes. The specifications of our server on which we run
the central monitoring system are the following: RAM: 4 GB,
System Disk: 120 GB, and Processor: 2.7 GHz Intel Core
i5− 8305G.

1) Response time: The execution time of the sampling
process includes the time of reading, sampling, and writing
the data in the summary, and is dependent on the following
factors: (1) Number of received observations for each stream,
which depends on the stream rate or frequency of the sensor,
(2) Number of streams received simultaneously, (3) Sampling
rate, (4) Window size, and (5) Sampling technique.

We evaluate in Figure 2 the response time taken by the
central monitoring system to construct a summary for each
received data stream, using the sampling algorithms previously
discussed. One can notice that the response time increases
linearly with the increase of the number of streams to be
processed. The following equation stands for the response time
of the sampling filter as a function of the number of streams
to be processed:



Response time = a×Number of streams+ b (1)

where b is a fixed amount of time needed to initialize the
sampling filter, and a×Number of streams is an incremental
component proportional to the number of received data streams.

Fig. 2: Execution time of the sampling process according to
the number of streams, locally.

Figure 2 also shows that the Chain-sample algorithm has the
highest execution time compared to other sampling algorithms.
This is due to the collision problem that it suffers, and the
number of data to be written in the summary, which is higher
compared to that of other sampling algorithms [11]. Notice
that the size of the window has a high impact on the execution
time taken by Chain-sample. This time increases as the window
size increases, as demonstrated in [12]. The figure also shows
that the Deterministic sampling algorithm has the smallest
execution time, as it is the simplest sampling method.

Figure 3 represents the cleaning process’s response time.
One can conclude that the cleaning time needed is not linearly
dependent on the number of received streams. In fact, for a
single data stream, this cleaning time depends on the following
parameters: the number of received observations, the amount
and the distribution of missing data and outliers. As these
parameters vary widely from one stream to another, the cleaning
time cannot be predicted in advance.

2) Service availability: Increasing the availability of a
system involves maximizing the percentage of time during
which the system is operational. To protect the system against
unexpected overloads and to avoid the system balancing can
be used to ensure high availability. It consists of using a set of
servers in which the incoming streams are evenly distributed to
help reduce the load on a single server. We show in Figure 4
the calculated number of servers needed to run the central
monitoring system while ensuring high availability for the
stream rates discussed above.

Fig. 3: Response time of the cleaning process according to the
number of streams.

Fig. 4: Required number of servers to ensure high availability.

As shown in Figure 4, a local small-scale monitoring system
of 1 million sensors requires a data center of 253 to 337 servers
for stream cleaning and processing. This data center is too
expensive for private initiatives, NGOs, or municipalities to
install, operate, and maintain thus jeopardize their willingness to
deploy such a critical system. Consequently, water management
systems relying on the data generated from the monitoring
system will be jeopardized as well.

IV. NATIVE FILTERING AS A SERVICE (NFAAS)

To provide states, municipalities, NGOs, or private initiatives
the possibility to deploy a water management system without
the burdens of water monitoring systems, we propose a new
cloud service called Native Filtering as a Service, which is
presented in this section. Sensor data streams are arriving at a
high-speed. They produce a huge mass of data, impossible to
store entirely in due time. On their side, erroneous, inaccurate,
or inconsistent data cause much damage as for the supervision
and detection of abnormal phenomena in the monitored



network. It is, therefore, necessary to filter these data on the
fly and to store only those that are relevant by producing
summaries. Native filtering consists of filtering qualitatively
and quantitatively, in real-time, the received sensor data to
overcome the poor data quality and huge data volume problems.

The native filtering process consists of two sub-processes: the
cleaning filter, also called a qualitative filter, and the sampling
filter, also called a quantitative filter. When the qualitative filter
receives the data from the sensors, it proceeds to check and
to improve their quality. Thereafter, the data are summarized
by the quantitative filter. Native Filtering as a Service (NFaaS)
consists of providing the cleaning and sampling filters as
services via cloud computing. Therefore, clients can access and
benefit from the cleaning and sampling applications over the
Internet, on-demand, with a payment based on their use. Once
the data are clean and summarized, it is essential to store them,
so that they are available for future analysis either by their
owners or by other users interested in these data. Eventually, the
visualization of the obtained data analysis results is essential
to help the network explorer to understand the monitored
environment. That is where the Big Data as a Service (BDaaS)
comes in.

