
A Decoupled Execution Paradigm for Data-Intensive
High-End Computing

Yong Chen 1, Chao Chen 1, Xian-He Sun 2, William D. Gropp 3, Rajeev Thakur 4
1 Department of Computer Science, Texas Tech University, Lubbock, TX

2 Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, USA
3 Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

4 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, USA
Email: {yong.chen@ttu.edu, chao.chen@ttu.edu, sun@iit.edu, wgropp@illinois.edu, thakur@mcs.anl.gov}

A bstract— High-end computing (HEC) applications in
critical areas of science and technology tend to be more
and more data intensive. I/O has become a vital
performance bottleneck of modern HEC practice.
Conventional HEC execution paradigms, however, are
computing-centric for computation intensive applications.
They are designed to util ize memory and CPU
performance and have inherent l imitations in addressing
the critical I/O bottleneck issues of HEC. In this study,
we propose a decoupled execution paradigm (DEP) to
address the challenging I/O bottleneck issues. DEP is the
first paradigm enabling users to identify and handle data-
intensive operations separately. It can significantly
reduce costly data movement and is better than the
existing execution paradigms for data-intensive
applications. The initial experimental tests have
confirmed its promising potential. Its data-centric
architecture could have an impact in future HEC systems,
programming models, and algorithms design and
development.

K ey w ords- decoupled execution paradigm, high-end
computing, data-intensiv e computing, storage

I. INTRODUCTION
Many high-end computing (HEC) applications in critical

areas of science and technology are becoming more and more
data intensive [CLGN09, DBMA11]. For instance, twelve out
of twenty-six INCITE applications run at Argonne National
Laboratory generate and store terabytes of data on-line
[RLUW09]. These applications contain a large number of I/O
accesses, where large amounts of data are written to and
retrieved from storage. In addition to newly emerged data-
intensive applications, such as information retrieval and
transaction collection, conventional high-end computing
applications have also become increasingly data intensive due
to the ever increasing of computing power, and new needs such
as animation and data mining. Input/output has become the key
performance factor in modern computing.

The rapid advance of semiconductor process technology
and the evolution of microarchitectures, such as
multicore/manycore architectures, have drastically increased
the computing power of microprocessors. However, compared
to the computational performance improvement, data-access

performance (latency and bandwidth) improvement has been
at a snail’s pace. The disk drive speed has only increased by
roughly 7% each year over the past two decades, which is
significantly lagging behind the nearly 50% per year
improvement of processor speed [CLGN09, DBMA11]. This
disparity of performance improvement is expected to continue
in the near future. Figure 1 compares the disk drive bandwidth
improvement (left vertical axis) and the computational
capability improvement of well-known supercomputers (right
vertical axis) for the past several decades [RLUW09]. The
computational performance improvement rate is magnitudes
higher than the bandwidth improvement rate of disk drives,
which causes a so-called “I/O-wall” problem.

Data access has become the bottleneck of computing.
However, existing HEC execution models, and their associated
runtime systems, are computing-centric [GrLT99, GA, UPC].
They are not ready to support efficient input/output. For
instance, MPI, the dominant parallel programming model of
HEC, focuses on exchanging in-memory data for parallel
computations. HEC architecture and system research often
consider I/O devices as peripheral and leave them to someone
else. HEC performance is commonly measured in terms of
peak performance of small computation kernels that can fit into
memory and cache well. The data-driven IT industry has
developed a new paradigm, MapReduce, for their needs

Figure 1. FLOPS of HEC Systems v.s. Disk Drive Bandwidth [RLUW09]

[DeGh04]. There is a great need for the HEC community to
rethink the execution models for the coming data-intensive
HEC era.

In this study, we propose an innovative decoupled
execution paradigm (DEP) and the notion of the separation of
computing nodes and data (processing) nodes. The novelty of
the new DEP execution paradigm is that the data nodes,
collectively, take care of the data-intensive operations of the
application. The computing nodes, collectively, take care of the
computation-intensive operations. The application is executed
in a decoupled but fundamentally more efficient manner for
data-intensive HEC with the collective support from data
processing nodes and computing nodes. The data processing
nodes proposed in the DEP design are extension of the prior
work of server-push architecture [SuBC07a, SuBC07b] that
employs dedicated data-access servers to proactively push data
to compute nodes instead of a traditional pull-based
architecture. The DEP execution paradigm is an evolutionary,
if not revolutionary, execution model where I/O intensive
operation is as important as computation. The current results
have shown the DEP approach is promising and has a potential.

The rest of the paper is organized as follows. Section II
reviews important existing studies in related areas. Section III
presents the design and notion of the proposed decoupled
execution paradigm. Section IV discusses implementation
issues and introduces the initial prototyping implementation.
Section V presents the experimental evaluation results. Section
VI concludes this study and discusses the future work.

