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Abstract—The ability to easily deploy parallel compu-
tations on the Cloud is becoming ever more important.
The first uniform mechanism for checkpointing a network
of virtual machines is described. This is important for
the parallel versions of common productivity software.
Potential examples of parallelism include Simulink for
MATLAB, parallel R for the R statistical modelling
language, parallel blast.py for the BLAST bioinformatics
software, IPython.parallel for Python, and GNU parallel
for parallel shells. The checkpoint mechanism is imple-
mented as a plugin in the DMTCP checkpoint-restart
package. It operates on KVM/QEMU, and has also been
adapted to Lguest and pure user-space QEMU. The plugin
is surprisingly compact, comprising just 400 lines of code
to checkpoint a single virtual machine, and 200 lines of
code for a plugin to support saving and restoring network
state. Incremental checkpoints of the associated virtual
filesystem are accommodated through the Btrfs filesystem.
Experiments demonstrate checkpoint times of a fraction
of a second by using forked checkpointing, mmap-based
restart, and incremental Btrfs-based snapshots.

I. INTRODUCTION

An approach for providing fault-tolerance to complex

distributed applications is demonstrated. It is based on

checkpointing a network of virtual machines. Such a

network can be started locally, and later checkpointed

for re-deployment (restart from checkpoint images) in

the Cloud. This is especially important to support fault

tolerance and load balancing in the Cloud.

The approach also provides flexibility. It employs

DMTCP, an unprivileged, purely user-space checkpoint-

ing package. Potential examples of flexible application-

specific policies are: incremental checkpointing, dec-

laration of cutouts (regions of memory that don’t re-

quire checkpointing); application-specific memory com-

pression during checkpoint (for example, conversion

of double to float), and so on. End users can write

application-specific DMTCP plugins to support flexible

checkpointing.
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Further, the maintainability of a proposed architecture

is important. Here, we measure maintainability by the

number of lines of new code required, beyond the base

code of a checkpoint-restart package, or the base code

of the virtual machine itself. The proposed architecture

relies on just 600 lines of new code: 400 lines of code

for a KVM-specific plugin used to checkpoint the virtual

machine, and 200 lines of code for a TUN/TAP plugin.

The two DMTCP plugins above are external libraries

loaded into an unmodified DMTCP. Source code can be

found in the contrib directory of the DMTCP repository.

(See Section II for further details of plugins.)

The approach described here saves the state of an

arbitrary guest operating system, which runs within a

virtual machine under a Linux host operating system.

The primary virtual machine described in this work is

KVM/QEMU [1]. However, to demonstrate the gener-

ality of the approach, a plugin was also developed for

Lguest [2]. That plugin required about 100 lines of code,

as well as about 40 lines of modifications to the Lguest

kernel driver to extend its API. The methodology was

also applied to pure user-space QEMU [3]. Surprisingly,

DMTCP was able to checkpoint user-space QEMU

“out-of-the-box” (without the use of additional plugins).

Experiments in Section IV-C demonstrate compatibil-

ity with DMTCP’s performance optimizations: forked

checkpointing and mmap-based fast restart. Forked

checkpointing enables virtual machine snapshot in

0.4 seconds when running with the Btrfs filesystem,

while mmap-based fast restart allows resuming from

the snapshot in 0.3 seconds. In addition, Section IV-D

shows the run-time overhead to be too small to measure

when running the nbench2 [4] benchmark program.

Snapshots (including the filesystem): In VM ter-

minology, a snapshot saves not only the state of the

virtual machine, but also the filesystem used by that

virtual machine. The Btrfs filesystem [5] can be used to

implement copy-on-write incremental snapshots. Thus,

during checkpoint of a virtual machine, one can also

create either a full snapshot or an incremental snapshot

of the guest filesystem.
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On computers where the host operating system does

not provide the Btrfs filesystem, it is still possible to

employ Btrfs. An “inner” KVM/QEMU virtual machine

can be run nested inside an “outer” KVM/QEMU virtual

machine, which in turn runs under the host operating

system. The outer VM provides Btrfs and DMTCP runs

inside the outer VM, checkpointing the inner VM.
In the rest of this paper, Section II provides back-

ground on DMTCP plugins. Section III describes a

generic mechanism for checkpoint-restart for single

virtual machines. Section IV provides experimental

running times over a variety of scenarios, Section V

describes related work, and Section VI provides the

conclusion.

