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Abstract—Lack of efficient and transparent interaction with
GPU data in hybrid MPI+GPU environments challenges GPU
acceleration of large-scale scientific computations. A particular
challenge is the transfer of noncontiguous data to and from
GPU memory. MPI implementations currently do not provide
an efficient means of utilizing datatypes for noncontiguous com-
munication of data in GPU memory.

To address this gap, we present an MPI datatype-processing
system capable of efficiently processing arbitrary datatypes di-
rectly on the GPU. We present a means for converting con-
ventional datatype representations into a GPU-amenable format.
Fine-grained, element-level parallelism is then utilized by a GPU
kernel to perform in-device packing and unpacking of noncon-
tiguous elements. We demonstrate a several-fold performance im-
provement for noncontiguous column vectors, 3D array slices, and
4D array subvolumes over CUDA-based alternatives. Compared
with optimized, layout-specific implementations, our approach
incurs low overhead, while enabling the packing of datatypes
that do not have a direct CUDA equivalent. These improvements
are demonstrated to translate to significant improvements in
end-to-end, GPU-to-GPU communication time. In addition, we
identify and evaluate communication patterns that may cause
resource contention with packing operations, providing a baseline
for adaptively selecting data-processing strategies.

I. INTRODUCTION

Graphics processing units (GPUs) have generated significant
interest in the HPC community, as evidenced in recent Top500
lists of supercomputers [1]. The currently prevailing GPU ac-
celerator model consists of discrete GPU hardware with mem-
ory separate from the CPU’s RAM. Hence, communications
involving data resident in GPU memory require moving data
between GPU and CPU memories, adding another “hop” to the
communication graph. Since the MPI Standard [2] does not
define MPI’s interaction with GPU memory managed by, for
example, OpenCL [3] or CUDA [4], the burden of managing
distinct memory spaces falls on application developers.

A particularly challenging problem in enabling MPI to in-
teract directly with data in GPU memory is the communication
of noncontiguous data, defined through the MPI datatypes
specification. For example, stencil computations on the GPU
require noncontiguous array boundary updates (cell exchange)
between processes [5], [6], [7].

To fully utilize the PCIe bus and network interconnect for

noncontiguous communication, one must pack the data into
a contiguous buffer prior to transfer, since transferring per
point or by extent to the CPU suffers from unacceptably
high latencies or wasted bandwidth, respectively. Effective
implementations exist for packing noncontiguous data residing
in CPU memory [8], but there exists no generalized packing
algorithm for data residing in GPU memory that takes advan-
tage of GPU parallelism and memory characteristics.

To address this gap in functionality, we present the design
of an in-GPU noncontiguous MPI datatype processing system.
We focus on Nvidia’s CUDA interface, although the techniques
presented are broadly applicable across accelerator hardware
and programming models. We identify and address three key
challenges in enabling efficient processing of noncontiguous
MPI datatypes in GPU memory:

1) Datatype Representation in GPU Memory: To optimize
for GPU memory access patterns, we serialize the tree-
based MPI datatype representation in GPU memory,
separating it into a cacheable, constant-length parameter
space and a variable-length parameter space.

2) Parallel GPU Packing Kernel: To further exploit GPU
hardware characteristics, we present a fine-grained,
dependency-free parallel packing algorithm based on
canonical datum identification.

3) Packing in the Presence of Resource Contention: We
identify pitfalls in the GPU scheduling policy, identify-
ing algorithm patterns for which packing operations in-
terfere with application performance, in order to provide
a baseline for adaptively selecting a packing strategy.

We demonstrate comparable or better processing of non-
contiguous data when compared with CUDA’s built-in transfer
routines, with lower overhead than that from hand-coded pack-
ing kernels. We also show up to 700% end-to-end performance
improvement for communicating large, noncontiguous vector
data. Our system additionally supports arbitrary datatypes for
which, to our knowledge, no equivalent exists.

This paper is organized as follows. Sections II provides
background about defining and processing noncontiguous data
using the MPI datatypes specification and the GPU architecture
and programming model. Section III-A discusses the opti-



Figure 1. Array slice with a width of two elements, an MPI vector datatype
CS encoding it, and the slice’s subsequent packed form.

mization of the datatype representation, while Section III-B
discusses the packing algorithm, given the GPU datatype rep-
resentation. A detailed evaluation of GPU datatype processing
is given in Section IV. In Section V we review related work,
and in Section VI we provide concluding remarks.

II. BACKGROUND

Datatypes in the Message Passing Interface (MPI) Stan-
dard [2] allow users to portably communicate noncontiguous
data with minimal effort. For example, Figure 1 shows the
application of a simple vector type, called CS, to define
a column vector. CS has a stride of five elements and a
blocklength of two elements. The stride encodes the distance
between consecutive blocks, while the blocklength encodes the
number of datatype children per block.