II. RELATED WORK
Extensive studies have focused on improving the

performance of data-intensive HEC systems at various levels.
This section discusses existing studies along three lines:
architecture improvements, programming model
improvements, and runtime system improvements. To the best
of our knowledge, there is no study that rethinks the execution
paradigm to address fundamental I/O issues.

A. Architecture Improvements for Data-Intensive High-End
Computing
At the hardware level, the emerging nonvolatile storage-

class memory devices such as flash-memory based solid-state
drives and phase-change memory can provide more promising
performance than hard disk drives, especially for random
accesses [ChKZ11, DoXi11]. However, they cannot reduce the
data movement across the network, and they help to mitigate
the performance gap between CPU and I/O but will not be able
to solve the I/O bottleneck problem alone.

Active storage [RiGF98, SLCR10, XMFL11], active disks
[RiGi97, ChMa02], and smart disks [ChLC03] have gained
increasing attention recently. Active storage leverages the
computing capability of storage nodes and performs certain
computation to reduce the bandwidth requirement between
storage and compute nodes. Active disks and smart disks
integrate a processing unit within disk storage devices and
offload computations to embedded processing unit. However,
these architecture improvements are designed to explore either
the idle computing power of storage nodes or an embedded

processor, and have limited computation-offloading capability.
It is easy to see that DEP provides a much more powerful
platform for the same purpose. I/O forwarding (both hardware
and software solutions) [ACIK09, IRYB08] and data shipping
[ScHa02] provide approaches to offloading I/O requests to
dedicated nodes, aggregating the requests, and carrying out
them on behalf of compute nodes. The data nodes proposed in
the DEP design can carry all these functions and do more.

B. Programming Model Improvements for Data-Intensive
High-End Computing
Current parallel programming models are designed for

computation-intensive applications. These programming
models include Message Passing Interface (MPI) [GrLT99],
Global Arrays [NiHL94], Unified Parallel C [ElSm06], Chapel,
X10, Co-array Fortran, and data parallel programming models
such as High Performance Fortran (HPF). These programming
models primarily focus on the memory abstractions and
communication mechanism among processes. I/O is treated as
a peripheral activity and often a separate phase in these
programming models and execution paradigms, which is often
achieved through a subset of interfaces such as MPI-IO
[TRLG04].

Advanced I/O libraries, such as Hierarchical Data Format
(HDF), Parallel netCDF (PnetCDF), and Adaptable IO System
(ADIOS), provide high-level abstractions, map the abstractions
onto I/O in one way or another, and complement parallel
programming models in managing I/O activities. The recent
MapReduce programming model [DeGh04, SMWB10] is an
instant hit and has been proven effective for many data-
intensive applications. The MapReduce model, however, is
typically layered on top of distributed file systems and is not
designed for high performance computing semantics. It
requires specific Map and Reduce abstractions as well
[DeGh04, SMWB10]. DEP is designed for general parallel
applications, with an increased programming capability.

C. Runtime System Improvements for Data-Intensive High-
End Computing
There has been significant amount of research effort in

optimizing I/O performance using runtime libraries, such as
collective I/O [ThGL99, LiCh08, CSTR11], two-phase I/O,
extended two-phase I/O, data sieving, server-direct I/O, disk-
directed I/O, lightweight I/O [OWRM06], partitioned
collective I/O [YuVe08], layout-aware collective I/O
[CSTR11], ADIOS library [LKSP08], and resonant I/O
[ZhJD09]. These strategies collect and aggregate small requests
into larger ones at the I/O client/middleware/server level.

Many caching, buffering, staging, and prefetching
optimization strategies exist at runtime as well, such as
collective caching [LCCC07], collective buffering [NiLo97],
active buffering [MWLY02], discretionary caching [VSKT06],
SpecHint prefetching [ChGi99], transparent informed
prefetching (TIP) [PGGS95], adaptive prefetching based on
time series modeling [TrRe04], multiple-level caching and
prefetching for Blue Gene systems [BICL09], and our prior
work in pre-execution based prefetching [CBST08, CBST08a]
and a signature based prefetching with post-execution analysis

[BCST08]. Abbasi et. al. recently proposed a DataStager
framework with data staging services that move output data to
dedicated staging or I/O nodes prior to storage, which has been
proven effective in reducing the I/O overheads and
interferences on compute nodes [AWEK10]. Zheng et. al.
proposed a preparatory data analytics (PreDatA) approach to
preparing and characterizing scientific data when generated
(e.g. data reorganization and metadata annotation) to speedup
subsequent data access [ZADL10]. These approaches have
shown considerable performance improvement with dedicated
output staging services and preparatory analysis. Our proposed
DEP approach, built upon server-push architecture [SuBC07a,
SuBC07b], leverages dedicated nodes as well, but is different.
The dedicated data processing nodes work for both reads and
writes, and can provide buffering or staging, but more
importantly on reduction. The notion of data processing nodes
in DEP is a rethinking of HEC systems architecture to provide
balanced computational and I/O capability. The DEP considers
to address the I/O bottleneck issues fundamentally from the
execution paradigm including systems architecture and
programming model, not only from runtime optimizations.

