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Abstract—Finite-difference, stencil-based discretization ap-
proaches are widely used in the solution of partial differential
equations describing physical phenomena. Newton-Krylov itera-
tive methods commonly used in stencil-based solutions generate
matrices that exhibit diagonal sparsity patterns.To exploit these
structures on modern GPUs, we extend the standard diagonal
sparse matrix representation and define new matrix and vector
data types in the PETSc parallel numerical toolkit. We create
tunable CUDA implementations of the operations associated with
these types after identifying a number of GPU-specific optimiza-
tions and tuning parameters for these operations. We discuss
our implementation of GPU autotuning capabilities in the Orio
framework and present performance results for several kernels,
comparing them with vendor-tuned library implementations.

Index Terms—autotuning, stencil, CUDA, GPU

I. INTRODUCTION

Exploiting hybrid CPU/GPU architectures effectively typi-
cally requires reimplementation of existing CPU codes. Fur-
thermore, the rapid evolution in accelerator capabilities means
that GPU implementations must be revised frequently to
attain good performance. One approach to avoiding such code
reimplementation and manual tuning is to automate CUDA
code generation and tuning. In this paper, we introduce a
preliminary implementation of a CUDA backend in our Orio
autotuning framework, which accepts a high-level specification
of the computation as input and then generates multiple
code versions that are empirically evaluated to select the
best-performing version for given problem inputs and target
hardware. In our prototype, we target key kernels in the PETSc
parallel numerical toolkit, which is widely used to solve
problems modeled by nonlinear partial differential equations
(PDEs).

A. Motivation

Increasing heterogeneity in computer architectures at all
scales presents significant new challenges to effective software
development in scientific computing.

Key numerical kernels in high-performance scientific li-
braries such as Hypre [11], PETSc [3], [4], [5], SuperLU [13],
and Trilinos [22] are responsible for much of the execution
time of scientific applications. Typically, these kernels imple-
ment the steps of an iterative linear solution method, which
is used to solve the linearized problem by using a family

of Newton-Krylov methods. In order to achieve good perfor-
mance, these kernels must be optimized for each particular
architecture. Automating the generation of highly optimized
versions of key kernels will improve both application perfor-
mance and the library developers’ productivity. Furthermore,
libraries can be “customized” for specific applications by
generating versions that are optimized for specific input and
use characteristics.

Traditionally, numerical libraries are built infrequently on
a given machine, and then applications are linked against
these prebuilt versions to create an executable. While this
model has worked well for decades, allowing the encapsu-
lation of sophisticated numerical approaches in application-
independent, reusable software units, it suffers from several
drawbacks to achieving high performance on modern architec-
tures. First, it provides a partial view of the implementation
(either when compiling the library or the application code
using it), limiting potential compiler optimizations. Because
the library is built without any information on how exactly
it will be used, many potentially beneficial optimizations are
not considered. Second, large toolkits such as PETSc and
Trilinos provide many configuration options whose values can
significantly affect application performance. Blindly using a
prebuilt library can result in much lower performance than
achievable on a particular hardware platform. Even when a
multitude of highly optimized methods exist, it is not always
clear which implementation is most appropriate in a given
application context. For example, the performance of different
sparse linear solvers varies for linear systems with different
characteristics.

Our goal is to tackle the challenges in achieving the best
possible performance in the low-level fundamental kernels
that many higher-level numerical algorithms share through
application-aware code generation and tuning. Several com-
ponents are required in order to provide these code generation
capabilities.

« A mechanism for defining the computation at a sufficiently
high level

« Application-specific library optimizations

o Automatic code generation and tuning of computationally
significant library and application functionality

« Ability to use nongenerated (manual) implementations
when desired



B. Background

This work relies on and extends two software packages: the
autotuning framework Orio and the Portable, Extensible Tolkit
for Scientific Computation (PETSc). We describe them briefly
in this section.

1) Orio: Orio is an extensible framework for the definition
of domain-specific languages, including support for empirical
autotuning of the generated code. In previous work we have
shown that high-level computation specifications can be em-
bedded in existing C or Fortran codes by expressing them
through annotations specified as structured comments [10],
[17], as illustrated in Figure 1. The performance of code
generated from such high-level specifications is almost always
significantly better than that of compiled C or Fortran code and
for composed operations it far exceeds that of multiple calls
to optimized numerical libraries.
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Fig. 1. Orio autotuning process.

