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Abstract—Researchers with large-scale data-intensive applica-
tions often wish to scale up applications to run on multiple
clusters, employing a middleware layer for resource management
across clusters. However, at the very largest scales, such mid-
dleware is often ‘“‘unfriendly” to individual clusters, which are
usually designed to support communication within the cluster,
not outside of it. To address this problem we have modified the
Work Queue master-worker application framework to support a
hierarchical configuration that more closely matches the physical
architecture of existing clusters. Using a synthetic application we
explore the properties of the system and evaluate its performance
under multiple configurations, with varying worker reliability,
network capabilities, and data requirements. We show that by
matching the software and hardware architectures more closely
we can gain both a modest improvement in runtime and a
dramatic reduction in network footprint at the master. We then
run a scalable molecular dynamics application (AWE) to examine
the impact of hierarchy on performance, cost and efficiency for
real scientific applications and see a 96% reduction in network
footprint, making it much more palatable to system operators
and opening the possibility of increasing the application scale by
another order of magnitude or more.

I. INTRODUCTION

Researchers with large-scale data-intensive applications in
many fields of science and engineering often wish to harness
multiple computing resources simultaneously — they may own
a private cluster, access a campus shared cluster, request
an allocation on a national computing resource, or purchase
resources from a commercial cloud. In order to construct
applications of the largest scale, middleware is needed that can
harness multiple resources simultaneously. Work Queue [6] is
one such example that has enabled building large applications
that attack problems such as genome assembly [10], protein
folding [1], and other workflow applications [2]. Using mul-
tiple clusters gained from national cyberinfrastructure, these
applications have successfully scaled up to thousands of nodes.

However, at the very largest scales, Work Queue is often
“unfriendly” to the individual clusters providing service. Each
worker manages a single core with its own private data
cache and requires a direct TCP connection to the master,
wherever that master is running. Oftentimes this results in
redundant data transfer, as workers on the same filesystem
do not share their cache, congestion for wide-area network
links, and special permissions for cluster firewalls and network
devices to allow inter-cluster communication. Furthermore,
Work Queue’s approach to overcommitment of resources, like
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filesystems, is to continue operating until the resource is
exhausted and then clean up everything at once. This leaves
overly-ambitious applications prone to impacting other users
of the system, requiring intervention by local administrators.

In this paper, we describe our modifications that make Work
Queue more cluster-friendly for data intensive applications
This involves adding two new components to the framework:
a multi-slot worker which can manage multiple tasks sharing
a common storage space, and a foreman which manages
local storage and coordinates the activity of workers within
a cluster. With these components we eliminate redundant data
transfers to tasks running on the same node, significantly
reduce the number of wide area network connections, and gain
more control over resource management on a cluster-by-cluster
basis. Additionally, the new design gives local administrators
a point of control where they can monitor and control the
participation of the cluster within the global computation.

A key technique of this solution is the coordinated manage-
ment of computation and data. Work Queue does not permit
applications to arbitrarily access data on demand, which typi-
cally leads to overloads of either storage or network capacity
as workloads scale up. Rather, the binding between tasks and
the data they access is made explicit in the system, so that
data movement can be scheduled along with task assignment,
throttled to conform to local policies, and localized to avoid
undue impact on shared resources. The improved system is
highly aggressive about garbage collection, so that the system
can be easily torn down on a moment’s notice.

To evaluate the improved system, we first explore the
behavior of a synthetic benchmark run in a variety of network
conditions using both flat and hierarchical frameworks. We
perform a sensitivity study of the benchmark run under varying
conditions of worker volatility, network heterogeneity, and
data imbalance, observing that the improved system offers
a modest improvement in execution time and particularly
benefits the cluster operator by dramatically reducing wide
area network usage.