Parallel file systems (PFS), such as Lustre, GPFS [ScHa02],
PanFS, PVFS, and PPFS2, enable concurrent I/O accesses from
multiple clients to files. Numerous optimizations exist to
improve the file system performance, such as data staging
services [AWEK10], latent asynchrony I/O [WPBW09], and a
log-structured interposition layer [BGGM09]. A
comprehensive comparison between PVFS and distributed file
system HDFS was presented in [TSPL11].

III. DECOUPLED EXECUTION PARADIGM

A. A Motivating Example
In scientific applications, data is commonly represented by

a multi-dimensional array-based data model. For instance, the
widely used Community Earth System Model (CESM)
software package consists of four separate modules
simultaneously simulating the earth’s atmosphere, ocean, land
surface and sea-ice, and each module uses the multi-
dimensional arrays data model [CESM]. Figure 2 shows a 3-
dimensional temperature data with longitude, latitude, and time
dimensions. It is often needed to compute the moving average,
median, lowest and highest temperature with specified
conditions such as areas and periods of time. Such computed
results will be further correlated with the computed results

from other parameters, such as the humidity and wind speed, to
predict weather conditions.

The current way of conducting such processing is to read
the required data (e.g., a sub-array with the bold border, as
shown in Figure 2) from storage servers to compute nodes,
perform computations on desired data with specified conditions,
such as those data shown in shaded area, and then write the
output back to storage. For CESM, an experimental test shows
that the data access and movement time for the calculation of
the moving average, median, lowest and highest degrees can
occupy 88.2%, 95.4%, 96.6%, and 96.6% of the total execution
time on a cluster, where 128GB of data are retrieved to 272
nodes for processing (Figure 3).

CESM clearly has data retrieval and processing phases and
computing and simulation phases, as many applications do.
The basic idea of DEP is to handle these two phases differently
on different nodes. DEP decouples the execution operations
into computation-intensive operations and data-intensive
operations. Computation-intensive operations are executed on
massive compute nodes. Data-intensive operations are executed
on dedicated data processing nodes.

B. Decoupled Execution Paradigm Design
The decoupled execution paradigm (DEP) consists of three

components: system architecture, programming model and
runtime system. The architecture view of DEP is shown in
Figure 4.

1) System architecture. DEP decouples the nodes into data-
processing (data) nodes and compute nodes. Data-processing
nodes are further decoupled into compute-side data nodes and
storage-side data notes. Compute-side data nodes are compute
nodes that are dedicated for data processing. Storage-side data
nodes are specially designed nodes that are connected to file
servers with fast network. Compute-side data nodes reduce the
size of computing generated data before sending it to storage
nodes. Storage-side data nodes reduce the size of data retrieved
from storage before sending it to compute-side data nodes.

Figure 2. Processing 3-dimensional Temperature Data

Figure 3. Comparison of Computation Time and Data-access Time

Writes will go through compute-side data nodes, whereas reads
will go through the storage-side data nodes. Data nodes can
provide simple data forwarding without any data size reduction,
but the idea behind data nodes is to let the data nodes conduct
the decoupled data-intensive operations and optimizations to
reduce the data size and movement.

2) Programming model. What operations should be passed
to the data nodes are determined by users and supported by the
decoupled execution programming model (DEPM). The DEPM
component is an MPI extension, allowing users to specify
operations conducted on data nodes, instead of on compute
nodes as the normal MPI library does. The purpose of the MPI
extension and the DEPM component are similar to the netCDF
Operators [ZeWa07] in some sense, allowing data-intensive
operations to be decoupled and processed on data nodes, and
the results being sent back to compute nodes for further
processing. For instance, an ncwa operator in netCDF
computes the weighted average on specified data and returns
the result for further computations, reducing the unnecessary
data movement. Different from netCDF Operators, however,
the DEPM is extended and much more powerful. It allows
operations to be decoupled not only operators, which
essentially allows general piece of code to be executed on data
nodes, beyond operators. In addition, the DEPM allows
optimizations across operations, which is impossible in the
netCDF Opertaors.

3) Runtime system. At runtime, the DEP relies on two
libraries, message passing library and data processing library,
to support computation-intensive operations and data-intensive
operations respectively. The message passing library focuses
on the memory abstraction of massively parallel processes and
provides the runtime support for computation-intensive
operations to be run on massive compute nodes. We leverage
the existing MPI library for this purpose. The data processing
library focuses on the I/O abstraction and provides runtime
support for data-intensive operations to be run on data nodes.

These two libraries are tightly coupled, and the message
passing library manages the interaction between these two
libraries as well. The runtime system can optimize user-defined
data-intensive operations and other I/O optimization operations
on data nodes as well.