II. DMTCP, KVM, AND TUN/TAP: EXTENDING

CHECKPOINT-RESTART TO VMS

DMTCP (Distributed MultiThreaded CheckPoint-

ing) [6] is used to checkpoint and restart a network of

virtual machines. DMTCP provides a facility for third-

party plugins, as well as using them in its own internal

architecture. The work described here is based on the

svn revision 1967 of DMTCP [7].
DMTCP implements transparent user-space

checkpoint-restart. It does this by saving to a checkpoint

image all of user-space memory, along with pertinent

process state (thread information, open file descriptors,

associated terminal device, stdin/stdout/stderr, sockets,

shared memory regions, etc.). Internal DMTCP plugins

employ specific algorithms to checkpoint the state of

open files, network sockets, shared memory regions,

and other special cases.
This work uses the plugin mechanism to extend

DMTCP in two directions: support for KVM, and

support for the virtual-network kernel devices TUN

and TAP. TUN/TAP is used for networking of mul-

tiple KVM-based virtual machines. First, DMTCP

is extended to support checkpointing of a single

KVM/QEMU virtual machine. Second, DMTCP is ex-

tended to support checkpointing of the TUN/TAP net-

work, including any network data “in flight”.
In order to checkpoint KVM/QEMU, it is launched

under the control of DMTCP. A typical example of

launch, checkpoint, and restart is as follows:

% dmtcp_checkpoint --with-plugin \

dmtcp_kvm_plugin.so \

dmtcp_tun_plugin.so qemu ...

% dmtcp_command --checkpoint

% dmtcp_restart qemu_*.dmtcp

Section II-A discusses handling of the KVM/QEMU

virtual machine, while Section II-B discusses network

handling and the use of TUN/TAP.

A. Checkpointing the KVM/QEMU Virtual Machine

QEMU uses KVM to run user-space code natively

on hardware that supports virtualization. It uses KVM’s

API to initialize and control the guest virtual machine.

This API is based on the ioctl system call.

For the rest of this discussion, the term QEMU is

used both to refer to the QEMU virtual machine monitor

(VMM), and the virtual machine itself (including the

guest operating system).

DMTCP plugins offer two primary mechanisms to ex-

tend checkpoint-restart: a run-time mechanism (wrapper

functions around library calls made by the application);

and customization of checkpoint/restart to save and

restore the state of external objects. In this case, QEMU

is the target application being checkpointed, and the

KVM kernel module is the external object whose state

must be virtualized.

The run-time portion of the KVM plugin is primarily

concerned with a function wrapper around the ioctl

system call. This wrapper function captures system calls

by QEMU to KVM. This is used to make a local copy

of the parameters that QEMU used to initialize the

new virtual machine. At the time of restart, those same

parameters are used to reset the KVM parameters to

correspond.

The remainder of the KVM plugin is concerned with

saving state at checkpoint time, and restoring state at

restart time. The KVM saved state includes the state

of the virtual CPU (registers, etc.) and the state of the

interrupt controllers. The KVM API provides explicit

system calls that the plugin used to save and restore the

above state.

Another example of KVM/QEMU state is the virtual

memory tables. These tables are contained within the

user-space memory of the QEMU process itself (here

viewing QEMU as a process in the host operating

system). At the time of restart, the original mapping

between the guest physical pages and host physical

pages has been lost. However, the DMTCP plugin does

not need to create a new mapping. This is because

the page fault causes the hypervisor to re-establish the

mapping.

Figure 1 illustrates the generic architecture of a guest

virtual machine. At the time of checkpoint, the DMTCP

plugin discovers the parameters of the KVM hypervisor

in supporting the current state of the QEMU virtual

machine. DMTCP then writes to a checkpoint image the

memory of the QEMU virtual machine, which consists

of the user-space memory of the process of the host

operating system that is running QEMU.

Figure 2 presents the launching of a fresh virtual
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Figure 1: Generic VM Architecture. This sketch shows

the VM components of interest for checkpoint-restart.