The datatypes specification supports composition, layering
datatypes to create complex selections of data. For example,
each “element” of CS could itself be a noncontiguous set of
data defined by a datatype, such as array subvolumes. Packing
in this context would pack, for each “element” of CS, the
data specified by its underlying datatype. Primitive datatypes,
such as integer and floating-point variables, form the basis
for derived datatypes, such as MPI vectors, which can be
defined in terms of either primitive or other derived types.

MPI datatypes define data layouts of varying complexity.
The most common datatypes used include a strided vector
of blocks, a subarray defining an n-dimensional subvolume,
an indexed set of location-blocklength pairs, and a struct
consisting of location-blocklength-datatype tuples. A block
refers to a contiguous chunk of datatypes, and the blocklength
refers to the number of “child” datatypes that a block contains.

To avoid the poor resource utilization resulting from initi-
ating an I/O or network operation for each piece of data, MPI
implementations pack the data into contiguous buffers prior to
performing the operation. Low-overhead packing necessitates
creating a simple datatype representation that allows for fast
traversal of the datatype. Datatype traversal refers to com-
puting offsets in the input buffer for each primitive defined by
the datatype. Datatypes can be encoded by using a natural tree
structure, where each node in the tree represents a datatype.
This structure is captured in the MPICH implementation of
dataloops [8], which records type-specific parameters and
propagates information about datatypes necessary for a simple
traversal. The propagated information includes the extent and
size of the child datatype, where the extent is the distance
between successive child datatypes and the size is the amount
of data encoded by the type, if stored contiguously.

A. GPU Architecture and Programming Model

For this paper, we focus on Nvidia’s Compute Unified
Device Architecture (CUDA) [4], though our method can be
easily applied to other libraries, such as OpenCL.

CUDA presents the GPU as a CPU-driven coprocessor,
where the CPU issues asynchronous parallel kernels on the
GPU. Kernel launches and memory copies between CPU
memory and separate GPU memory are performed across the
PCIe bus, a high-latency, high-bandwidth operation; and direct
memory access (DMA) enables both kernel calls and memory
operations to be performed asynchronously.

GPUs have multiple streaming multiprocessors (SMs), each
consisting of multiple scalar processors (SPs), giving hundreds
of available cores for computation at a given time. The
threading model is single instruction, multiple thread, or SIMT,
which executes a group of threads (a warp, typically 32)
in lockstep. Unlike SIMD (single instruction, multiple data),
SIMT allows threads to diverge on branch instructions, where
each branch is executed serially until a convergence point is
reached. Threads are grouped in three-dimensional grids, or
thread blocks, where each block is statically allocated register
and cache memory and scheduled on an SM. Compared with
CPU threads, GPU threads are extremely lightweight and less
powerful, but they make up for these differences in sheer
parallelism potential and negligible context switch overhead.

GPU main memory is optimized for parallel access in
large chunks (typically 128 B) that are coalesced by threads
in a warp; if adjacent threads access adjacent memory, the
operations are combined into a single memory transaction. The
main memory is a high-latency, high-bandwidth resource with
a small L2 cache. Multiprocessors also contain a small and
fast user-controlled scratch cache, called shared memory.

One should address a number of optimization goals when
devising GPU algorithms. First, PCIe bus activity should be
minimized, because of high latency and transfer rates that
pale in comparison to GPU hardware. Second, memory access
patterns on the GPU should be regular and exhibit locality
with respect to threads. Third, shared memory should be
used as much as possible in order to avoid multiple main
memory accesses. Additionally, GPU algorithms must exhibit
fine-grained parallelism so that the hardware can utilize context
switching to hide main memory access latency and instruction
pipeline stalls.

III. IN-GPU DATATYPE PROCESSING

The communication data flow driving our methodology is
shown in Figure 2, using as an example the CS datatype
from Figure 1. Given a datatype, the data in GPU memory
is packed by using a kernel, then transferred to CPU memory.
To fully optimize GPU resources, we reorganize the datatype
representation in GPU memory and design a fine-grained
parallel packing algorithm. For illustration, we assume that
CS is composed of a second vector type CSvec. In other
words, CSvec is a child datatype of CS.



Figure 2. Communication pattern necessitating GPU packing. Reversing the
arrow directions produces the pattern necessitating GPU unpacking.

Table I
PARAMETERS FOR MPI DATATYPES IN OUR DESIGN. “COMMON”

CONTAINS PARAMETERS SHARED BY ALL DATATYPES.