The proposed decoupled execution paradigm changes the
current execution paradigm by balancing the computation and
data-access capabilities. This new paradigm separates
computation-intensive operations and data-intensive operations
and handles them concurrently and in a coordinated manner,
but on different hardware and software environments for best
performance.

C. Comparison of Execution Paradigms
The proposed DEP, in other words, reshapes the current

execution paradigm of “retrieve - compute - store” cycles into
“retrieve - reduce - compute -reduce - store” cycles as shown in
Figure 5, where the “reduce” phases are designed to conduct
data-intensive operations and reduce data size before moving
data across the network. These retrieval, reduce, compute, and
store phases can be pipelined to overlap the I/O,
communication, and computation times. From one point of
view, DEP is an enhanced version of MapReduce, where the
“reduce” is not conducted by one node with its local storage,
but a set of (data) nodes and the global storage, so that parallel
computing features can be maintained. From another point of
view, the data nodes are the data-access accelerators, to speed
up the storage data-access delay and reduce data size before
sending data across the network.

IV. IMPEMENTATION OF DECOUPLED EXECUTION
PARADIGM

A. Systems Architectures
Data nodes perform the data-intensive operations and data-

access optimizations with runtime library support. They sit
close to the data source physically. The two kinds of data
nodes, compute-side nodes and storage-side nodes, are
different. The storage-side data nodes are predefined and static.
The compute nodes and the compute-side data nodes can be
either predefined or dynamically assigned. The predefined
strategy configures the compute nodes and compute-side data
nodes statically and in advance. For instance, a subset of nodes
in a rack can be predefined as compute-side data nodes, and the

Figure 5. Comparison of Execution Paradigms

Figure 4. Decoupled Execution Paradigm (DEP) for Data-
Intensive HEC

rest act as normal compute nodes. The selection of the data
node should consider the physical location and network
topology. For instance, if we assume to have 16 nodes on one
card, 4 cards in one plane, and two planes in one rack, we can
have one data node in each card, and 4 data nodes in one plane
and 8 in one rack. The compute-side data nodes can
dynamically join the compute nodes group and act as compute
nodes as well to make the best use of resources. The dynamic
configuration of nodes is instructed by users.

B. Programming Model
An ideal implementation for the decoupled execution

paradigm would be automatically identifying those data-
intensive operations and shipping them to data-processing
nodes, while keeping computation-intensive operations on the
compute nodes. This solution is challenging as it requires a
precise understanding of the code and an automatic separation
process. Instead, a more practical solution is to rely on
programmers’ hints and knowledge. We currently take an MPI
extension approach and rely on programmer’s knowledge to
instruct the operations that are decoupled and to be executed on
data nodes. The processed results are transferred via MPI
communications as well. This approach is a manual approach,
but we plan to build a semi-automatic decoupling tool to assist
the application decomposition. This is a two-step process. The
first step enables programmers to leverage the existing SIGIO
tool [SIGIO] to identify these statements that cause intensive
data accesses with profiling runs and trace-based analysis. The
second step enables programmers to identify data-intensive
operations and the essential computation related with these
data-intensive operations that can be shipped to data nodes for
processing. The implementation of this semi-automatic
decoupling tool is expected to ease the needs from
programmers’ knowledge.

C. Runtime System
The current implementation of the runtime system is at an

early stage. The implementation carries out the decoupled code
specified by programmers on the data nodes and transmit the
results between compute nodes and data nodes. The
prototyping system is simple but focuses on verifying the idea
and potential. An ideal implementation can leverage existing
data-intensive processing library, such as a MapReduce library,
but customize it for the DEP. The rationale is that these data-
intensive processing library naturally fits the requirement of the
runtime system on the data nodes (processing data intensively)
in the DEP. In addition, we plan to incorporate and develop the
filtering, caching, and prefetching components for the runtime
system on data nodes. These components can build a staging
area on data nodes, further reduces data transfer over network,
and also removes redundant data movement.

V. EXPERIMENTAL RESULTS

A. Experimental Platform
We have performed initial experimental tests on a 640-node

Linux cluster, Hrothgar cluster [HPCC]. We dedicated a
portion of nodes as data processing nodes to evaluate the DEP
potential. The experimental tests varied the configuration and
ratio of compute nodes and data nodes for evaluating different
scenarios. Each node of the Hrothgar cluster is equipped with

Intel(R) Xeon(R) 2.8GHz CPUs (12 cores per node) and 24GB
memory. The cluster has a 600TB global parallel file system.