The VM shell refers to the uninitialized data structures

in the kernel driver that describes the virtual machine. A

VM launcher initializes those data structures. A generic

checkpoint-restart mechanism restores those data struc-

tures appropriately.

machine at restart time, which is then modified to

correspond to the pre-checkpoint QEMU. At the time of

restart, the DMTCP plugin requests KVM to create a

fresh virtual machine (not specific to QEMU). Then,

DMTCP replaces this fresh virtual machine (which

exists as the user-space memory of a process in the host

operating system) by the original user-space memory

from the checkpoint image. Finally, the DMTCP plugin

makes calls to the KVM kernel module to reset the

KVM parameters so as to correspond to those of the

pre-checkpoint QEMU virtual machine.

B. Checkpointing the TUN/TAP Network

A TUN/TAP plugin extends DMTCP similarly to the

KVM plugin. Wrapper functions are implemented for

ioctl to detect how the network was set up.

For background, we briefly review how DMTCP

provides checkpointing over a TCP/IP network. At the
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Figure 2: Re-Starting Virtual Machine from Checkpoint

Image. DMTCP Plugin re-creates the original hardware

description from the checkpoint image. In addition, the

user-space memory of the guest VM is restored by

DMTCP at the original addresses.

time of checkpoint, “drains the network”: (a) by stop-

ping user threads of all processes in the computation;

(b) receiving from each socket until all network data

“in flight” has been collected; and (c) by then writing

a checkpoint image. A “cookie” (unique set of data)

is sent through each network connection so that the

receiver can determine when no further data is in flight.

The TUN/TAP plugin employs a similar strategy,

except that TUN/TAP does not provide an analog of

a socket connection. It operates at a lower level in

which network packets generated by the guest operating

system are injected directly into the physical network.

Only the guest operating system is aware of the socket

connections being used by the applications within it.

Two alternative approaches to draining the network

are: (a) to send a broadcast packet that plays the role

of the DMTCP cookie; and (b) to wait for a specified

time sufficient for all network packets to arrive. Mech-

anism (b) is used currently. For added reliability, at the

end of writing the checkpoint image, the network is
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checked to see if any late packets have arrived. If a late

packet is detected, the user can be warned, or a second

DMTCP checkpoint can be automatically initiated.

III. GENERIC MECHANISM FOR CHECKPOINTING A

SINGLE VIRTUAL MACHINE

The techniques employed by the KVM plugin from

Section II-A extend to other virtual machines. In partic-

ular, a DMTCP plugin was written for the Lguest virtual

machine. In this case, Lguest provides a control mecha-

nism by overloading the read and write system calls.

Plugin wrapper functions were written for these calls.

The Lguest kernel module also had to be modified with

about 40 lines of code, in order to extend the Lguest

API for read/write. This enables the Lguest plugin

to discover and restore the virtual machine state. The

plugin itself comprised 100 lines of code.

In the case of user-space QEMU (no KVM kernel

module), the task of checkpointing is even simpler.

The existing DMTCP package was found to correctly

checkpoint and restart QEMU without any additional

plugins. See Tables VII, VIII and X for timings across

Lguest, KVM/QEMU and pure QEMU.

IV. EXPERIMENTAL RESULTS

The experimental results are split into four subsec-

tions concerning: a network of virtual machines; the

use of Btrfs for filesystem snapshots; DMTCP optimiza-

tions; and performance on a commodity computer.

Scalability is tested for two different architectures:

distributed computing across a cluster of 12 nodes; and

shared memory computing employing 16 CPU cores.

Configuration (cluster of 12 nodes): Each of the

12 computers is a 12-core Intel Xeon (1.6 GHz) server

with 24 GB of RAM. The host operating system was a

64-bit version of CentOS-6.3 with Linux kernel 2.6.32.

KVM/QEMU was chosen as the VMM. The guests were

set up to run Ubuntu-12.04 Server version. DMTCP svn

revision 1967 was used for these experiments.

Configuration (single node with 16 cores): These

experiments were run on a 16-core AMD Opteron

(1 GHz) server with 128 GB of RAM. The host op-

erating system was a 64-bit version of Ubuntu-13.04

with Linux kernel 3.8. KVM/QEMU was chosen as the

VMM. The guests were set up to run Ubuntu-12.04

Server version. DMTCP svn revision 1967 was used

for these experiments.