Type Fixed Variable

Common

count
size

extent
child primitives

vector
stride

blocklength

subarray
dimension array sizes

lookaside offset subarray sizes
start offsets

indexed lookaside offset blocklengths
displacements

struct lookaside offset
blocklengths

displacements
child types

A. MPI Datatype Encoding in GPU Memory

GPU best practices suggest storing the type representa-
tion contiguously instead of as a dynamic tree, loading into
shared memory once upon kernel invocation. However, many
datatypes have a variable-length encoding that may not fit into
shared memory, such as the indexed type, and hundreds of
threads on an SM may access this information.

Thus, we enforce a cache policy from which all GPU threads
can benefit. The datatype representation is separated into fixed-
and variable-length parameter spaces, by using a serialization
order corresponding to a preorder traversal of the type tree.
With variable-length datatype fields left aside, we observe that
the small-sized fixed-length parameters of the type tree can be
stored in shared memory. See Table I for a listing of datatypes
with their fixed- and variable-length parameters.

Figure 3 shows an example type tree. The fixed-length
parameters are stored contiguously, while the variable-length
parameters are stored in a separate buffer, called the lookaside
buffer. For each datatype with variable-length parameters, a
pointer to the lookaside buffer is included into the type’s fixed-
length parameters, called the lookaside offset.

Since the type tree is preorder-serialized, a top-down traver-
sal to a single datum requires no additional linkage information
for nearly every type. The only exception is when there are
struct types with multiple derived datatype children, requir-
ing additional pointers in the struct variable-length parameters
to differentiate where in memory the children types are.

For most derived datatypes, the encoding is simple. The

Figure 3. Example type tree in CPU memory, separated and serialized pre-
order into GPU memory by its fixed-and-variable-length parameters. Branches
in trees only appear for struct types.

encoding for CS is just the fixed parameters in rows Common
and vector in Table I, followed by the same parameters
encoding CSvec. A single indexed type is equally simple,
with similarly small fixed-length parameters followed by a
potentially large list of blocklengths and displacements.

B. Parallel GPU Packing Kernel

Current CPU-based datatype processing algorithms utilize a
depth-first buffer-filling strategy that maintains traversal state
in a stack structure. At best, this approach exposes coarse-
grained parallelism and would require storage that would not fit
in shared memory for hundreds of threads. Hence, we instead
expose a fine-grained parallel packing strategy for a traversal
algorithm that uses the GPU memory hierarchy efficiently.

We enable a dependency-free parallel traversal by enriching
the datatypes encoding with minimal additional knowledge
about child datatypes. The number of primitives of child
datatypes can be propagated through the type tree, so that
the parent type (e.g., CS) records the number of primitives
in each instance of the child datatype (e.g., CSvec). Then,
each thread can be assigned a primitive and traverse the tree
based on where within the type the primitive falls at each
level, requiring only register storage for the traversal state and
avoiding any interthread coordination.

To be more specific, the traversal algorithm assigns each
primitive datum to a thread and traverses the type tree in a
top-down fashion. For each type encountered, read and write
offsets for the primitive are updated by using the type and
the child datatype’s extent, size, and number of primitives.
Once the “leaf” datatype is processed, the offsets point to the
assigned primitive and where to place it. Algorithm 1 shows
the general process. In Line 14, we can change packing to
unpacking by switching the direction of the read/write. In
Line 12, pointer-jumping is necessary only for struct types
with multiple derived children; see Section III-A.

The functions inc_read and inc_write are simple
to compute for the vector and subarray types, as they
have a very regular structure. The vector type has an O(1)
complexity, while the subarray type has an O(d) complexity,
where d is the number of dimensions. The inc_read and
inc_write functions for the vector type are shown to-



Algorithm 1: Point-based traversal and packing of arbi-
trary datatype. Refer to Table I for fields of the variable
type.

input : user buffer: buffer with data to pack
input : type: serialized datatype, starting at root
input : ID: element to pack, in canonical order
output : pack buffer: packed buffer

1 // in, out: location in user/packed buffer, respectively
2 in ← 0, out ← 0
3 Load type fixed-length parameters into cache
4 while type not leaf do
5 // increment buffer offsets based on datatype
6 in ← in + inc_read(ID, type)
7 out ← out + inc_write(ID, type)
8 // compute element ID w.r.t. child type
9 ID ← ID % type.primitives

10 // process child type; for non-struct,
11 // translates to type +=sizeof(type)
12 type ← type.child
13 // finished processing datatypes, perform r/w
14 pack buffer [out] ← user buffer [in]

gether in Algorithm 2. For the type CS (and CSvec), Trace 3
shows the execution trace of a single thread traversing to its
corresponding primitive. Note that the execution trace for this
type is the same across all threads launched.