We performed the tests with two application cases. One is
the kernel calculation of the CESM that computes the moving
average of selected area of specified data as discussed in
Section III. Another application is a geographic information
system that predicts the rainfall accumulation for an area by
processing the geospatial data from the GIS and the data
collected from rain sensors [TWAC01, PostGIS]. This
application calculates the water flow directions and analyzes
the impact by processing the terrain and rain sensors data, as
shown in Figure 6. It has two primary operations, flow routing
and flow accumulation operations. The flow routing is first

used to calculate the flow direction at every point of the terrain
in order to model global flow of water. The terrain data is
obtained in raster (grid) form: the coordinates of the data
correspond to a uniform lattice, and elevations are given for
each cell in the grid. It defines the neighbors of a grid cell s are
the eight cells around s; and a neighbor who owns strictly
lower elevation than s is called downslope neighbor; as well as
the gradient of s towards one of its neighbors can be estimated
as the ratio of the height difference of the cells and the
horizontal distance between them. The steepest downslope
neighbor of s is the downslope neighbor with the largest
gradient. The flow direction of a cell is the directions in which
water would flow if poured into that cell. With these directions
information, flow accumulation algorithm computes to quantify
the flow through each point by summing all the flow that
passed through. The rainfall accumulation can thus be analyzed
and predicted.

B. Results of the CESM Kernel Code
The first set of experiments that we have conducted is to

evaluate the execution time results of the CESM kernel code
with 12GB, 24GB, 48GB, and 96GB of data sets respectively
on total 48 nodes. Figure 7 reports the results with 12 and 24
storage-side data nodes respectively, comparing the
conventional execution model and the DEP model. The DEP
model clearly outperforms the former. It can also be observed,
with the growing data sizes, the performance gain of the DEP
further increases. Figure 8 reports the results with the same
data sets on 96 total nodes, with 24 and 48 storage-side data
nodes respectively, and compares the DEP against the
conventional execution model. The performance trend we can

Figure 6. Flow Directions in a Grid of Terrains. Numbers represent the
gradient of each terrain. Arrows represent the direction of water flow.

observe is similar to that in previous tests. The DEP improves
the apparition run time by more than three folds. On average, it
achieved speedup of 229%.

Figure 7. Execution Time of CESM Kernel Code with Different Data Sets on
48 Nodes, with 12 and 24 storage-side data nodes respectively.

Figure 8. Execution Time of CESM Kernel Code with Different Data Sets on
96 Nodes, with 24 and 48 storage-side data nodes respectively.

We can also analyze the results from the effective
bandwidth obtained for different scenarios tested. The
effective bandwidth is calculated by the actual amount of data
processed (the amount of data that is supposed to be moved)
divided by the time taken. Figure 9 illustrates the results with
different data sets tested on 96 nodes. It can be observed that
the DEP significantly increases the effective bandwidth for
data processing. The performance advantages primarily come
from the decoupled operations and significantly reduced data
movement. The DEP tends to be more scalable as well in
terms of the amount of data processed, while the conventional
execution paradigm suffers a decreasing performance trend.
The further investigation reveals that the performance
degradation of the conventional case is mainly caused by the
contention from competing nodes, while the DEP achieved
stable performance improvement.

Figure 9. Effective Bandwidth of CESM Kernel Code with Different Data
Sets on 96 Nodes.

C. Results of the GIS Kernel Code
We have also performed extensive tests with the GIS kernel

code that computes the flow routing and accumulation.

Figures 10, 11, and 12 report the effective bandwidth
results of the flow routing and accumulation code with
different data sets on 24, 48, and 96 nodes respectively. Each
figure reports the results with two cases, one case with one
fourth of nodes as storage-side data nodes, and the other case
with half of nodes as the storage-side data nodes. The results
are mostly consistent across various runs under different
scenarios.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'#" #$" $&" (%"

E
xe

cu
tti

on
 T

im
e

(s
)

)*+,-+.*+/0"

123"

4GB5"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'#" #$" $&" (%"

E
xe

cu
tio

n
Ti

m
e

(s
)

)*+,-+.*+/0"

123"

4GB5"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'#" #$" $&" (%"

!
"
#
$%
&
'
(
)*
+,

#
)-
./
)

)*+,-+.*+/0"

123"

(GB)

GB

B
an

dw
id

th
 (M

B
/s

)

(GB)

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

$%" %'" '(")*"

B
a
n

d
w

id
th

 (
M

B
/s

)

+,-./-0,-12"

345"

(GB)

Figure 10. Effective Bandwidth of Flow Routing and Accumulation Code with
Different Data Sets on 24 Nodes. Left: with 6 storage-side data nodes. Right:
with 12 storage-side data nodes.

Figure 11. Effective Bandwidth of Flow Routing and Accumulation Code with
Different Data Sets on 48 Nodes. Left: with 12 storage-side data nodes. Right:
with 24 storage-side data nodes.

It can be observed that the DEP achieved clear better
performance in all cases due to decoupling and reducing data
movement. The DEP achieved up to six folds of speedup when
compared with the conventional execution model, which is a
promising result. Overall, the DEP achieved stable
performance improvement and clearly outperformed the
existing execution model. The results are encouraging.