Finally, we demonstrate the impact of these changes on a
production molecular dynamics application by running it on
several thousand cores from four distinct clusters — a shared
HPC cluster, a campus Condor pool, and two FutureGrid sites.
We show that using the hierarchy reduces the network footprint
of the application at the master by 96%, making it much more
palatable to system operators and opening the possibility of
increasing the application scale by another order of magnitude.
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Fig. 1: Work Queue Architecture

II. FLAT ARCHITECTURE

In previous work we introduced the Work Queue application
framework [6]. From the programmer’s perspective, a Work
Queue application is a program written in the fork-join style
using a library interface in C, Perl, or Python. The programmer
composes tasks that consist of individual applications, each
annotated with the input files that they require and the output
files they are expected to produce. Tasks are submitted to the
queue with work_queue_task_submit (), and returned
to the caller via work_queue_wait (). In pseudo-code the
main loop of most Work Queue programs look like this:

while (not done) {
for (each new task) {
task = work_queue_task_create (command) ;
/% specify files used by task here x/
work_queue_task_submit(queue, task);

}

task = work_queue_wait(queue);

/% process the result of this task x/
work_queue_task_delete (task);

To execute the application, the end user must start a number
of generic worker processes on desired machines. This can be
done manually or by submitting the workers as jobs in a batch
system. Each worker contacts the master process and reports
its available resources, including CPU cores, disk space, and
memory. To execute a task the master first identifies the best
connected worker for the task using one or more resource
metrics (average measured execution speed, available storage
or memory, cache contents). It sends the input files necessary
for the task, which the worker stores on its local disk. The
master then sends the command to be run for that task which
is executed by the worker in the sandbox directory where the
files are stored. When the task is complete the master requests
the output files, any input or output files marked as cacheable
are retained on the worker for use by future tasks, and the
remainder are deleted. The master keeps a list of each worker’s
cache contents to inform future scheduling decisions.

Work Queue is deliberately a shared-nothing architecture.
Every task is self contained, being described entirely by its
input files and a command string. Each worker relies only
on the files transmitted to it by the master. This permits the
system to operate correctly across a variety of computational
resources without requiring a common shared filesystem or

other data movement system. It also gives the master visibility
into the data state of the system, so that tasks can be assigned
to appropriate storage resources.

Typically, tasks executed through Work Queue have two
kinds of data dependencies: common data consists of pro-
grams, libraries, configuration files, and other static data that
is shared between multiple tasks, while unique data serves as
input to a single task, and is never used again.

A few other elements of the system are worth a brief
mention. Workers are directed to connect to masters either
by providing an explicit hostname and port or by specifying
a logical “project” name which is resolved through the use of
an external catalog service. Security is maintained by the use
of a shared key which is securely verified at the start of each
network connection. Fault tolerance is achieved by tracking
the tasks assigned to each worker and reassigning in the event
of a failure. Garbage collection is performed by having each
worker to delete its cache of data whenever its connection to
the current master fails or the worker shuts down.

In a university context, it is common to have access to
multiple clusters of different kinds — a single user may have
access to a dedicated cluster of their own, a larger shared
cluster at their own institution, an allocation on national
cyberinfrastructure, and pay-as-you-go access to a commercial
cloud. For a problem of very large scale one might wish to
harness all of those resources simultaneously. This can be
accomplished with Work Queue by running workers at each
resource that report back to a single master process at whatever
site contains the original data and applications to be run.

While this multi-site technique does work and has been used
for real applications harnessing 3000+ cores[1], it runs into
some fundamental problems as the application size scales up:

Master Bandwidth. Every task requires the master to send
some amount of data to describe it, limiting the number of
workers a master can support before its bandwidth is saturated.

Resource Volatility. For large-scale computations resources
leave and join frequently, due to equipment failure, network
disruption, system policy and other factors. Every time a
worker reconnects the common data must be re-sent, consum-
ing additional bandwidth and diverting the master’s attention,
slowing the computation.

Administrator Policy and System Limits. Oftentimes
cluster policy or operating system configurations will enforce
arbitrary limits on a user’s computation that are inaccessible
or even invisible to the user. Things like limits on the number
of open file descriptors or simultaneous TCP connections, or
firewall or network translation devices preventing inter-cluster
communication become major impediments as applications
reach increasingly larger scales.