Algorithm 2: Read/write offset computation for the
vector type. Refer to the Common and vector rows
of Table I for the fields stored in a vector type.

input : type: vector datatype
input : ID: primitive to pack, in canonical order
output: in inc, out inc: read/write offset increments

1 // offset w.r.t. child datatypes
2 count offset ← ID / type.primitives
3 // offset w.r.t. vector blocks
4 block offset ← count offset / type.blocklength
5 // for each block, advance by stride bytes
6 // for each child datatype in block, advance by extent
7 in inc ← block offset ∗ type.stride + type.extent *

(count offset % type.blocklength)
8 // for each child datatype, advance by child size
9 out inc ← count offset ∗ type.size

10 return in inc, out inc

For datatypes with variable-length parameters, such as in-
dexed, the process is more nuanced. In order to avoid per-
forming a per thread linear scan of the blocklengths, a prefix-
sum is performed on the indexed type’s list of blocklengths
as a preprocessing step. Then, given n blocks and a list of
prefix-summed blocklengths b0, b1, . . . , bn, a binary search is
performed with terminating condition

bh ≤ i/p < bh+1, (1)

where 0 ≤ h < n, p is the number of primitives per child
datatype and i is the thread (primitive) ID.

We observe that all writes in our algorithm are performed
into a contiguous buffer and are thus highly coalesced by

Trace 3: Execution trace of vector-of-vectors traversal for
a single thread.

input : user buffer: buffer to pack
input : ID: thread/datum ID
output : pack buffer: packed buffer

1 in ← out ← 0
2 Coordinated load of CS, CSvec into shared memory
3 type ← CS
4 Increment in, out using Alg. 2, with ID, type
5 ID ← ID % type.primitives
6 Is type a leaf type? (no)
7 // type ← CSvec
8 Increment type pointer by sizeof (vector type)
9 Increment in, out using Alg. 2, with ID, type

10 ID ← ID % type.primitives
11 Is type a leaf type? (yes)
12 pack buffer [out] ← user buffer [in]

adjacent GPU threads. Given this insight, we enable zero-
copy memory transactions on the GPU. Instead of packing
the data into GPU main memory and then performing a
bulk copy on the packed buffer, current-generation GPUs can
utilize memory mapping of CPU memory into the GPU’s
memory space. Then, the streaming multiprocessors can write
directly across the PCIe bus into CPU main memory. Since
threads write exactly once and at the end of their traversal,
memory mapping is a perfect opportunity to obtain additional
performance with minimal effort, by avoiding the GPU main
memory and implicitly pipelining the computational and PCIe
loads.

C. Packing in the Presence of Resource Contention

A number of communication patterns can introduce resource
contention, centered on the greedy, nonpremptive nature of
GPU resource scheduling. Contention can occur on both the
computational and PCIe levels, when users perform GPU
activity during asynchronous communication, or when multiple
users or MPI processes on a node access a single GPU.
Synchronous communication patterns, such as in stencil codes,
will not run into resource contention, however.

With resource contention, the best case occurs when we
are working with types such as vector or two- or three-
dimensional subarray. CUDA and OpenCL allow for the
transfer of regularly strided two- and-three-dimensional subar-
rays, in addition to contiguous buffers, avoiding multiprocessor
usage. While useful for the common case of array processing
on the GPU, it is nevertheless a special case that cannot be
relied on for all applications.

When the datatype is nontrivial and there are operations
competing for GPU resources, a number of methods can be
used to get the data onto the CPU. The simplest solutions of
transferring by extent and point-by-point are highly inefficient.
Transferring the entire extent of a datatype wastes bandwidth
and still requires packing on the CPU. Transferring point-
by-point suffers from the high latency of initiating copies
from the CPU. Both have the potential for interfering with
user kernels that rely on host-device transfers. Another option



is to devote a persistent kernel for use by MPI operations
and use signaling and polling to initiate packing, similar to
Stuart et al.’s implementation of message passing on many-
core processors [9]. However, since we show latency costs to
be extremely important when performing the packing operation
and since Stuart et al.’s method produced an increase in these
costs, we do not consider this approach (see Sections IV-B
and IV-C).

Unfortunately, no way currently exists in the CUDA or
OpenCL interfaces to query the level of resource utilization
on the GPU, complicating the act of choosing a globally ef-
ficient strategy (kernel versus memory-copies) without having
application-specific knowledge. Since the overarching goal of
this research is to provide transparent GPU data management
from within MPI, solutions such as hijacking user kernel calls
to collect statistics and infer utilization are, while interesting,
not addressed by this paper.