Figure 12. Effective Bandwidth of Flow Routing and Accumulation Code with
Different Data Sets on 96 Nodes. Left: with 24 storage-side data nodes. Right:
with 48 storage-side data nodes.

Figure 13 plots the results of various tests together for easy
comparison across various tests. These tests have confirmed the
clear benefits of the DEP.

Figure 13. Comparison among Various Tests for the Flow Routing and
Accumulation Code.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

#*" %(" &*")$"

!
"
#
$
%
&$
'(
)*
+
!
,-
.)

+,-./-0,-12"

345"

(GB)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#*" %(" &*")$"

!
"
#
$
%
&$
'(
)*
M
B
/s
+)

,-./0.1-.23"

456"

(GB)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#*" %(" &*")$"

b
a
n

d
w

id
th

 (
M

B
/s

)

,-./0.1-.23"

456"

(GB)

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&" (%" $&")#"

B
a
n

d
w

id
th

 (
M

B
/s

)

*+,-.,/+,01"

234"

(GB)

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&" (%" $&")#"

B
a
n

d
w

id
th

 (
M

B
/s

)

Conventional

DEP

(GB)

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$'" &(")'" *%"

B
a
n

d
w

id
th

 (
M

B
/s

)

Conventional

DEP

(GB)

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

24
(1

/4
)

24
(1

/2
)

48
(1

/4
)

48
(1

/2
)

96
(1

/4
)

96
(1

/2
)

E
x
e
c
u

ti
o
n

 T
im

e
 (

s)

Conventional (18GB)

DEP (18GB)

Conventional (36GB)

DEP (36GB)

Conventional (72GB)

DEP (72GB)

VI. CONCLUSION
With the tremendous advance in processor architectures and

the computational capability, I/O has been widely recognized
as the bottleneck in high-end computing for data-intensive
applications. These data-intensive applications are critical for
scientific discovery and innovations. However, the I/O
bottleneck issue and massive amount of data movement for
these applications can largely limit the productivity of data-
intensive sciences.

In this study, we propose a decoupled execution paradigm
(DEP) for data-intensive high-end computing. The DEP builds
separate data-processing nodes and compute nodes,
decomposes application operations into computation-intensive
and data-intensive operations, and maps these decoupled
operations onto compute nodes and data-processing nodes
respectively. The data-processing nodes and compute nodes
collectively provide a balanced system design and deliver the
best performance for data-intensive applications. We have
verified the idea with an initial prototype. The results are
promising: for both climate model kernel code and the flow
routing and accumulation code in the GIS, the prototype has
shown significantly better results than the conventional
execution paradigm due to decoupled operations and reduced
data movement. While this study is an initial step of building a
new execution paradigm for data-intensive HEC, the current
results are encouraging. The current study confirms that the
DEP has a great potential for data-intensive HEC. Given the
growing importance of supporting data-intensive sciences, the
DEP can have an impact.

VII. ACKNOWLEDGMENT
This research is sponsored in part by the National Science

Foundation under grant CNS-1162540, CNS-1162488, and
CNS-1161507. The authors acknowledge the High
Performance Computing Center (HPCC) at Texas Tech
University at Lubbock for providing HPC resources that have
contributed to the research results reported within this paper.
URL: http://www.hpcc.ttu.edu.

REFERENCES
[AWEK10] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K.

Schwan and F. Zheng. DataStager: Scalable Data
Staging Services for Petascale Applications. Cluster
Computing 13(3): 277-290, 2010.

[ACIK09] N. Ali, P. H. Carns, K. Iskra, D. Kimpe, S. Lang, R.
Latham, R. B. Ross, L. Ward and P. Sadayappan.
Scalable I/O Forwarding Framework for High-
performance Computing Systems. In Proc. of the
2009 IEEE Intl. Conf. on Cluster Computing, 2009.

[BGGM09] J. Bent, G. Gibson, G. Grider, B. McClelland, P.
Nowoczynski, J. Nunez, M. Polte and M. Wingate.
PLFS: A Checkpoint Filesystem for Parallel
Applications. In Proc. of ACM/IEEE
Supercomputing Conference, 2009.

[BICL09] J. G. Blas, F. Isaila, J. Carretero, R. Latham and R.
Ross. Multiple-Level MPI File Write-Back and
Prefetching for Blue Gene Systems. In Proc. of
PVM/MPI, 2009.

[BCST08] S. Byna, Y. Chen, X.-H. Sun, R. Thakur and W.
Gropp. Parallel I/O Prefetching Using MPI File

Caching and I/O Signatures. In Proc. of the
ACM/IEEE Supercomputing Conference (SC'08),
2008.

[CESM] http://www.cesm.ucar.edu/
[ChGi99] F. Chang and G. A. Gibson. Automatic I/O Hint

Generation Through Speculative Execution. In Proc.
of the 3rd Symposium on Operating Systems Design
and Implementation (OSDI), 1999.