A. Scalability of Checkpointing of Virtual Machines

Tables I, II, and III show that restart time increases

slowly with the number of VMs, while checkpoint time

is close to constant.

Further, Tables I and III show that two DMTCP

options (further analyzed in Section IV-C) can enable

checkpoint and restart in a fraction of a second. First,

in forked checkpointing, a child process is forked in

order to checkpoint while the parent continues running.

Second, in mmap-based fast restart, mmap is used to

map into RAM the memory saved within the check-

point image. Hence, the process restarts faster, while

remaining memory is paged into RAM on demand.

1) Scalability for a Distributed Network of VMs: Ta-

ble I shows checkpoint and restart timings of HPCC [8].

Number None (sec) F/C (sec) F/R (sec) F/C + F/R (sec)
Nodes Ckpt Restart Ckpt Restart Ckpt Restart Ckpt Restart

1 9.45 2.83 0.29 3.10 3.78 0.38 0.31 0.34

2 10.11 3.17 0.34 3.22 3.56 0.36 0.33 0.38

4 10.63 3.45 0.36 3.73 3.85 0.42 0.38 0.50

8 11.38 4.59 0.38 4.23 4.17 0.51 0.41 0.52

12 11.53 5.01 0.42 4.90 4.18 0.59 0.48 0.55

Table I: Checkpoint-restart of HPCC [8] benchmark on

a Gigabit Ethernet cluster, as influenced by DMTCP’s

optional optimizations: forked checkpoint (F/C) and fast

restart (F/R). DMTCP’s default gzip compression of

checkpoint images is incompatible with DMTCP F/R,

and so is not used in those cases. (Memory allocated in

each case is 1024 MB.)

2) Scalability for a Network of Virtual Machines

in Multi-Core Shared Memory: Table II shows the

efficiency for a network of virtual machines under

shared memory. Coverage over three types of parallel

middleware is demonstrated: MPI (HPCC [8]), TCP/IP

sockets (IPython [9]), and PVM (the SNOW parallel

computing framework for the R statistical programming

language [10]).

Number HPCC IPython Parallel R
of VMs Ckpt (s) Restart (s) Ckpt (s) Restart (s) Ckpt (s) Restart (s)

1 9.84 3.31 9.63 3.46 10.02 3.68

2 10.08 3.75 10.44 4.10 10.54 4.17

3 10.18 3.86 10.67 4.06 11.13 4.16

Table II: Checkpoint-restart times for virtual machines

on a single multi-core computer. (The allocated memory

in each case is 1024 MB.)

Table III shows that the two DMTCP optimizations,

forked checkpoint and fast restart, greatly enhance

checkpoint and restart times. See Section IV-C for

descriptions of those optimizations.

B. Btrfs: Incremental Snapshots of Virtual Machines

A virtual machine snapshot mechanism includes the

ability to save the current state of the VM filesystem.

This is implemented through the Btrfs copy-on-write
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DMTCP HPCC (sec) IPython (sec) Parallel R (sec)
Optimizations Ckpt Restart Ckpt Restart Ckpt Restart

None 10.18 3.86 10.67 4.06 11.13 4.16

F/C 0.37 3.17 0.41 3.92 0.38 3.91

F/R 3.25 0.36 3.48 0.34 4.01 0.27

F/C + F/R 0.38 0.35 0.43 0.34 0.41 0.37

Table III: Checkpoint-restart of three VMs on a 16-

core computer, while running different applications. The

DMTCP optimizations are forked checkpoint (F/C) and

fast restart (F/R). DMTCP’s default gzip compression of

checkpoint images is incompatible with DMTCP F/R,

and so is not used in those cases. (Memory allocated in

each case is 1024 MB.)

filesystem for incremental snapshots of the guest virtual

filesystem. Even though the host machines in our ex-

perimental facilities did not provide a Btrfs filesystem,

we were able to support a Btrfs filesystem through

nesting of one KVM/QEMU virtual machine inside

another. The outer virtual machine provides a Btrfs

virtual filesystem for the inner one. DMTCP runs as a

process inside the outer virtual machine, and is used

to checkpoint the inner virtual machine. Networking

of the VMs is supported through TUN/TAP, as before.