2) PETSc: PETSc [3], [4], [5] is an object-oriented toolkit
for the numerical solution of nonlinear PDEs. Solvers, as
well as data types such as matrices and vectors, are im-
plemented as objects by using C. PETSc provides multiple
implementations of key abstractions, including vector, matrix,
mesh, and linear and nonlinear solvers. This design allows
seamless integration of new data structures and algorithms
into PETSc while reusing most of the existing parallel infras-
tructure and implementation without requiring modification to
application codes. In terms of applications, our focus is on
finite-difference, stencil-based approximations, supported by
the Newton-Krylov solvers in PETSc, which solve nonlinear
equations of the form f(u) = 0, where f : R — R", at
each timestep (for time-dependent problems). The time for
solving the linearized Newton systems is typically a significant
fraction of the overall execution time. This motivates us to
consider the numerical operations within the Krylov method
implementations as the first set of candidates for code gener-
ation and tuning.

C. Approach

In this paper we present our approach to addressing sev-
eral of the challenges introduced in Section I-A. Existing
implementations of key kernels (e.g., matrix-vector products)
can be generated from relatively simple specifications, either
in a domain language such as MATLAB or by expressing
them as simple C loops operating over arrays. Previous work

on generating optimized code for composed linear algebra
operations [17] demonstrates that the generated code per-
formance can greatly exceed that of collections of calls to
prebuilt libraries. The key challenges are to associate different
underlying matrix and vector representations with the high-
level kernel specification. At a high level, our solution consists
of the following steps.
o Define optimized data structures for stencil-based compu-
tations.
o Create high-level specifications for key numerical kernels.
o Implement CUDA-specific transformations and code gen-
eration.
From the point of view of a library or application developer,
using these capabilities requires the following steps.
« Provide application-relevant inputs to numerical kernels.
o Specify desired transformations and associated parameters.
o Perform empirical tuning on the target architecture.
« Build the library and application incorporating tuned ker-
nels and use for production runs.
The first two steps can be at least partly automated, as
discussed briefly in Section VI; but at present, the input specifi-
cation is manual. In this paper we focus on the implementation
of the CUDA code generation and autotuning capabilities.
The main goal of this work is to enable sustainable high
performance on a variety of architectures while reducing the
development time required for creating and maintaining library
and application codes without requiring complete rewriting of
substantial portions of existing implementations. While for a
small set of numerical kernels a vendor-tuned library provides
a great solution, available tuned libraries do not cover the full
space of functionality required by applications. Hence, we are
pursuing code generation and autotuning as a complementary
solution, which can be used when vendor-supplied libraries
do not satisfy the performance or portability needs of an
application.

a) Summary of contributions: In this paper, we present
new functionality implemented in the Orio framework that
supports the following.

o Automation of code optimizations targeting GPUs that
exploit the structure present in stencil-based computations

« GPU autotuning approach that can be integrated into tradi-
tional C/C++ library development

o Ability to generate specialized library versions tuned for
specific application requirements

II. STENCIL-BASED DATA STRUCTURES

This work was motivated by initial exploration of compact
matrix representations for stencil-based methods [9]. Here, we
briefly summarize the standard data structures used in stencil-
based methods.

Finite-difference methods approximate the solution of a
differential equation by discretizing the problem domain and
approximating the solution by computing the differences of
the model function values at neighboring inputs based on one
of several possible stencils. An example is the heat equation
where the domain is uniformly partitioned and the temperature



is approximated at discrete points. Adding a time dimension
to the problem domain provides a model of heat dissipation.
The standard approach to solving such problems is to apply
stencils at each point such that the temperature at a point in one
timestep depends on the temperature of a set of neighboring
points in a previous time step. The set of neighboring points
is determined by the dimensionality of the problem domain
d € {1,2,3}, the shape of a stencil s € {star,box}, and the
stencil’s width w € N.

For example, in a star-shaped stencil of width one applied
to a two-dimensional domain (2dStarl), each point interacts
with four of its neighbors to the left, right, above, and below
its position within the grid. Depending on the domain’s model,
the points on the boundaries of the grid can satisfy Dirichlet,
periodic, or other boundary conditions.