[ChKZ11] F. Chen, D. A. Koufaty and X. Zhang. Hystor:
Making the Best Use of Solid State Drives in High
Performance Storage Systems. ICS 2011, 2011.

[CSTR11] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth and W.
Gropp. LACIO: A New Collective I/O Strategy for
Parallel I/O Systems. In Proc. of IEEE International
Parallel and Distributed Processing Symposium
(IPDPS' 11), May, 2011.

[CBST08] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W.
Gropp. Hiding I/O Latency with Pre-execution
Prefetching for Parallel Applications. Best paper
award finalist, in Proc. of the ACM/IEEE
SuperComputing Conference (SC'08), Nov. 2008.

[ChMa02] G. Chockler and D. Malkhi. Active Disk Paxos with
infinitely many processes. In Proc. of the 21th
annual symposium on Principles of distributed
computing, pp. 78-87, 2002.

[CLGN09] A. Choudhary, W.-K. Liao, K. Gao, A.Nisar, R.
Ross, R. Thakur, and R. Latham. Scalable I/O and
Analytics. Journal of Physics: Conference Series,
180 (012048), 2009.

[CSTR11] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, W. D.
Gropp. LACIO: A New Collective I/O Strategy for
Parallel I/O Systems. IPDPS 2011: 794-804, 2011.

[CBST08a] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp.
"Exploring Parallel I/O Concurrency with
Speculative Prefetching,” in Proc. 37th International
Conference on Parallel Processing (ICPP'08), 2008.

[ChLC03] S. Chiu, W.-K. Liao and A. Choudhary. Design and
Evaluation of Distributed Smart Disk Architecture
for I/O-Intensive Workloads. In ICCS, 2003.

[DeGh04] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proc. of the 6th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI'04), pp. 137 - 150,
December, 2004.

[DoXi11] X. Y. Dong and Y. Xie. AdaMS: Adaptive
MLC/SLC Phase-change Memory Design for File
Storage. ASP-DAC, 31-36, 2011.

[DBMA11] J. Dongarra, P. H. Beckman, et. al. The International
Exascale Software Project Roadmap. IJHPCA 25(1):
3-60 (2011)

[ElSm06] T. E. Ghazawi and L. Smith. UPC: Unified Parallel
C. ACM/IEEE conference on Supercomputing
(SC'06), 2006.

[GrLT99] W. D. Gropp, E. Lusk and R. Thakur. Using MPI-2.
MIT Press, 1999.

[GTC] Gyrokinetic Particle Simulations Gyrokinetic
Toroidal Code (GTC)
http://w3.pppl.gov/theory/proj_gksim.html

[HPCC] High Performance Computing Center,
http://www.hpcc.ttu.edu

[IRYB08] K. Iskra, J. W. Romein, K. Yoshii and P. Beckman.
ZOID: I/O Forwarding Infrastructure for Petascale

Architectures. In Proc. of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pp. 153 -162, 2008.

[LCCC07] W.-K. Liao, A. Ching, K. Coloma, A. Choudhary
and L. Ward. An Implementation and Evaluation of
Client-Side File Caching for MPI-IO. In Proc. of
IEEE International Parallel and Distributed
Processing Symposium, 2007.

[LKSP08] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki
and C. Jin. Flexible I/O and Integration for
Scientific Codes Through the Adaptable I/O System
(ADIOS). In Proc. of the 6th International
Workshop on Challenges of Large Applications in
Distributed Environments, 2008.

[MWLY02] X. S. Ma, M. Winslett, J. Lee and S.-k. Yu. Faster
Collective Output through Active Buffering.
IPDPS, 2002.

[NiHL94] J. Nieplocha, R. J. Harrison and R. J. Littlefield.
Global arrays: a Portable “Shared-Memory”
Programming Model for Distributed Memory
Computers. ACM/IEEE Supercomputing
Conference (SC'94), 1994.

[NiLo97] B. Nitzberg, V. Mary and Lo. Collective. Buffering:
Improving Parallel I/O Performance. HPDC, 1997.

[RiGF98] E. Riedel, G. Gibson and C. Faloutsos. Active
Storage For Large-Scale Data Mining and
Multimedia. In Proc. of the 24rd Intl. Conference on
Very Large Data Bases, 1998.

[RiGi97] E. Riedel and G. Gibson. Active Disks – Remote
Execution for Network-Attached Storage Abstract.
Carnegie Mellon Univ. Pittsburgh, 1997.

[RCDG06] W. W. Ro, S. P. Crago, A. M. Despain, J.-L.
Gaudiot: Design and evaluation of a hierarchical
decoupled architecture. The Journal of
Supercomputing, 38(3): 237-259, 2006.

[OWRM06] R. Oldfield, L. Ward, R. Riesen, A. B. Maccabe, P.
Widener and T. Kordenbrock. Lightweight I/O for
Scientific Applications. In Proc. of IEEE
International Conf. on Cluster Computing, 2006.