BDaaS provides the users with a remote cloud storage
server to store and edit their summaries, as well as an
analytics platform for the analysis of these summaries and
the visualization of the results. The cloud-based sensors data
streams processing flow is shown in Figure 5. Every instance of
NFaaS has its own geographical coverage, specialized analytics,
and scope. Water management systems may be interested in
retrieving data from multiple NFaaS instances or consortiums.
Multiple NFaaS instances can store their output on a consortium
blockchain, as shown in Figure 5, and this provides endless
options for an ecosystem of brokers, regulators, investors, and
innovators.

A. Overview of native filtering services

The native filter takes as input several data streams, issued
from the sensors in their native format, and gives in output
new data streams in the same format. It consists of two sub-
filters: the qualitative filter (Cleaning as a Service) to clean
the data by detecting and deleting errors and duplicated data
and predicting missing and erroneous data, and the quantitative
filter (Sampling as a Service) which is responsible for reducing
the large volume of data by using several sampling algorithms.
Our approach for managing the data stream quality is to first
evaluate the data quality according to several dimensions, and
then, improve it to obtain reliable and effective data analysis
results. Since data streams are volatile, once expired, they
are no longer available for analysis. Therefore, all the needed
queries have to be defined before the arrival of data streams.

However, new requirements may appear after the arrival of
the stream. In this case, the data stream management system
cannot answer new queries. One of the solutions to palliate
this problem is to store an extract of the stream in a compact

structure, called summary. The cleaning and sampling services
will be discussed in Section IV-B.

In figure 6, we show the use case diagram for NFaaS cloud
service. The class diagram of the native filtering services is
presented in Figure 7.

B. Services explanation

Data analysis results depend on data quality. Sensors data
are often of bad quality. Since the conclusions and decisions
that the network explorer will take are based on the data, this
can lead to erroneous results and faulty decisions. One solution
to deal with this problem is to use sensors with high precision
and to deploy redundant sensors to cover the breakdown of
a given sensor. Nevertheless, this approach is very expensive
as it requires very high costs for the sensors. That is why we
opted for a software-based solution where the data quality is
evaluated and improved using several complementary methods.
Our solution is based on the Total Data Quality Management
(TDQM) methodology [13]. At first, data quality dimensions
are defined and measured. Then, a set of quantitative metrics
are produced. Finally, several actions are taken to enhance data
quality.

Data quality metrics we are dealing with are the accuracy,
completeness, reliability, and confidence. These dimensions
are chosen because of their important impact on the data
analysis results. The accuracy dimension represents the point
at which the sensor readings are close to the real observations.
In sensor networks, sensor readings may deviate from the real
observations due to several factors such as the physical sensor
failure, sensor malfunction, etc. Data accuracy can be improved
by detecting and removing these erroneous data.

Errors are of three types: outliers, spikes, and stuck-at. Stuck-
at errors can be detected using the CUSUM algorithm that
we proposed previously [14]. Outliers and spikes errors are
detected using a set of static rules. In the context of the
water distribution network, any reading value that exceeds
the maximum theoretical flow value (called debitMax) that a
sensor can emit will be considered as an outlier. The debitMax
value is calculated using the Hazen-Williams formula. This
latter determines the maximum transportable flow rate through
a given pipe according to the physical properties of the pipe and
the pressure drop caused by the friction of the used material.
The debitMax value is calculated according to the Hazen-
Williams formula, where DH is the altitude difference between
the two extremities of the pipe, in meters, L is the length of
the pipe, in meters, C is the friction coefficient of the used
material, and D is the diameter of the pipe, in meters. The
accuracy degree for each sensor reading takes the following
values: 0 if the value is erroneous, otherwise, 1. The debitMax
value is calculated as follows:

debitMax = 0.28× ((DH/L)0.54)× (C ×D)2.63 m3/sec
(2)



Fig. 5: Cloud-based sensors data streams processing.

Fig. 6: Use case diagram of the Native filtering as a Service
(NFaaS).