Stencil-based point interactions are captured in an adjacency
(Jacobian) matrix, which is very sparse for small-size stencils.
The sparsity pattern is diagonal, with the main diagonal
capturing self-interactions of grid points. Interactions with
other grid points are represented by diagonals that are offset to
the left or right of the main diagonal. For example, the 2dStar1
stencil will generate a matrix with five diagonals—two at each
side of the main diagonal.

In order to store and use the Jacobian matrix efficiently
in iterative updates, the matrix can be compressed into the
diagonal (DIA) format represented by two arrays: a two-
dimensional values array, where each column represents a
diagonal, and a one-dimensional offsets array, which stores
offsets of diagonals from the main diagonal. Negative offset
values represent subdiagonals, and positive offsets represent
superdiagonals: for example, [—1, 0, 1] for the 1dStar] stencil.
Off-diagonals are padded at the top or bottom to ensure
uniform height.

The primary advantage of this storage format is the reduc-
tion of the memory footprint of the matrix due to the implicit
column indexing. The column index of an element within a
diagonal is computed by adding to the element’s (row) index
the offset of the diagonal. For example, the element at position
4 in the leftmost diagonal of a 1dStarl stencil has matrix index
(4,3).

Figure 2 illustrates a two-dimensional grid G, its corre-
sponding 2dStarl adjacency matrix A, and the matrix rep-
resentation in DIA format. Entries marked with @ represent
placeholders for neighbors under Dirichlet or periodic bound-
ary conditions.

Note that the standard DIA format for Dirichlet boundary
conditions explicitly stores values used to pad the diagonals
for uniform height. In this work, we reduce DIA’s memory
footprint further and do not store the padding values that lie
outside the matrix.

The savings in storage can be substantial. For example,
given a grid with dimensions dims = [m,n,p], the height
of the main diagonal of a matrix is m * n * p. In the typical
case of a star-shaped width-1 stencil with degrees of freedom
dof, the amount of padding for a D-dimensional grid is the
following.
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Fig. 2. Compressed DIA format.
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A. SeqDia: A New PETSc Matrix Implementation

Having extended the standard DIA sparse matrix repre-
sentation, we implemented a new PETSc matrix data type.
This implementation is similar to PETSc’s AlJ sparse matrix
format in that it defines the same abstract matrix data type and
operations; however, the compression scheme is based on the
DIA, rather than CSR, matrix storage format. Standard matrix
operations such as matrix-vector multiplication y = Az (Mat-
Mult) can take advantage of the diagonal sparsity structure of
the matrix A using the new implementation. An application
that uses PETSc can choose the new matrix implementation by
selecting the command-line option -mat_type seqdia at runtime
(no application implementation change is required).

III. AUTOTUNING ON GPUSs

One of the leading frameworks for programming GPUs is
the CUDA parallel programming model [16]. In this model,
an application consists of a host function that allocates re-
sources on a GPU device, transfers data to the device, and
invokes kernel functions that operate on the data in the single-
instruction, multiple-data (SIMD) manner. At invocation, the
kernel is programmed to be executed by a grid of thread
blocks. The CUDA runtime manages the details of scheduling
warps (groups of 32 threads) to execute on the device.



A typical NVIDIA device is organized as an array of
streaming multiprocessors (SMs), each of which consists of an
array of streaming processors (SPs) or cores, which execute
the threads [14]. Each core has its own ALU and a (shared)
FPU. Data is stored in a memory hierarchy of thread-level
registers, thread-level L1 cache, block-level shared memory,
grid-level L2 cache, and off-chip device-level global, constant,
and texture memories. The hardware capabilities of a device
depend on its architecture version, which currently is one of
Tesla (1.x compute capability), Fermi (2.x), or Kepler (3.x)
architectures.

Our approach to accelerating a C code is to parallelize
hot-spot functions by transforming an existing function into
a host function that invokes a CUDA kernel derived from
the function’s core code. Since the CUDA model is based on
extensions of C, the derivation of kernel code is based on a
direct mapping from the existing C code. To ensure efficiency
of the derived code we explored several optimizations, which
we summarize next.