III. HIERARCHICAL ARCHITECTURE

To address these problems, we have extended Work Queue
into a fully hierarchical system, by adding two new compo-
nents: a multi-slot worker and a foreman.

A multi-slot worker represents a machine capable of running
multiple concurrent tasks. The master can transmit an arbitrary
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Fig. 2: Resource Discovery and Reporting

number of tasks to the multi-slot worker, which then runs as
many tasks simultaneously as the available resources (cores,
memory, and disk) will permit. If the master transmits more
tasks than can be executed simultaneously, they are queued
until the necessary resources are available.

In a similar way, a foreman represents a tree of workers.
The foreman connects to the master and accepts tasks like a
worker, while allowing workers to connect to it as a master.
As the foreman receives files and tasks from its supervisor,
it stores the files on its local disk and queues the tasks up
for dispatch to its subordinates. Common files that are stored
at the foreman can be transmitted to its subordinates without
incurring any load on the master. As workers connect to the
foreman, or when connected workers fail or are removed, the
foreman reports these resource changes to the master, allowing
the master to appropriately allocate tasks.

The system is designed to accept an arbitrary level of
composition. Foremen can supervise foremen, leading to a
control structure that is many layers deep. Furthermore, work-
ers can connect directly to the master, even when foreman
are also connected. From the master’s perspective a worker
and a foreman are nearly indistinguishable: both report their
available resources for task execution, except that the resources
reported by the foreman may change frequently as workers
join and leave the system.

The hierarchical architecture offers solutions to many of
the problems encountered when scaling up traditional master-
worker applications:

Intermediate Caching. One of the methods the hierarchical
Work Queue architecture offers for increasing the scale of
applications is cluster-local caching. In a flat architecture, data
that can be cached must be transferred from the master to every
new worker that needs it. In a hierarchical system any common
data shared by jobs assigned to a given foreman only needs
to be transferred once from the master to the foreman where
it can be accessed repeatedly by the foreman’s subordinates.
This allows the master to focus on transferring unique data to
set up new tasks, allowing the foremen to transfer common
data to multiple workers in parallel.

Furthermore, it is often the case that bandwidth into a cluster
is much less than the bandwidth within a cluster, sometimes
by an order of magnitude or more. In a flat system this would
result in a long transfer time for the common data sent to
every worker. In a hierarchical system that data is transferred
only once over the slow link to a foreman located in the
cluster, which can then retransfer that data using the higher
intra-cluster bandwidth to each of its subordinates.

Resource Volatility. In the presence of large-scale resource
volatility, where frequent disconnection and reconnection ef-
fectively multiplies the number of “new” workers seen by the
system, a hierarchical architecture can help ameliorate the data
transfer burden by shifting it to the foremen. When “new”
workers connect, instead of diverting the master’s attention
from task dispatch, the foreman they connect to can handle
the data transfer. This isolates any slowdown due to additional
data transfer at the affected foreman, rather than impacting
the entire system. The master can continue to handle tasks
assigned to the unaffected foremen while the affected one
brings the new worker up to speed. Foremen can also retain
tasks even when the workers die, retransmitting those task
descriptions to the reconnecting workers without needing any
further communication from the master.

Administrator Policy and System Limits. Many of the limits
encountered when scaling up Work Queue applications can be
avoided or their impact can be minimized though the use of a
hierarchical architecture. By splitting up the control structure,
each foreman can operate well within the limits imposed on
it. Once any limit is reached, a new foreman node can be
allocated to control the remaining resources.

Furthermore, by introducing the foreman we added a con-
venient point of control for each cluster. A foreman can be
configured to limit its bandwidth utilization, disk consumption,
or consumed concurrency in order to ensure that it’s resource
consumption remains within the parameters set by the system
administrator. These policies can be set on a per-cluster basis,
and remove the burden for ensuring compliance with cluster
limits from the master.