Table IV demonstrates the scalability for a distributed

computation across four nodes of the cluster.

1 node (sec) 2 nodes (sec) 4 nodes (sec)
Optimizations Ckpt Restart Ckpt Restart Ckpt Restart

with Btrfs 2.36 1.20 2.45 1.65 3.68 2.35

without Btrfs 33.28 35.67 34.46 37.20 39.73 39.47

Table IV: Snapshotting up to four distributed VMs run-

ning HPCC [8] under KVM/QEMU. The Btrfs filesys-

tem is used to snapshot the filesystem using nested

VMs. (Memory allocated in each case is 384 MB. The

size of the guest filesystem is 2 GB.)

Checkpoint (s) Restart (s)

with Btrfs 1.52 0.7

Without Btrfs 10.23 12.48

Table V: Configuration is same as for Table IV, except

that three VMs run on a single 16-core computer.

Tables IV and V show the advantage of using

the copy-on-write feature of Btrfs to store the guest

VM’s filesystem. At checkpoint time a small additional

DMTCP plugin rapidly copies the state of the entire

filesystem (which appears as a single file on the outer

guest’s filesystem), using the --reflink option of the

GNU binutils copy command. At restart time the state of

the guest filesystem is similarly copied back. DMTCP’s

facilities for forked checkpointing and mmap-based fast

restart were employed.

Tables IV and V show a performance penalty for

restarting without Btrfs (using nested VMs), as com-

pared to Table II (non-nested). DMTCP resides in the

outer VM. Since the virtualization of I/O devices is

never handled by KVM, the outer KVM then transfers

control back to the outer QEMU. The outer QEMU

resides in user space memory. The continual switching

between kernel and user-space accounts for the ineffi-

ciency.

C. Optimizing: Forked Checkpointing and Fast Restart

DMTCP supports two further performance opti-

mizations: forked-checkpointing and mmap-based fast-

restart. Table VI demonstrates the much improved per-

formance when using both of these optimizations. All

experiments are run on the 16-core computer with just

a single VM.

Allocated Memory KVM/QEMU (F/C+F/R)
(MB) Checkpoint (s) Restart (s) Image Size

128 0.20 0.10 184 MB

256 0.19 0.09 310 MB

512 0.21 0.10 568 MB

768 0.22 0.10 822 MB

1024 0.21 0.10 1.1 GB

Table VI: Forked checkpoint (F/C) and fast restart (F/R)

times for an idle VM under KVM/QEMU.

1) Forked checkpointing: Times for the forked

checkpointing optimization are given for an

idle virtual machine in Table VII. This uses the

“--enable-forked-checkpointing” configure

option of DMTCP. At checkpoint time, after “draining

the network”, a child process is forked. The child

writes out the checkpoint image in parallel with the

parent process continuing its execution. As expected,

the parent completes its portion of the checkpoint

largely independently of the size of the checkpoint

image or allocated memory. Forked checkpointing

typically requires 0.2 seconds.

The times for checkpoint and restart for KVM/QEMU

are larger than the times for user-space QEMU. This is

because the plugin for KVM/QEMU makes extra system

calls at checkpoint and restart time. The times can be

reduced by modifying the kernel driver to implement a

new system call that coalesces all of the operations of

the previous system calls.

2) Fast Restart: Times for the fast-restart optimiza-

tion are given for an idle virtual machine in Table VIII.

This uses the “--enable-fast-restart” option

of DMTCP. This option uses mmap to map the check-

point image from disk directly into virtual memory,

instead of copying data from disk to virtual memory. In
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Allocated Lguest (F/C) KVM/QEMU (F/C) QEMU (user-space, F/C)
Memory (MB) Ckpt (s) Restart (s) Image Size Ckpt (s) Restart (s) Image Size Ckpt (s) Restart (s) Image Size

128 0.16 1.18 30 MB 0.18 1.28 44 MB 0.16 1.70 59 MB

256 0.17 1.43 32 MB 0.20 2.38 90 MB 0.17 2.99 111 MB

512 0.18 2.52 35 MB 0.23 3.06 122 MB 0.17 4.44 171 MB

768 0.17 2.45 36 MB 0.21 3.11 122 MB 0.18 4.97 191 MB

1024 0.18 2.82 37 MB 0.24 2.96 116 MB 0.19 5.63 213 MB

Table VII: Forked checkpointing (F/C) optimization for idle virtual machines.