IV. EXPERIMENTAL EVALUATION

We evaluate our datatype processing method with packing
microbenchmarks on numerous MPI datatypes, comparing
with appropriate CUDA alternatives as well as optimized
type-specific packing kernels. We additionally evaluate each
component of the packing algorithm and show a full context
evaluation of GPU-to-GPU communication through a ping-
pong test on noncontiguous data. Furthermore, we examine the
effects of GPU resource contention on packing and memory
copy operations by modifying the issuing order of packing and
other operations. For all tests, we use an Nvidia C2050 GPU
with version 4.1 of CUDA, connected to an AMD Opteron
6128. We pin CPU memory used in transfers to enable DMA
and enable zero-copy for all datatypes but the struct type
during packing. For the communication benchmarks, we use
two such nodes, connected by QDR Infiniband.

A. Test Datatypes and CUDA Transfer Operations

To benchmark two-and-three dimensional subarrays such
as column vectors, we use a vector type, compared with
the CUDA alternative of cudaMemcpy2D. We fix the stride
to 512 bytes, which enables maximum performance of the
CUDA operation; unaligned arrays greatly hamper CUDA’s
performance in this regard. We also vary the blocklength to
study the performance implications of block width.

For subarrays outside the scope of vector representation,
we use a four-dimensional subarray type, compared with
iterative calls to cudaMemcpy3D. We fix the containing
volume to be 64 × 64 × 64 × 64 and pack/transfer a four-
dimensional hypercube of increasing size.

To benchmark an indexed type, we use the same data
format as in our test vector type, meaning a constant
blocklength and a regular displacement pattern. While simpler
datatypes would be used in practice, this configuration is a
reasonable indicator of indexed performance; varying block-
lengths cause less divergence than does a uniform blocklength,
and a regular displacement allows us to control coalescence in
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Figure 4. Baseline packing time for several MPI datatypes using the CUDA
API, and relative performance of the packing kernel compared with that of
CUDA. Trailing numbers in datatype names represent blocklengths, in bytes.

a fine-grained manner. For comparison, we transfer the data
block by block using cudaMemcpy.

We use a struct type to test the effect of thread divergence
on writing. We use a simple C-style struct consisting of
an 8-byte double, two 4-byte ints, and a character,
which amounts to 24 bytes with padding. For comparison,
we copy the extent of each struct using cudaMemcpy.
Furthermore, we disable the use of zero-copy for this type,
as the uncoalesced write pattern induced by thread divergence
leads to the issuance of a PCIe transaction for each struct
member, causing significant performance regression.

B. Noncontiguous Packing Performance

For each datatype in Section IV-A, we evaluate the per-
formance of packing from GPU memory into CPU memory,
with respect to the size of the packed buffer. We compare
our packing algorithm with both CUDA transfer routines and
type-specific packing kernels in Figures 4 and 5, respectively.

A number of interesting trends can be observed for the
different datatypes. First, transfers on the lower kilobyte level
are latency-bound for both CUDA transfer routines and the
packing kernel. Given the current architecture of discrete
GPUs, little can be done to improve these results, though
architectures such as AMD’s Fusion [10], which integrate both
CPU and GPU cores onto the same die and share address
spaces, show promise in bridging this gap in the future.
Furthermore, there is a small difference in the latency of
issuing kernels and memory operations. Kernel-based packing
is thus adversely affected for smaller input sizes, performing
worse than the alternative CUDA-based methods (though only
by a few microseconds).

Second, the packing kernel is clearly preferable for types
that do not have a CUDA equivalent (e.g. cudaMemcpy2D),
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Figure 5. Type-specific packing kernel times and relative generalized pack
performance. Trailing numbers in datatype names represent blocklengths, in
bytes.

because of the latency in initiating each blockwise memory
copy. Blockwise memory copies, such as for the indexed
type, could compete with the packing kernel only for extremely
large block sizes.

For the types that do have a CUDA equivalent, the results are
more nuanced. Aside from latency considerations, performance
is largely a function of the data layout: for two-dimensional
memory copies, each block must be wide enough to saturate
the bus for best performance. For single columns correspond-
ing to a blocklength of 8 bytes, the two-dimensional memory
copy performs poorly, while the packing kernel performs ap-
proximately 20 times faster. For a larger number of contiguous
columns (16 doubles per stride in Figure 4), the memory
copy outperforms the packing kernel in all cases, especially
for small and medium-sized inputs because of the additional
kernel latency. For larger-sized inputs, both the copy and the
packing kernel approach the PCIe bandwidth limit, so the
relative performance difference begins to converge.