A. Optimizations

The NVIDIA GPU has different types of memory. Global
memory is the largest; however, it also has the lowest band-
width. Hence, strategies must be devised to keep global
memory accesses to a minimum. Since Tesla devices have
quite a few registers available per thread, an obvious first step
is to look for per thread data reuse and explicitly move those
operations to register storage. For the two Tesla GPUs we
tested, the Telsa 1060 has 16,384 registers per device and
each thread utilizes a maximum of 124, whereas the Tesla
2070 has 32,768 registers with a maximum register per thread
of 63 [19].

Because the number of registers in use per thread is ex-
plicitly restricted, CUDA allows registers to spill over into
its memory hierarchy. In the Fermi architecture, register spill
proceeds through the cache hierarchy, unlike the Telsa 1060
where registers spill directly to the thread-local memory,
located in the global memory [19].

Another strategy for avoiding and delaying global reads
and writes is to offload values into shared memory. This is
especially applicable to kernels that feature high data reuse
across a thread block or must share data between threads
within a block. Shared memory is limited, and its use can limit
the size of a kernel launch; however, the performance gain
from the use of shared memory can be significant compared
with the use of global memory.

When global memory accesses are required in a kernel,
those accesses must be coalesced into continuous reads or
writes. On the Tesla 1060, shared-memory reads from global
memory are executed per half-warp, that is, 16 threads at a
time from a single warp of 32 threads. If reads are made from
contiguous memory locations from global memory, they are
performed concurrently through 16 hardware banks. Addition-
ally, if all threads in a half-warp request access to a single
global memory address, this request will also be broadcast to
the entire half-warp in a single instruction. Memory accesses

on the Tesla 1060 are processed in either 32, 64, or 128-
byte segments. For coalesced accesses, the accesses to global
memory must be aligned with these segments; otherwise,
multiple accesses will be serialized.

Contrasting with the Tesla 1060, the Fermi architecture has
32 banks, allowing for a single global memory read to populate
a full warp or to broadcast to a full warp from a single memory
location. The Fermi architecture has a cache-based memory
hierarchy, which relaxes the time penalty for uncoalesced and
misaligned memory accesses. However, the techniques cited
above are still important for increasing memory performance
within a kernel.

B. OrCuda: Autotuner for CUDA

Orio provides an extensible framework for transformation
and tuning of codes written in different source and target
languages. Current support includes transformations from a
number of simple languages (e.g., a restricted subset of C)
to C and Fortran targets. We have extended Orio with trans-
formations for CUDA, called OrCuda, where code written in
restricted C is transformed into code in CUDA C.

Since loops take up a large portion of program execu-
tion time, our initial goal is to accelerate loops. In line
with Orio’s approach to tuning existing codes, we annotate
existing C loops with transformation and tuning comments
(specifications). Transformation specs drive the translation of
annotated code into the target language code. The translated
code is placed into a template main function. The tuning specs
provide all the necessary parameters to build and execute an
instance of the transformed code.

Transformations can be parametrized with respect to various
performance-affecting factors, such as the size of a grid of
thread blocks with which to execute a given CUDA kernel.
Therefore, a transformation spec can generate a family of
variant translations for each parameter. Each of the variants is
measured for its overall execution time with the fastest chosen
as the best-performing autotuned translation. This translation
replaces the existing code to take full advantage of GPU
acceleration.

Example: To illustrate our transformation and tuning ap-
proach, Figure 3 provides an example of annotated sparse
matrix-vector multiplication, where the matrix A respresents
a DIA-compression of the sparse 2dStarl-shaped Jacobian
matrix of a two-dimensional grid. Here, the outer loop iterates
over the rows and the inner loop iterates over the diagonals of
the sparse matrix. The column index is based on an element’s
row index and the offset of the element’s diagonal. If the
column index is within the boundaries of the sparse matrix,
then the corresponding elements of the matrix and the vector
are multiplied and accumulated in the result vector. Note that
for simplicity, here we use the standard DIA compression
scheme as opposed to the extended DIA format without
padding.