Allocated Lguest (F/R) KVM/QEMU (F/R) QEMU (user-space, F/R)
Memory (MB) Ckpt (s) Restart (s) Image Size Ckpt (s) Restart (s) Image Size Ckpt (s) Restart (s) Image Size

128 0.52 0.10 139 MB 0.69 0.10 182 MB 0.59 0.10 230 MB

256 0.83 0.10 267 MB 1.10 0.09 311 MB 1.33 0.10 408 MB

512 1.49 0.10 523 MB 1.84 0.10 566 MB 2.44 0.10 761 MB

768 2.50 0.10 779 MB 2.52 0.09 823 MB 3.54 0.10 1.1 GB

1024 3.02 0.10 1.1 GB 3.12 0.10 1.1 GB 4.48 0.10 1.5 GB

Table VIII: Fast restart (F/R) optimization for idle virtual machines.

this case, memory is demand-paged from the checkpoint

image on an as-needed basis.

In addition to faster restart times, one observes faster

checkpoint times. This is because fast restart disables

the default gzip compression. The execution time of

gzip normally dominates.

Note that on restart from a checkpoint image, the

shadow page tables inside the kernel must be recreated,

after which the pages will be faulted back into RAM.

This impact is not captured in Tables VIII and VI,

because most page faults occur after restart is complete.

D. Performance on a Commodity Host Computer

Configuration: The experiments of this section

employed a MacBook laptop with an Intel Core i7

(2.3 GHz), a 256 GB SSD, and 8 GB of RAM. The host

operating system was a 32-bit version of Ubuntu-12.10

with Linux kernel-3.5.7. The host was running natively

in its own partition on the MacBook. The guest was

set up to run Ubuntu-8.04 Desktop version. DMTCP

svn revision 1967 was used for these experiments.

Snapshots based on Btrfs (see Section IV-C) were used

for all experiments.

Run-Time Overhead of DMTCP: The numbers in

Table IX demonstrate the small overhead of executing

with DMTCP. DMTCP incurs this overhead due to

its use of lightweight wrapper functions around cer-

tain system calls. We used the nbench2 benchmark

program [4] for these tests. The nbench2 benchmark

program is a collection of applications that stress the cpu

and the memory. Indexes for memory-intensive, integer-

intensive, and floating-point-intensive computations are

reported. Each index in Table IX is an nbench2 measure

of performance, normalized to a value of one for the

AMD K6/233. Higher numbers are better.

Table IX shows that DMTCP has little impact

KVM/QEMU QEMU (user-space)
Memory Int. Float-point Memory Int. Float-point

Index Index Index Index Index Index

with DMTCP 31.48 25.54 47.81 2.52 3.47 0.29

w/o DMTCP 31.38 25.52 48.38 2.44 3.34 0.27

Table IX: Nbench2 benchmark program on virtual

machines. (Memory allocated in each case is 1024 MB.

Higher index numbers represent higher performance.)

on performance for a VM running CPU-intensive or

memory-intensive loads. As expected, the performance

of KVM/QEMU is much higher than user-space QEMU,

regardless of whether DMTCP is used.

Influence of Memory Footprint: Table X ana-

lyzes the influence of the VM memory footprint on

checkpoint-restart in the default mode of DMTCP (gzip

compression) for an idle virtual machine. For larger

sizes (guest VMs with 512 MB to 1024 MB), the

checkpoint times grow proportionally to the size of the

allocated memory for the larger sizes. Below these sizes,

other factors dominate. Restart times do not change

appreciably at the higher memory sizes.