The four-dimensional subarray type, despite being rea-
sonably mapped to CUDA transfer routines, sees major per-
formance improvements when moving to a kernelized packing
operation. Since the three-dimensional memory copies must
be made iteratively to transfer the entire type, the latency is
aggregated through the copies and hurts overall performance.

Compared with type-specific implementations, the generic
packing algorithm performs well, with little discernible dif-
ference in performance. The differences in normalized perfor-
mance between the type-specific and generic algorithms are
due to the overhead of loading the type representation and
instruction overhead from supporting arbitrary type represen-
tations. This overhead, however, amounts to between about
two and five microseconds for most inputs. The differences in
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the struct implementations are a result of hard-coding the
relative location of each struct primitive, benefiting from
compiler optimization and greatly simplified traversal logic.

The vector type is one of the more widely used MPI
datatypes, and different parameterizations lead to significantly
different performance, so the performance gap in the different
vectors in Figure 4 needs to be further explored. Figure 6
fixes the number of blocks in the vector and compares
the completion times of the packing kernel and the two-
dimensional memory copy, varying by the blocklength. As seen
in the figure, the performance of CUDA is highly dependent
on the blocklength. Blocklengths that are multiples of 32 bytes
perform best, but all others experience significant performance
regression. Similar performance characteristics are seen when
varying the stride parameter, though this is not shown in the
paper. Note that an intelligent MPI datatype processing imple-
mentation can easily check for these cases, given information
about the type and hardware configuration.

For three-dimensional arrays, a vector type can be used
to send each face of the array: the fully contiguous X-Y face,
the contiguous-per-row X-Z face, and the noncontiguous Y-Z
face. These operations represent the communication step of a
variety of stencil codes, meaning that performance differences
from the transfers would be similarly seen in an application
context. Table II shows the transfer rate of each face for
different array sizes, using the packing kernel and CUDA’s
two-dimensional memory copy. The results largely agree with
those previously presented; contiguous chunks of data are
more effectively transferred by using built-in CUDA copies
(though there is only an approximately 10–15% difference),
while packing is dramatically better for getting noncontiguous
data. We cannot currently explain CUDA’s X-Z plane transfer
performance regression in the 512× 512× 512 case.

C. Noncontiguous Packing Performance by Component

The performance metrics in Section IV-B give a good
overview of the relative performance of the different types,
but some information is still missing. For instance, what are
the costs of PCIe transfers? What is the effect of memory
layout on the overall performance? To answer these questions,
Figure 7 shows the performance under three contexts: the full
context as presented in Section IV-B, the completion time of



Table II
TRANSFER OF 3-D ARRAY FACES OF DOUBLE-PRECISION VALUES TO THE

CPU, VERSUS CUDAMEMCPY2D.

Throughput (MB/s)
Size Face Pack CUDA

64× 64× 64
X-Y 923 1062
X-Z 937 1097
Y-Z 865 186

128× 128× 128
X-Y 2573 2854
X-Z 2554 2868
Y-Z 2131 209

256× 256× 256
X-Y 4567 4842
X-Z 4553 4845
Y-Z 3728 216

512× 512× 512
X-Y 5790 5841
X-Z 5792 1645
Y-Z 4816 218

packing into GPU memory (avoiding PCIe transfers), and the
datatype traversal time. Note that the packing operations for
small-sized messages are latency bound, meaning the issuing
of the packing kernel is the dominant cost.

For medium and large-sized messages, the efficiency of
the traversal operation is dependent on the complexity of
the type used. For instance, the vector type completes
quickly because of the simplicity of the traversal logic, while
the subarray type suffers in performance because of the
additional logic and integer computation necessary to represent
and pack a subarray of arbitrary dimension.

For types with variable-length parameters, such as index-
ed, the problem becomes memory-bound with respect to the
input type and thus sees lesser performance on the traversal.
These types must pay the penalty of accessing GPU main
memory for every point retrieved, adding significant overhead.
The worst case for indexed occurs when there is a large set
of approximately uniform blocklengths, both increasing the
size of the variable-length parameter space and maximizing
branch divergence and nonlocality in the search. Similar trends
are seen in the struct type, though to a higher degree
because of an even higher reliance on the variable length
parameters to perform the point retrieval; each block can be a
separate datatype (see Table I).

The impact of the read/write stage of packing on perfor-
mance is determined by the data layout and whether the type
has variable-length parameters. The best example is shown in
the indexed and vector types. With a small blocklength
and thus high noncontiguity, reading the values is the bottle-
neck of the datatype processing. With a large blocklength and
thus a higher degree of contiguity, the reading is an efficient
process because of the much higher degree of coalescence.
If the type has variable-length parameters, then the traversal
is the primary cost; but significant overhead can still be seen
when packing highly noncontiguous data, such as with the
indexed type with 8-byte blocks.