Network Administration. One of the major issues facing
users of distributed software are the multitude of adminis-
trative restrictions and constraints encountered when using
community resource managers. Oftentimes for security reasons
computational clusters are isolated by firewall preventing
communication from within the cluster to the outside world
except via a small number of head- or submission- nodes.
Furthermore, even in open clusters it is common for systems
administrators to be wary of large numbers of network con-
nections to the outside world spontaneously erupting, as that
pattern looks suspiciously similar to malicious behavior.

The hierarchical architecture enables the user to run a single
foreman process on the head node, having all jobs within the
cluster report to that foreman, who makes a single connection
to the outside world. This keeps systems administrators happy,
as they have a single well-known application directing network
traffic, while still allowing the user to harness whatever shared



resources they might have access to.

Transfer Cost. One prevalent trend in distributed computing
is the increasing reliance on pay-as-you-go cloud services.
These infrastructure as a service providers offer instantaneous
scaling to whatever your problem size is, often for far less
than maintaining a traditional cluster would cost. However,
each provider has a different set of policies for how much each
resource costs and when that cost is charged. The hierarchical
architecture allows the user acquiring the cloud resources to
specify policy for each cloud, leaving the foreman for that
provider in charge of managing the resources available to it
to maximize value and minimize costs. This frees the master
from having to make those decisions, and allows each foreman
policy to be tailored to the cost structure of its surroundings.

IV. IMPLEMENTATION

Transforming the architecture described in Section II into
the system described in Section III required both adapting the
worker to handle multiple tasks simultaneously and the im-
plementation of a foreman process. For the multi-slot worker
the architecture was already mostly in-place, requiring only
mechanisms to assign multiple tasks to the same worker and
monitor those tasks simultaneously during execution.

The foreman was implemented as an amalgamation of the
worker and master components. The foreman attaches to its
supervisor like a worker, accepting files and tasks via the
same communication protocol. Once a task description is
received, the foreman packages and submits it to an internal
work_queue, where it is dispatched to any workers connected
to the foreman.

Implementing and testing the multi-slot and foreman com-
ponents required us to reconsider many previously well-
understood aspects of the system including namespacing,
resource reporting, cache management and failure recovery.
Namespacing. Under the flat Work Queue architecture, each
worker manages a single task. This simplified both caching and
file management, ensuring that as long as the files attached to
a task had no namespace collisions, the task executing on a
worker would also have no namespace collisions. Furthermore,
each task could have a file with the same remote name attached
to it, and as long as none were marked as “cacheable” their
contents did not matter, as they would never interact.

Task 1: Task 2:
Cmd: "./exe in > out" Cmd: "./exe in > out"
In : exe, cache In : exe, cache
In : in, no-cache In : in, no-cache
Out: out, no-cache Out: out, no-cache

S 7

=~

exe
7 7
7%

work_dir/2/

work dir/1/

work_dir/

Fig. 3: Namespace Handling

When introducing the hierarchy this policy of exclusive
namespaces comes into conflict with the desired benefits of
common caching. Files must be uniquely identified if we wish
to share data among concurrently executing tasks without re-
transfer. If they are not, either incompatible versions of a file
will overwrite each other, or the segmentation necessary to
prevent name collisions would prevent any attempt to share
caches among tasks.

To resolve this problem we have implemented task-centric
file management at the foreman and worker processes. Each
task gets a dedicated sandbox within the worker’s active
directory. Prior to task execution, the necessary input files are
linked from the worker’s common cache directory into the
task’s sandbox. Upon task completion the output files marked
as cacheable are moved into the worker’s cache directory, and
the remainder are saved for retrieval. Once the relevant files
have been retrieved, the task’s sandbox is removed.