To accelerate this loop for execution on a CUDA-enabled
GPU, we annotated it with a transformation and tuning
specification. The transformation specs define a CUDA loop



void MatMult_SeqDia(d.

blex A, doublex x, doublex y,
int m, int n, int nos, int dof) {
int i,j,col;
/% @ begin PerfTuning (
def performance_params {
param TC[] = range (32,1025,32);
param BC[] = range (14,113,14);
param UIF[] = range (1,6);
param PL[] = [16,48];
param CFLAGS[] = map(join,product([’’,"— use_fast_math ],
[,—01",—02","-03]);

def input_params {

param m[] = [32,64,128,256,512];
param n[] = [32,64,128,256,512];
param nos =5;
param dof =1;

constraint sq = (m==n);
def input_vars {
decl static double A[mx*n+*nosxdof] =random;
decl static double x[m+n*dof] =random;
decl static double y[m=n=dof] = 0;
decl static int offsets [nos] = {—mxdof,—dof,0,dof,mxdof};

}
def build {
arg build_command = "nvcc —arch=sm_20 @CFLAGS’;
}
def performance_counter {
arg repetitions = 5;

}
) @x/
int nrows=mxn;
int ndiags=nos;
/* @ begin Loop(transform CUDA (threadCount=TC, blockCount=BC,
preferL1Size=PL, unrolllnner =UIF)
for (i=0; i<=nrows—I; i++) {
for (j=0; j<=ndiags— I; j++){
col = i+offsets [j ];
if (col>=0&&col< nrows)
yli] += Ali+j*nrows] * x[col |;
}
}
) @x/
for (i=0; i<=nrows— I; i++) {
for (j=0; j<=ndiags— I; j++){
col = i+offsets [j ];
if (col>=0&&col< nrows)
yli] += Ali+j*nrows] * x[col ];

/x @ end @x/
/% @ end @x/

code and does not impact its portability. In this example,
the performance of an executable will be averaged over five
execution times. By default, for smaller examples such as
this one, an exhaustive strategy is used, where all possible
combinations of performance parameters are explored. Other
search methods requiring fewer runs are also available in Orio.
The highest-performing version replaces the annotated code in
the final output of autotuning.

C. Host Function

In CUDA, the host function allocates memory on the device,
transfer data from host memory to device memory, configures
launch parameters of a kernel, and invokes the kernel. These
activities are independent of the annotated source code that
is being transformed (except when the data is already on the
device) and vary only with respect to the data characteristics.
OrCuda obtains the data sizes from the input variable section
of the tuning specs. Next, OrCuda performs type inference
and other analysis of the annotated code to identify scalars,
arrays, types of identifiers and their uses and definitions.
This information is used to generate CUDA API calls to
allocate device memory of proper size and type, transfer the
correct amount of data and pass appropriate parameters to a
kernel function. For example, an excerpt of the generated host
function for the example in Figure 3 is listed in Figure 4.

Fig. 3. Annotated DIA matrix-vector multiplication.

translation with parameterized transformation arguments for
thread count, block count, and so forth. The body of the
transformation spec contains unmodified C language code;
however, this can be replaced by a higher-level (domain-
specific) language code that captures salient computational
features at a proper level of abstraction (e.g., stencil-based
operations). Defining this and other domain languages and
using them instead of the current C-based approach is part
of planned future work.

The tuning specs provide machine- and device-specific
parameters for instantiation of transformation variants, ini-
tialization of input variables used by transformed code, and
the command for building an executable. Note that one
can build the original code without performing any of the
transformations—the annotation is nonintrusive to existing

double xdev_y, xdev_A, xdev_x;

dim3 dimGrid, dimBlock;

dimBlock.x=32;

dimGrid.x=14;

cudaMalloc(&dev_y, m *n xdofxsizeof(double));
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);

cudaMemcpy(dev_y, y, m *n xdofxsizeof(double),
cudaMemcpyHostToDevice);

orcu_kernel5 < < <dimGrid,dimBlock> > > (nrows,ndiags,
dev_offsets ,dev_y,dev_A,dev_x);

cudaDeviceSetCacheConfig(cudaFuncCachePreferNone);

Fig. 4. Excerpt from an instance of a host function.

One of the important factors affecting the overall execution
time of a kernel is its configuration [19]. This configuration
includes specifications of how many threads are in a block
and how many blocks are in a grid. OrCuda parameterizes
these dimensions to enable a search for the best configuration.
Transformation arguments threadCount and blockCount spec-
ify the dimensions of the grid of thread blocks. The tuning
specs define the domains of these parameters as range(l,u,i),
which is a Python-based sequence [, u) in increments of .