Adding the PCIe bus activity into the packing adds overhead
and ultimately bottlenecks the faster packing operations for
larger buffer sizes. Zero-copy keeps the overhead small for
medium-sized buffers. As mentioned in Section IV-A, zero-
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Figure 8. GPU-to-GPU ping-pong test, on the vector type with 8, 32,
and 128 byte blocks, using our packing kernel (Kernel) and cudaMemcpy2D
(CUDA).

copy is not used in the struct type, causing a higher relative
performance degradation than seen in the other types due to
the serialization of the packing and PCIe operations.

D. Full Evaluation: GPU-to-GPU Communication

Now that the performance of packing on various datatypes
has been studied, we consider it within the context of MPI
communication. Because of the poor performance of CUDA-
based methods on irregular data (e.g., indexed, struct),
for this benchmark we consider only the packing of a vector
type of varying blocklength; communication with data packed
at the rate of 4 MB/s will perform poorly. Furthermore, we do
not consider the use of GPUDirect, a kernel patch provided by
Nvidia that allows both Infiniband and CUDA to pin the same
block of memory. This will be the focus of future work, though
the integration of it will equally benefit the packing algorithm
and CUDA alternatives. Figure 8 shows the completion time
of a GPU-to-GPU ping-pong benchmark. The sender packs
the data from GPU memory into contiguous CPU memory,
immediately followed by a send operation, while the receiver
receives and unpacks the message into GPU memory. This
process is then repeated back to the original sender.

The efficiency of the communication is dependent, as ex-
pected, on the data layout. A small blocklength, which favors
the packing operation, causes a large relative performance
increase compared with using the two-dimensional memory
copy. A larger blocklength causes the memory copy to be
largely equivalent to the packing operation. For small message
sizes, GPU-to-CPU latency is the primary cost, as network
latency was measured to be much lower. For medium to large-
sized messages, the measured network bandwidth of 2.0 GB/s
formed the bottleneck, which is much lower than the packing
and memory copy throughput.

E. Resource Contention Effects on Packing

To induce the contention scenarios discussed in Sec-
tion III-C, we use a few simple operations to stress the resource
in question. We call these the application (app) operations. For
both directions of PCIe activity, we merely issue a memory
copy. For SM contention, we utilize a vector add operation.
The reason we do this is to tie it closely to a packing operation
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Figure 7. Packing time, by component. “Traversal” refers to calculating input/output offsets. “R/W” refers to the read/write operation at the end of the traversal
operation. “Full” refers to packing and sending the result across the PCIe bus into CPU memory. Trailing numbers in datatype names represent blocklengths,
in bytes.

(using the vector type), with packing time similar to the
application operation time.

To form a baseline for comparison, we time each operation
in isolation. To measure contention effects on the pack/copy
operation, we initiate the application operation, then initiate
and time the noncontiguous pack/copy. To measure contention
effects on the application operation, we initiate the pack/copy
operation, then initiate and time the application operation.
Regardless of the operation, we measure the amount of time
it takes to finish both, in order to see the degree of overlap
occurring in the operations.

For the following experiments, we used a vector of double-
precision primitives of total size 16 MB and defined the vec-
tor datatype to have a count of 262,144, a blocklength of 8,
and a stride of 64 bytes. Rather than choosing more realistic
parameter sets (these cover the entire buffer), we chose these
values to best show the effects of resource contention due to
each operation having a similar run time.

Table III shows these exemplars. For the SM experiment, the
order of initiation is critical. When using the packing kernel,
either operation, when initiated after the other, gets starved
out, starting only when there are available SMs. The two-
dimensional memory copy, avoiding the SMs entirely, sees no
degradation in performance.

For the PCIe experiment from GPU to CPU, both the
application operation and the pack/memory copies suffer, since
both must use the same lane of the bridge. However, an
interesting finding can be seen in the app-then-pack case.
Since the packing operation utilizes zero-copy for all but the
struct type (e.g., memory mapping GPU memory into CPU
memory), the scheduling mechanism seems to treat the SM-
issued bus transactions more favorably. Using CUDA memory
copies instead of the pack does not overlap at all with the user
memory copy and vice versa, since the transfers are completely
serialized on the CPU end (regardless of using different CUDA
streams).