This solution has a beneficial side effect of preventing a
misbehaving task from leaving untracked files polluting the
workspace. Every new task is guaranteed a pristine working
environment, containing only the files explicitly requested.
Resource Management and Reporting. Another major con-
sideration in implementing hierarchy was identifying how
resources attached to a project should be reported to and
managed by the master. This is especially important when
heterogeneous or shared homogeneous resources are attached
to a foreman, as resource distribution is unlikely to be uniform
and may also be unstable. The capabilities of each resource
available have major implications for scheduling policy and
failure profiles and must be carefully managed by the master.

Each worker reports to its supervisor the number of cores
available, amount of free disk space, system memory, and its
architecture and operating system. This allows the supervisor
to assign tasks and avoid overcommitment.

In the case of foremen, it would be impractical to report to
the master the details of every resource, as that would drown
the master in data without much benefit. Instead, the foreman
reports key statistics about each resource, including minimum,
maximum, and total available. This gives the master enough
information to ensure that a task assigned to a foreman will be
able to be completed: assigning a task under or at the minimum
value for a foreman ensures that every worker connected to
the foreman can run the task, while assigning a task at or
under the maximum ensures that at least one worker can run
it. Finally, tracking the total resources used in comparison to
the total available allows the master to avoid overcommitment.
Failure Recovery. With the addition of hierarchy to Work
Queue the cost of a failure increased. Instead of losing just
one task per failure the loss of a foreman or multi-slot worker
means the loss of all resources it manages. When each foreman
is configured to manage many workers, each failure can result
in the loss of a huge fraction of the active resources.

The solution to this problem is a combination of increasing
the resources and reliability of the foremen and increasing
their tolerance for temporary or transitory failures. Adding
additional foremen reduces the cost of each failure, while



running the foremen on well-provisioned, reliable machines
reduces its frequency. Increasing the tolerance of the system
for transitory failures by increasing timeout values or allowing
for disconnection and reconnection also reduces the failure
rate, but requires a mechanism (or policy) for distinguishing
between transitory and permanent failures, as the only thing
worse than a system which fails often is a system which never
fails but never completes.

For our implementation, where possible, we run the foremen
on large, well-provisioned and fairly reliable machines, where
the probability of random failure is small. We also relaxed
some timeouts, allowing us to ignore brief interruptions in
service and reduce observed failures to an acceptable rate.
Cache management. Under the flat Work Queue, caches were
managed by a combination of master oversight in the form of
explicit delete commands for files which should not be cached
and disk monitoring on the worker’s side. When attempting to
store a file at the worker, if there was insufficient space it
was considered an error and the worker would reset itself.
Given the relatively minor cost of a failure this produced an
acceptable method of cache management, allowing the master
to intelligently schedule tasks to take advantage of cached data
while minimizing undesirable interactions with uncacheable
data and providing an escape valve for overfull resources.

With the addition of hierarchy and multi-slot workers the
cost of resetting due to an overfull cache becomes much
larger. Under this system a more proactive approach to cache
management is needed. For this system we implemented a
more aggressive cache clearing strategy, with the workers and
foremen actively deleting any file not specifically marked as
cacheable. Along with ensuring that developed applications
do not cache unnecessary files and correctly provisioning the
foremen nodes, this has reduced catastrophic restarts to a
manageable level.

V. SENSITIVITY STUDY

The net impact of hierarchy in a master-worker system is
affected by numerous task and system characteristics. To deter-
mine the role each characteristic has in the overall performance
of the system we performed a sensitivity analysis. We set up a
synthetic application, modeled after AWE, in which we could
vary each component of the system to get an accurate picture
of which elements provide the most impact. Each experiment
consisted of 500 tasks that would “busy-sleep” for one minute
each. For the default configuration each task consumed 400MB
of Common data and 100MB of Unique data per task, with
all communication between the master and its subordinates
occurring on a 1Gbps network, and near-zero chances of
worker failure. We ran each experiment using both flat and
hierarchical setups with multiple foremen.

Resource Volatility. We investigated the behavior of the
system with varying levels of resource volatility by adding
a tuneable parameter to the work_queue_worker that
introduces a chance of failure every minute. Upon failure, the
worker disconnects from its supervisor and then immediately
reconnects. We varied the volatility of each worker from a 0%

chance of failure up to a 30% chance of failure per minute and
used the system logs to determine the runtime of the system,
number of failures that actually occurred, and the amount of
data transferred by each component.