The completeness dimension depends on the frequency for
recording the data in the environment and the frequency for
communicating the recorded observations to the data center or
the server. Based on the known stream arrival rate, the amount
of missing data at each instant t (in hour) can be computed
as follows:

cumulativeMissingt = [

∑t
t0
Number of missing data

(t− t0)× streamRate
]

(3)

The sensor reliability dimension is based on the accuracy
dimension. It is measured by the cumulativeError degree

Fig. 7: Class diagram of the Native filtering services.

which depicts the percentage of cumulated erroneous values.At
each instant t, the cumulativeError degree is calculated as
follows:

cumulativeErrort = [

∑t
t0
Number of erroneous data∑t

t0
Number of received data

]

(4)

The confidence dimension depicts the degree of trustiness
of the sensor reading. This degree depends on the originality



of the data. When a value is missing or erroneous, it has to be
regenerated to enhance its quality. In this case, its confidence
degree is the proportion of consecutive missing or erroneous
values around it. x is calculated relative to a given time period
as follows, where m is the number of consecutive missing
values, IAD is the Interpolation Allowed Duration (in hours)
representing the maximum missing data period allowed to
replace the data.

confidence = [1− m

IAD × streamRate
] (5)

Once the quality dimensions are evaluated, the cleaning filter
proceeds to enhance data quality by deleting erroneous and
duplicated data and replacing erroneous and missing data. The
native filtering solution uses sampling algorithms to summarize
the data and construct a summary. The singularity of this
structure lies in its ability to perform various data analysis
tasks on the stream and to answer in an approximate way to
any request, whatever the period of time investigated. Different
sampling algorithms can be applied by the native filtering
solution. The choice of the sampling technique depends on
the required precision regarding the data analysis results, and
the constraints related to the processing time needed by the
algorithm. Four sampling methods were implemented in the
sampling filter: Simple Random Sampling (SRS), Deterministic
sampling, Reservoir sampling, and Chain-sample. More details
about these algorithms can be found in [15].

C. Big Data as a Service (BDaaS) in standardized interfaces

The built summaries from the NFaaS are sources of BDaaS.
They can be published on the cloud allowing their owners
to get a return on investment. Data is a valuable asset for
every organization. The intelligent use of data can help make
decisions based on real facts, and thus, improve the business
processes by minimizing the risks and increasing the business
in general. The concept of DaaS is that the data, regardless of
its source and type, can be cleaned, enriched, integrated into
a centralized infrastructure, and made available to different
users and applications on the cloud. In this way, DaaS allows
the users to obtain the appropriate data and to use it directly
to meet their needs, and the data owners to get a return on
investment.

Data can be used and analyzed to improve the performance
of systems and decision support applications, as well as for
risk assessment. While the benefits of Big Data are significant,
many challenges remain. They are related to the high volume
of the data, their velocity, confidentiality, and variety. Big
Data analysis involves several distinct tasks such as data
acquisition, data analysis, and data modeling. The use of
the cloud environment for processing Big Data is an ideal
solution, both scalable and adapted to huge data volume. In
our monitoring system, data analytic tools can be used in
detecting abnormal phenomena such as micro-variations of
certain parameters that have an impact in terms of risk, variation,

or non-nominal frequency, etc, as soon as possible, thus,
allowing to save considerable amounts of potable water. Finally,
data visualization is essential for interpreting the data. Cloud
computing provides users and businesses with visualization
tools. It allows them to spend their time in visualizing their
data without having to worry about the infrastructure.

V. CONCLUSION

Water monitoring is a critical challenge for humankind
since we share the same globe, breath the same air, drink
the same water, and share the same DNA. We are not short
on solutions, but we are in desperate need of practical ones
that are implementable in developing countries and rural areas.
Successful solutions are not necessarily the most technically
advanced, but the ones with successful business models. In
this paper, we proposed a water monitoring cloud service
that facilitates the development of critically needed water
management systems. The strength of this proposal is multi-
folded. First, it doesn’t rely on the government’s maintenance
which can be very inefficient in developing countries. The
second strength is that it creates an ecosystem around the
generated data which can help develop the areas using these
services
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