[PGGS95] R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky and J. Zelenka. Informed Prefetching and
Caching. In Proc. of the 15th ACM Symposium on
Operating Systems Principles (SOSP’95), 1995.

[PostGIS] PostGIS: postgis.refractions.net

[RLUW09] R. Ross, R. Latham, M. Unangst and B. Welch.
Paralell I/O in Practice. Tutorial in the ACM/IEEE
Supercomputing Conference, 2009.

[ScHa02] F. Schmuck and R. Haskin. GPFS: A Shared-Disk
File System for Large Computing Clusters. In 1st
USENIX Conference on File and Storage
Technologies, 2002.

[SMWB10] S. Sehrish, G. Mackey, J. Wang and J. Bent.
MRAP: A Novel MapReduce-based Framework to
Support HPC Analytics Applications with Access
Patterns. In Proc. of the 19th ACM International
Symposium on High Performance Distributed
Computing (HPDC), 2010.

[ShDM10] J. Shalf, S. S. Dosanjh and J. Morrison. Exascale
Computing Technology Challenges. VECPAR, 1-
25, 2010.

[SIGIO] http://www.cs.iit.edu/~scs/iosig/

[SLCR10] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B.
Ozisikyilmaz, P. Kumar, W.-K. Liao and A.
Choudhary. Enabling Active Storage on Parallel I/O
Software Stacks. In Proc. of the 26th IEEE Symp.
on Massive Storage Systems & Technologies, 2010.

[SuBC07a] X.-H. Sun, S. Byna and Y. Chen. Server-based Data
Push Architecture for Multi-processor
Environments. Journal of Computer Science and
Technology, Vol. 22, No. 5, 641 – 652, 2007.

[SuBC07b] X.-H. Sun, S. Byna and Y. Chen. Improving Data
Access Performance with Server Push Architecture.
In Proc. of the NSF Next Generation Software
Program Workshop (with IPDPS'07), 2007.

[TSPL11] W. Tantisiriroj, S. W. Son, S. Patil, S. Lang, G.
Gibson, R. B. Ross: On the duality of data-intensive
file system design: reconciling HDFS and PVFS. In
Proc. of ACM/IEEE Supercomputing Conference
(SC’11), 2011.

[TRLG04] R. Thakur, R. Ross, E. Lusk and W. Gropp. Users
Guide for ROMIO: A High-Performance, Portable
MPI-IO Implementation. Technical Memorandum
ANL/MCS-TM-234, Mathematics and Computer
Science Division, ANL, 2004.

[TWAC01] Laura Toma, Rajiv Wickremesinghe, Lars
Arge, Jeffrey S. Chase, Jeffrey Scott Vitter,Patrick
N. Halpin, Dean Urban: Flow Computation on
Massive Grids. ACM-GIS 2001: 82-87

[TrRe04] N. Tran and D. A. Reed. Automatic ARIMA Time
Series Modeling for Adaptive I/O Prefetching.
IEEE Trans. Parallel Distrib. Syst. 15(4): 362-377
(2004).

[VSKT06] M. Vilayannur, A. Sivasubramaniam, M. T.
Kandemir, R.Thakur and R. Ross. Discretionary
Caching for I/O on Clusters. Cluster Computing
9(1): 29-44, 2006.

[WPBW09] P. M. Widener, M. Payne, P. G. Bridges, M. Wolf,
H. Abbasi, S.McManus and K. Schwan. Exploiting
Latent I/O Asynchrony in Petascale Science
Applications. ICPP Workshops, 105-112, 2009.

[XMFL11] Y. Xie, K.-K. M. Reddy, D. Feng, D.D.E. Long, Y.
Kang, Z. Niu and Z. Tan. Design and Evaluation of
Oasis : An Active Storage Framework based on TIO
OSD Standard. In 27th IEEE Symp. on Mass
Storage Systems and Technologies (MSST), 2011.

[YuVe08] W. Yu and J. S. Vetter. ParColl: Partitioned
Collective I/O on the Cray XT. ICPP, 562-569,
2008.

[ZhJD09] X. Zhang, S. Jiang, and K. Davis. Making
Resonance a Common Case: A High-performance
Implementation of Collective I/O on Parallel File
Systems. IPDPS, 2009.

[ZADL10] F. Zheng, H. Abbasi, C. Docan, J. F. Lofstead, Q.
Liu, S. Klasky, M. Parashar, N.Podhorszki, K.
Schwan and M. Wolf. PreDatA - Preparatory Data
Analytics on Peta-scale Machines. IPDPS, 2010

[ZeWa07] C. S. Zender and D. L. Wang. High performance
distributed data reduction and analysis with the
netCDF Operators (NCO). Presented to the 23rd
AMS Conference on Interactive Information and
Processing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, January 14–18, San
Antonio, TX, January 14–18, 2007.