We expected to see a slight benefit for performance due to
the isolation of failures at the foremen. We also expected to
see a drastic reduction in the amount of data the master had
to transfer relative to a flat architecture as volatility increased,
since all error handling would be performed by the foremen.
Bandwidth. We also investigated the effect of hierarchy on
the data transfer overhead when the available bandwidth at the
master varies. We used the Work Queue’s bandwidth limiter
and varied the bandwidth available at the master from the
default 1Gbps down to 200Mbps. For the hierarchical tests
the bandwidth at the foremen was left at 1Gbps. We expected
to see a performance benefit with the hierarchical system as
the master-to-foreman bandwidth ratio increased, due to the
substantial savings in transfer cost for common input data.
Data Size - Common versus Unique. Finally we investigated
the impact of varying the ratio of common to unique data on
the relative performance of our hierarchical versus flat systems.
Since the primary benefit of hierarchy for performance in the
absence of volatility is the ability to transfer common data in
parallel, we expected to see improvements when the common
data made up a substantial portion of the overall data transfer.
When the unique data was large in comparison we expected
to see the effect of the additional data transfer from master
to foreman dominate, and probably see a slight penalty to
performance compared to a flat system.

VI. RESULTS/ANALYSIS

Worker Volatility. In the presence of volatile workers the
foreman nodes in a hierarchical architecture minimize the
amount of redundant data the master must transfer. This can
be seen in Figure 5a, where the master in the hierarchical
architecture transfers the same amount of total data regardless
of the amount of volatility, while the master in the flat
architecture transfers a substantial amount of additional data
as the volatility increases.

This data transfer difference also has a significant effect
on the runtime of the workflow. By providing the foremen
to handle failures, the master can focus on dispatching new
tasks instead of resending data to failed workers. Figure 5b
shows that as the volatility climbs the average runtime of the
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workflow on the hierarchical system only gradually increases,
while the flat system slows down by up to a factor of two.
Bandwidth. As expected, the imbalance in available band-
width between the master and the foremen versus the foremen
and their workers did not affect the total amount of data
transferred (Figure 5c). For each bandwidth constraint, the
master in both architectures transferred a consistent amount of
data, though the hierarchy reduced the amount of common data
transmitted by the master. This reduction, coupled with the
difference in bandwidth between the two sites, leads to a slight
reduction in runtime as the bandwidth difference increases.
This is shown in Figure 5d, where when the bandwidth at
the Master is limited to 200Mbps (approximately % of the
bandwidth between the foremen and the workers) we see a
19% reduction in runtime.

Data Size. In the absence of worker volatility the primary ef-
fect of the hierarchical architecture on runtime is the reduction

in common data transferred by the master, and the additional
parallelism in transferring that common data achieved by the
foremen. When the amount of data common across all tasks
is large compared to the unique data per task we should see a
slight reduction in runtime. The first three columns in Figures
Se and 5f reflect this.

However, as the proportion of common data versus unique
data decreases, the additional latency imposed by the foreman
on transmitting unique data begins to have a substantial
negative effect on performance. For tasks that are almost
entirely unique data, the hierarchical system can impose a
performance penalty as seen at the left side of Figure 5f.

The results of this study indicate that the hierarchical work
queue architecture enables a reduction in network footprint
at the master in every circumstance, and that the reduction
becomes substantial when the amount of common data across
all transactions is large or the amount of volatility in the



available resources is high. Furthermore, it demonstrates a
slight performance improvement in the presence of worker
volatility or network bandwidth imbalance.

VII. CASE STUDY: MULTI-SITE AWE

Accelerated Weighted Ensemble (AWE) [1] is a method for
enhancing the sampling accuracy of the molecular dynamics
simulations of protein systems. It partitions the conformational
space of a protein into cells and creates a fixed number of
simulation tasks or “walkers” in each cell. Every walker is
assigned a probabilistic weight such that they provide an
unbiased sampling of the conformational space. The sampling
efficiency is further improved by utilizing a large number of
short simulation steps.