1) Thread count: The tuning specs vary from one device to
another; however, we follow the general performance guide-
lines and technical specifications of CUDA architectures [19]
in defining the search space. For example, all three existing
architectures specify 32 as the size of a warp—the smallest




group of threads that can be scheduled for execution on an
SM. Thus, the search space for thread counts starts at 32 in
increments of 32. Based on the compute capability of a device,
we can determine the upper bound, which is 512 for Tesla and
1024 for Fermi and Kepler architectures.

2) Block count: The scalability of the CUDA model derives
from the notion of thread blocks—independently executing
groups of threads that can be scheduled in any order across any
number of SMs. While this restricts memory sharing across
two blocks by disallowing interblock synchronization, it scales
the acceleration with the capabilities of a device. The greater
the number of SMs on a device, the greater the level of
parallelism. For example, on a device that has an array of 14
SMs (Tesla C2070), up to 14 blocks can execute in parallel.
Similarly, on a device with 30 SMs (Tesla C1060), up to 30
blocks can execute in parallel.

Technical specifications define the maximum number of
blocks that can be resident on an SM at any time: 8 for
Teslaand Fermi, 16 for Kepler architectures. Therefore, we
define the search space of block counts as a multiple of
device SMs starting from the minimum of the SM count up to
maximum number of resident blocks. For example, the tuning
spec in Figure 3 is configured for a Tesla C2070 Fermi device,
which has 14 SMs.

3) Stream count: Another configuration feature that can
improve acceleration is asynchronous concurrent execution
via streams. Here, CUDA provides API functions that re-
turn immediately after the invocation and execute in a
particular stream asynchronously to the host function or
functions in other streams. This provides three types of
concurrency:communication- hiding overlap of data trans-
fer and kernel execution (deviceOverlap==1), concurrent ex-
ecution of kernels (concurrentKernels==1) and even con-
current data transfers between the host and the device
in both directions with overlapped kernel execution (asyn-
cEngineCount==2). Support for each of these depends on
the capability of a device indicated by the respective device
property constraint.

OrCuda can query properties of a device using the CUDA
API and determine whether the device supports stream-based
concurrency. If streaming is supported (deviceOverlap &&
concurrentKernels), OrCuda divides the input data (when it
is of uniform length) into equal-sized chunks and generates
asynchronous data transfer calls. Then, it generates concurrent
invocations of kernels to execute on a particular data chunk.

The transformation argument that controls streaming is
streamCount. We define its domain as range(1,17,1). When
the count is one (default), OrCuda generates synchronous
calls; for counts greater than one, it generates streaming calls.
According to the CUDA specs, the maximum number of
streams is 16, which is the upper bound of this parameter’s
domain.

Note that prior to a transformation, OrCuda performs a
sanity check of the transformation arguments. If an argu-
ment’s value is beyond the capabilities of a device, it raises
an exception and does not perform the transformation. The

tuning framework catches the exception and supplies the next
combination of transformation argument values. This approach
increases fault tolerance of the autotuning, ensuring that the
search is not interrupted when the tuning specs contain invalid
parameter ranges.

4) LI size preference: On Fermi devices capable of caching
global memory accesses, CUDA provides an API to toggle the
size of the L1 cache. The same on-chip memory is used for L1
and block-level shared memory. One can set a preference to
allocate 16 KB for L1 and 48 KB for shared memory (the
default) or 48 KB for L1 and 16 KB for shared memory
on Fermi devices. On Kepler devices, there is an additional
configuration of 32 KB for L1 and 32 KB for shared memory
(cudaFuncCachePreferEqual). A larger L1 cache can increase
the performance of cache-starved kernels. Because this is just
a preference, the CUDA runtime system ultimately decides
whether to actually allocate the requested L1 size based on
shared-memory requirements for a thread block.

OrCuda can generate the host-side API calls to set the
preferred L1 size prior to the invocation of a kernel and to reset
the preference to none after the invocation. Figure 4 illustrates
an example of this capability.

5) Compiler flags: CUDA uses the nvcc compiler driver to
generate PTX (assembly) code for further compilation into ma-
chine binaries. The -arch=sm_xx compiler option determines
the compute capability when compiling kernel C code into
PTX code. Other compiler flags can also be passed to nvcc
to optimize the generated code. OrCuda uses the @ CFLAGS
build command parameter to specify various compiler option
configurations for tuning. These configurations are generated
by a Python-based expression for a cross-product of sequences
of mutually exclusive options, which are then joined to form
a single compiler option string. The tuning specs in Figure 3
provide an example of this functionality.