For the PCIe experiment from CPU to GPU, while we
would expect an insignificant degree of contention due to the
operations using different PCIe lanes (PCIe is full duplex), we
actually see some degradation in the time taken, although the
totals for issuing both concurrently are much less than that for
the completely serial case. We unfortunately cannot explain

this behavior with absolute certainty.
More complex contention scenarios, such as mixed PCIe/SM

loads and multiple users, are not shown because of the
countless possibilities they entail, though we can make a few
observations. For algorithm patterns that interleave PCIe trans-
fers and kernels, there is more flexibility for the scheduler to
insert other operations between them. Therefore, the starvation
would not be as strict as that occurring in some of the cases
in Table III. Perhaps, in future GPU architectures, advanced
schedulers would be able to enable resource sharing on a finer
grain level, increasing the fairness with respect to performance
of multiple application contexts hitting on the same hardware.

V. RELATED WORK

A number of efforts have been made to integrate GPU
functionality into HPC environments, with modifications at
both the programming model and library levels to account
for discrete GPU main memory. At the programming model
level, Gelado et al. created the Asymmetric Distributed Shared
Memory (ADSM) model [11] to unify GPU address spaces
across a cluster, providing coherence on contiguous chunks of
memory. The consistency model would have to become much
more complex to enable consistency for noncontiguous data or
partial data within a chunk, so our work does not apply here
without modifying the underlying memory model.

Zippy [12] combines the message-passing and shared-
memory models and provides a single address space for all
GPUs in the cluster, using MPI as its backend. Zippy works
on array-based data with dimensionality extending beyond the
two-and-three dimensional arrays representable by CUDA. Our
work is applicable both to representing an area that needs to
be transferred (such as noncontiguous array boundaries) and
to subsequently packaging that data.

At the library level, Distributed Computing for GPU Net-
works (DCGN) [9] provides GPU-sourced MPI communica-
tion through signaling/polling mechanisms on the host CPU
and can leverage our work for noncontiguous communication.
Unfortunately, given current architectural constraints, the sig-
naling and polling operations are cycle-consuming and lead to
high latencies in GPU-sourced communication routines.

Lawlor describes the system cudaMPI, which works on
top of MPI [13], focusing on the application of the la-



Table III
APPLICATION WORKLOADS IN CONTENTION WITH THE PACK KERNEL AND CUDA API CALLS, USING THE VECTOR TYPE, IN MILLISECONDS. THE

WORKLOAD COLUMN SHOWS THE ORDER IN WHICH THE OPERATIONS ARE INITIATED, WHILE THE TYPE PROC. COLUMN SHOWS THE TIME BETWEEN
INITIALIZATION OF THE PACKING/CUDA OPERATION AND ITS COMPLETION. SECTION IV-E DISCUSSES THE PARAMETERS.

SM PCIe (CPU→GPU) PCIe (GPU→CPU)
Workload Order App Type Proc. Total App Type Proc. Total App Type Proc. Total Time
Serialized (Pack) 1.00 2.55 3.55 3.34 2.55 5.89 2.56 2.55 5.11
Serialized (CUDA) 2.96 3.96 2.97 6.31 2.97 5.53
App→Pack - 3.52 3.55 - 3.65 4.08 - 3.18 5.09
App→CUDA - 3.00 3.03 - 3.66 4.06 - 5.53 5.54
Pack→App 3.53 - 3.56 4.08 - 4.11 5.08 - 5.11
CUDA→App 1.03 - 3.00 4.05 - 4.07 5.53 - 5.53

tency/bandwidth performance model on GPUs for performance
projection under different configurations. He also discusses
noncontiguous memory transfer as an application-specific
column-vector transfer. Our work directly applies to this frame-
work. However, Lawlor does not take into consideration MPI
datatypes.

The MVAPICH2 team has made their MPI implementation
partially aware of the CUDA memory space [14]. They have
provided the ability to communicate contiguous GPU buffers
and, more recently, buffers in GPU memory that can be
represented as a single vector type [15]. However, their
methodology is based solely on CUDA’s two-dimensional
memory copies and thus cannot be extended to other datatypes.
Our algorithm can be integrated into their buffer-pool-based
framework in a simple manner.

VI. CONCLUDING REMARKS

We have presented one important aspect of integrating GPUs
into HPC environments: the processing of arbitrary, noncon-
tiguous datatypes describing data residing in GPU memory.
In particular, we found that kernelizing the packing operation
leads to huge performance improvements in datatypes that
describe two nonexclusive data layouts: highly noncontiguous
data, and irregularly located data. These cases are especially
important for future applications because of the extensive re-
search being carried out into new ways of using GPU hardware
to perform complex operations. With these complex operations
come more complex communication patterns. Relaxing the
data layout requirements necessary for quickly getting the data
from the GPU to the CPU and across nodes would be helpful
from an optimization standpoint: algorithms could have local
access patterns that differ from global communication patterns;
and if efficient packing were available, applications could focus
more on optimizing the local patterns.
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