Our earlier work described the implementation of AWE
using the original flat Work Queue framework and demon-
strated its inherent scalability in harnessing 3500 cores from
heterogeneous resources in multiple distributed computing
platforms [1]. For the case study in this work, we use the
improved hierarchical Work Queue to show scalability while
simultaneously consuming less wide-area network bandwidth
and harnessing resources in a more cluster-friendly manner.
Experimental Setup. We ran AWE on the WW protein do-
main using 20 walkers, resulting in 12,000 tasks per iteration.
There was 40.5MB of common data and each task’s unique
input files totaled 75KB.

We used resources from four clusters - Notre Dame’s High
Performance Cluster, the ND Condor pool, FutureGrid’s Sierra
cluster (at San Diego Supercomputer Center), and FutureGrid’s
India cluster (at Indiana University, Bloomington). At each
independent cluster (ND-HPC, Sierra, and India) we ran a
single foreman on the head node and set up single-slot worker
processes for every core in our allocation: 200 workers at ND-
HPC and 800 workers across the two FutureGrid sites.

We submitted 5000 workers to the ND Condor pool of
which approximately 3400 were seen over the course of the
experiment. Due to an IT department policy there is a limit of
1024 simultaneous TCP connections on each Condor node, so
we allocated one foremen for every thousand Condor workers.
Each foreman ran on its own machine at the same data center
as the majority of the Condor pool.

Scale. We ran the experiment for about 15 hours, completing
three iterations. Figure 6 shows the concurrency we achieved
during the experiment. The valleys correspond to synchro-
nization barriers at the end of each iteration, while at our
peak (around hour 6) we saw 3862 workers simultaneously
executing AWE tasks. The drop in concurrent workers at hour
8 occured because of the termination of allocated resources in
FutureGrid (due to limits on resource usage) and Condor (due
to contention for resources). Table I shows our measurements
of this experiment, including the number of tasks dispatched
by the master and each foreman, the total failures of foreman
and its workers, the average bandwidth observed between each
component, and the cumulative data sent by each entity.

Failures. Over the course of a 15-hour experiment using
thousands of resources spanning multiple locations some num-
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Fig. 6: Busy workers over the duration of the AWE run.

ber of failures are inevitable. Causes may include network
disruptions, local disk failures, and scheduling policies. Ex-
amining the results in Table I we noticed the number of
tasks dispatched by the master to a foreman was often higher
than those dispatched by that foreman: this indicates that the
foreman failed before being able to dispatch all the tasks
assigned to it. On closer inspection we found that the foreman
failed multiple times in a very short timeframe, indicating
a short-term resource failure rather than transient network
fluctuations. Worker failures had a much more varied set of
causes, including resource failures, network disruptions, and
terminations due to cluster scheduling policies.

Bandwidth and Data Usage. Table I shows the average
bandwidth measured between the master and foremen, as well
as between each foreman and its workers. The master to
foreman bandwidth is consistently smaller than the foreman to
worker bandwidth, regardless of the platform. The difference
was especially pronounced in the case of our foreman running
at the Sierra site in San Diego, over 1800 miles away.

Table I also shows the data sent by the master and foremen,
as well as an estimate of the data a master in a flat configura-
tion would have sent when running the same experiment. This
estimate was derived by adding the data sent by each foreman
and removing the data resent due to foreman failures, since
those retransmissions do not exist in a flat configuration. In
comparison to the hypothetical flat master configuration, we
see on average a 96% reduction in data transmitted by the
hierarchical master.

VIII. RELATED WORK

While master-worker frameworks and hierarchical structures
have been studied before, both independently and in combi-
nation, our contribution focuses on the data-intensive compu-
tations found in modern scientific applications. Furthermore,
most studies of hierarchy discuss systems intended to replace
the middleware layer at every cluster rather than work in
concert with each scheduler to combine disparate resources.