D. Device Functions

OrCuda transforms the annotated code and places the result
into the body of a kernel function. All the identifiers used in
the function become kernel parameters with a corresponding
type. The primary transformation is the conversion of the
outer loop into a loop executable by a single thread with the
loop increment equal to the size of the grid of thread blocks.
Figure 5 illustrates an example of a kernel function. Here, the
thread ID is calculated based on the CUDA block and thread
indices. Similarly, the grid size is based on the block and grid
dimensions.

1) Reductions: OrCuda analyzes the annotated code to
determine whether a loop performs an elementwise array
update or array reduction. If it is not a reduction, the kernel
consists of the transformed loop. Otherwise, the results of each
thread are reduced within a thread block. If the input size is
greater than a block’s dimension, OrCuda generates a loop
within the host function that performs cascading reductions
across blocks.

Figure 5 illustrates the binary reduction, where threads in
the first half of a block accumulate results of both halves. This



/x for (int i=0; i<=n—1I;i++)
r+=x[i]xy[i]; */
__global__ void orcu_kernel3(const int n, doublex y, doublex x,
doublex reducts) {
const int tid=blockldx.xxblockDim.x+threadldx.x;
const int gsize=gridDim.x*blockDim.x;
__shared__ double shared_y[128];
__shared__ double shared_x [128];
double orcu_var5=0;
for (int i=tid; i<=n—1; i+=gsize) {
shared_y[ threadldx . x]=y[ tid ];
shared_x[ threadldx . x]=x[tid ];
orcu_varS=orcu_varS+shared_x|[threadldx . x ]+ shared_y/[ threadldx . x |;
}
/«xreduce single —thread results within a blockx/
__shared__ double orcu_vec6[128];
orcu_vec6| threadldx . x J=orcu_var5;
__syncthreads ();
if (threadldx .x<64)
orcu_vec6[ threadldx . x J+=orcu_vec6[threadldx . x+64];
__syncthreads ();
if (threadldx .x<32)
orcu_warpReduce64(threadldx.x,orcu_vec6);
__syncthreads ();
if (threadldx .x==0)
reducts [ blockldx . x J=orcu_vec6 [0];
}
__device__ void orcu_warpReduce64(int tid, volatile doublex reducts) {
reducts [ tid |+=reducts [ tid +32];
reducts [ tid ]+=reducts [ tid +16];
reducts [ tid [+=reducts [ tid +8];
reducts [ tid |[+=reducts [ tid +4];
reducts [ tid [+=reducts [ tid +2];
reducts [ tid J+=reducts|[ tid +1];

Fig. 5. An instance of a reduction kernel and a device function.

continues until only 64 elements are left to reduce, in which
case a warp performs the last SIMD synchronous reduce [19].

2) Caching into shared memory: On-chip shared memory
has substantially lower latency than does off-chip global
memory [19]. On Tesla devices that do not have L1/L2
caches, caching data in shared memory can improve a kernel’s
performance. On devices with L1/L2 caches, caching into
underutilized shared memory can also improve performance.
OrCuda parameterizes the choice of caching into shared mem-
ory using the transformation argument cacheBlocks, which can
have a Boolean value. Figure 5 illustrates a transformation
variant when block-level caching is enabled (e.g., shared_x
array).

3) Unrolling inner loops: To improve performance of ker-
nels that contain inner loops, OrCuda generates a “#pragma
unroll n” directive prior to the inner loop in order to
indicate that the compiler should unroll the inner loop n times.
Figure 3 illustrates an example of specifying transformation
argument unrolllnner with a range of [1, 6), which corresponds
to either no unrolling or unrolling up to the maximum number
of five diagonals.

The transformations described here are an initial subset of
the possible optimizations. We are exploring other general and
domain-specific transformations to extend OrCuda.

IV. PERFORMANCE EVALUATION

Table I lists the two test platforms used in our performance
experiments. All the source code is available from the repos-
itory at [1].

TABLE I
GPU PLATFORMS USED FOR THE EVALUATION.