V. RELATED WORK

Virtual machines support snapshots, a form of check-

pointing built into the virtual machine. Examples in-

clude Xen [11] and QEMU [3]. Xen has offered check-

pointing (snapshots) at least since 2006 [12]. QEMU

supports a “savevm” command to create a snapshot,

both with and without KVM. Live checkpointing for

KVM has been implemented using an additional check-

point thread [13]. The CEVM system [14] uses a com-

bination of KVM/QEMU’s live migration and snapshot-

ting facilities to provide a standalone high availability

system. Similarly to CEVM, both Remus [15] and VM-

µCheckpoint [16] offer high frequency checkpointing
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Allocated Free Lguest KVM/QEMU QEMU (user-space)
Mem. (MB) Mem. (MB) Ckpt (s) Restart (s) Image Ckpt (s) Restart (s) Image Ckpt (s) Restart (s) Image

128 2.5 2.29 1.26 30 MB 3.95 1.31 44 MB 4.34 1.69 59 MB

256 4.2 3.17 1.38 33 MB 6.42 2.35 89 MB 7.71 3.02 109 MB

512 184 5.39 2.42 35 MB 9.89 3.28 129 MB 11.87 4.43 170 MB

768 441 6.82 3.01 38 MB 9.21 3.31 130 MB 14.04 5.05 194 MB

1024 700 8.34 2.99 37 MB 10.03 3.13 122 MB 16.50 5.47 208 MB

Table X: Checkpoint-restart times for idle virtual machines. The checkpoint times include the times for compressing

the memory image and writing the contents to the disk.

of guest VMs on Xen. They employ Xen’s live migra-

tion and dirty page tracking facilities for incremental

state snapshots. An earlier technical report provides

additional details on the use of a DMTCP plugin in

checkpointing a single virtual machine [17].

The Emulab system has demonstrated checkpointing

of distributed systems through the use of virtual ma-

chines [18]. They did so using Xen and a guest virtual

machine that ran a modified Linux kernel. The modified

Linux kernel logs packets and replays them on restart. In

addition, Emulab uses “delay nodes” (additional virtual

machines) sitting between the user’s virtual machines,

in order to throttle network bandwidth to an acceptable

level. In contrast, the current approach does not incur

the run-time overhead of delay nodes, and supports

any guest operating system — not just a customized

Linux kernel. Finally, Emulab operates over the Xen

hypervisor, while the current approach employs hosted

virtual machines.

Checkpointing of distributed computations is pri-

marily handled by one of two mechanisms today:

checkpoint-restart services for MPI; and transparent

checkpoint of arbitrary distributed computations. MPI

implementations of checkpoint-restart typically operate

by first stopping all MPI messages [19], [20], [21].

When it can be detected that there are no MPI mes-

sages in transit, a single-host checkpointing package is

then employed. Often that single-host package is the

kernel-based BLCR [22] package. Open MPI supports

the option of using either MTCP (the single-process

component of DMTCP) or BLCR. In addition to BLCR,

two other commonly used packages for single-host

checkpointing are CryoPid2 [23] and OpenVZ [24]

(based on CRIU [25]).

DMTCP [6] was the first transparent user-space

checkpoint-restart for distributed computations, and re-

mains the most widely used example of this. Further,

unlike the MPI approach, DMTCP permits network

messages to be in transit when the checkpoint occurs.

For the support of snapshots, one requires a copy-

on-write filesystem. A common current choice is

QCOW2 [26], which supports the creation of incremen-

tal snapshots. Another recent choice is BlobSeer [27], as

used in [28, Section 3.3]. That choice has the advantage

of exposing the raw checkpoint image file to the host

operating system or hypervisor. The work described

here uses Btrfs [5]. Like BlobSeer, Btrfs exposes the

raw checkpoint image to the host, making it compatible

with the use of DMTCP from outside both the VM and

the VM kernel driver.

VI. CONCLUSION

A mechanism for checkpointing a network of virtual

machines has been presented. This uses the plugin

architecture of the DMTCP checkpoint-restart package,

on top of the KVM/QEMU checkpoint-restart package.

The implementation requires a 400-line KVM-specific

plugin, as well as a 200-line plugin to adapt Linux’s

TUN/TAP to allow DMTCP to “drain the network”

prior to checkpoint. The plugin mechanism has the

potential to be easily adapted to other virtual machines.

The integration of the Btrfs copy-on-write filesystem

with nested copies of KVM/QEMU was used for fast,

incremental snapshots of a network of virtual machines.
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