Work Queue is not the first master-worker framework
to look at hierarchy as a solution for scaling. Ranaldo et
al present one such framework implemented in Java. Their
framework uses the ProActive [7] software suite for commu-
nication and requires both a custom master application and a
specially designed worker executable, both implemented as
Java Classes with a programming interface reminiscent of



Max Tasks Resource Average BW Total Data Sent
Workers Dispatched Failures (Mbps) (GB)
M F F W M—F F-W M—F F—W EstFlat M | Savings (%)

ND- Fm 1 447 9279 9064 7 59 178 809 1.0 74.6 333 97.8
Condor Fm 2 915 14614 14033 13 294 135 900 1.7 168.9 74.6 97.7
Fm 3 499 2451 1657 2 9 124 2163 0.3 53.5 21.4 98.6

Fm 4 688 3146 2431 2 69 137 1481 0.4 69.0 28.3 98.6

Fm 5 805 18715 18428 11 24 124 891 1.9 191.7 50.2 96.2

ND-HPC Fm 1 200 7902 6855 50 6 139 492 2.6 179.4 22.5 88.4
Future-  Fm Sierra 678 6793 4905 49 1120 11 449 2.6 186.4 107.6 97.5
Grid Fm India 88 1747 1747 3 75 267 392 0.3 16.1 12.3 97.6
Total 3862 64647 59120 141 1656 - - 10.8  939.6 350.2 96.9

TABLE I: Statistics for the master-foreman and foreman-worker interactions from the AWE run on the WW domain.

Apache Hadoop [5]. However, their system is focused on tasks
requiring minimal data, rather than the more data-intensive
applications Work Queue is designed for. Similarly, Dai et all
look at a system for coordinating large numbers of low-data
tasks, specifically using hierarchy as a way to coordinate work
stealing within and across clusters.

Many times grid middleware systems will implement hier-
archy as a mechanism to coordinate resources across multiple
clusters and even campuses. SZTAKI desktop grid [3] and
the Hierarchical Metacomputer Middleware [9], [8] software
suite are both examples of grid systems that use hierarchy for
organization, specifically for coordinating access to resources
behind firewalls or otherwise inaccessible due to cluster or
organizational policies. However these software suites require
administrator intervention to set up and are primarily con-
cerned with enforcing fairness among many users rather than
improving performance for one user.

Finally, there are multiple groups that have looked at using
hierarchical frameworks or abstractions for coordinating con-
veniently parallel tasks. Berthold et al [4] and Priebe et al [11]
explore a variety of architectures for managing large master-
worker systems. Both assume minimal data and homogeneous
networks, and in both systems task generation is leaf-driven,
with the upper layers of the hierarchy used as conduits for
load balancing instead of Work Queue’s centralized control.

IX. CONCLUSIONS AND FUTURE WORK

Our results demonstrate substantial benefits for data transfer,
workflow runtime and/or administrative headaches under any
of the following conditions, or a combination thereof.

Large Shared Data. Hierarchy substantially reduces the
cost to the master of transferring common input data allowing
it to concentrate on dispatching tasks while the foremen
transfer that common data to their workers in parallel.

Heterogeneous Networks. Hierarchy allows common data
to be transferred only once across slow inter-cluster connec-
tions, with the foreman handling distribution of the data within
the cluster using the higher-speed intra-cluster network.

Volatility in the Workforce. Hierarchy minimizes the
effect of volatile resources by having the foreman absorb
the additional data transfer, allowing the master to focus on
dispatching new tasks rather than replacing lost common data.

Hierarchy offers a mechanism for users to comply with
cluster policies and system limitations while still harnessing

the resources they have available, by using the foreman as
both a bridge from isolated clusters to the outside world and
a control point to monitor and limit resource consumption.
It also benefits the end user through increased access to
otherwise unusable resources and by offering performance
improvements in common operating circumstances.
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