GPU Tesla C2070 | Tesla C1060
Compute capability 2.0 1.3
Total number of cores 448 240
SM count 14 30
Clock rate 1147Mhz 1296Mhz
Global memory 5375MB 4095MB
Shared memory 48KB 16KB
Global memory bus width 384 bits 512 bits
Peak memory clock rate 1494MHz 800MHz
Number of registers 32768 16384
Max threads per block 1024 512
Max resident threads/SM 1536 1024
Number of async engines 2 1
L2 cache size 768KB -

Table II lists the initial kernels we targeted for autotuning
based on their use by the Krylov PETSc solvers. The operation
notation is as follows: A designates a matrix; =, z1,, Tp, y, and
w are vectors; and «, aq, , , are scalars.

TABLE I
KERNEL SPECIFICATIONS.

Kernel Operation
matVec y= Az
vecAXPY y=oax+vy
vecMAXPY | y=y+a1z1 +asz2+ -+ anp
vecDot w=zx-y
vecNorm2 |z||2
vecScale w = qw
vecWAXPY w =1y -+ azr

We compare the performance of the kernels in Table II tuned
with OrCuda with that of different library-based implementa-
tions. PETSc already includes vector and matrix types with
GPU implementations that rely on CUSP [8] and Thrust [7].
While PETSc does not use cuBLAS [18], we use it as a
baseline for comparison with the different vector operation
implementations because it is the best-performing among the
available library options.

Figure 6 shows the execution times of the tuned CUDA
code computing dense vector 2-norm and dot product for three
different vector sizes (10°, 10%, and 107), normalized by the
kernel times for the corresponding cuBLAS implementations.
Here, in addition to the CUSP and cuBLAS versions, we
include our own hand-tuned custom versions. In all cases
for both devices, the autotuned kernels outperform the other
versions.

Figure 7 shows the execution times of the tuned CUDA code
for other dense vector operations for vector sizes (10°, 106,
and 107), normalized by the kernel times for the corresponding
cuBLAS implementations. As before, autotuned versions out-
perform others except for the vecMAXPY kernel on a Tesla
device, which is explained by the lack of L1/L2 caches on
these devices.

Figure 8 shows the execution times of the tuned CUDA code
for matrix-vector product and the corresponding cuSPARSE
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(right).

CSR function for matrices corresponding to a 5-point stencil
discretization for several 2-D and 3-D grid sizes. Similar to
the previous experiment, the autotuned versions outperform
the other versions on devices with a cache hierarchy.

V. RELATED WORK

Libraries such as CUSP [8], [6], Thrust [7], and
cuBLAS [18] provide optimized CUDA implementations of
many numerical kernels used in scientific computing. These
implementations, however, are not tunable for specific problem
characteristics. Furthermore, one cannot take advantage of
spatial and temporal locality in multiple consecutive operations
on the same matrices or vectors.

The MAGMA project [21], [15] aims to develop a library
similar to LAPACK [2], but for heterogeneous architectures,
initially focusing on CPU+GPU systems. MAGMA supports
dense (full) matrix algebra, unlike our approach, which focuses
on sparse matrix algebra in support of stencil-based PDE
discretizations.

Execution time for vector operation kernels, normalized by the cuBLAS time (equal to 1.0 in these plots) on Fermi C2070 (left) and Tesla C1060

Other autotuning systems are also beginning to target hybrid
architectures. For example, the combination of the CHiLL
and ActiveHarmony tools can process C code and empirically
tune the generated CUDA code [12], [20]. The goals of this
approach are similar to ours. Because the existing CPU code
itself is used as input, the complexity of the CPU implementa-
tion may prevent the optimization of CUDA code. Unlike our
domain-specific approach, this more general approach makes
it harder to exploit domain-specific properties, such as the
regular structure of the stencil-based matrices.

VI. CONCLUSIONS AND FUTURE WORK

We have described our initial implementation of support
for CUDA code generation and autotuning for a set of
key numerical kernels in PETSc. The performance of the
autotuned implementations often exceeds that of optimized
vendor libraries for different problem sizes. While here we
present results for individual kernels, our ultimate goal is to
enable autotuning at the linear solver algorithm level. This
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will present even greater optimization opportunities because
we will be operating on a larger set of vector and matrix
operations. In addition to the solver implementation in PETSc,
we are developing autotuning support for the application-
specific stencil update functions (i.e., FormFunction and
FormJacobian in PETSc).
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