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Abstract—The availability of large number of processing nodes
in a parallel and distributed computing environment enables
sophisticated real time processing over high speed data streams,
as required by many emerging applications. Sliding window
stream joins are among the most important operators in a
stream processing system. In this paper, we consider the issue
of parallelizing a sliding window stream join operator over
a shared nothing cluster. We propose a framework, based on
fixed or predefined communication pattern, to distribute thejoin
processing loads over the shared-nothing cluster. We consider
various overheads while scaling over a large number of nodes,
and propose solution methodologies to cope with the issues.
We implement the algorithm over a cluster using a message
passing system, and present the experimental results showing
the effectiveness of the join processing algorithm.

I. I NTRODUCTION

Data stream management systems (DSMS) emerge to sup-
port a large classes of applications, such as stock trading
surveillance, network traffic monitoring, sensor data analy-
sis, real time data warehousing, that require sophisticated
processing over online data streams. The DSMS processes
continuous queries (CQ) [1] over high-volume and time-
varying data streams.The long running continuous queries
differ from traditional request-response style queries over a
persistent (non-streaming) database. In a CQ-system, users
register queries specifying their interests over unbounded,
streaming data sources. A query engine continuously evaluates
the query results with the arrival of incoming data from the
sources, and delivers the unbounded, streaming outputs to
the appropriate users. A core operator in a CQ-system is
sliding window join among streams, calledwindow join. A
sliding window limits the scope of the join operator over
a recent window, thus unblocking the join operator. Such
a window join is relevant to many applications which need
to correlate each incoming tuple with recently arrived tuples
from the other streams [2]. Such a window join is used to
detect correlations among different data streams, and has many
applications in video surveillance, network monitoring, sensor
or environmental monitoring.

The stream applications place several scalability require-
ments on the system. First, for high stream rates and large
window sizes, a sliding window join might consume large
memory to store the tuples of the stream windows [3]. Second,
as results need to be computed upon the arrival of incoming
data, fast response time and high data throughput are essential.
Third, some join queries such as video analysis can be CPU-
intensive [4]. Fourth, a typical data stream management system

could have numerous window join queries registered by the
users. Thus, a single server may not have enough resources
to process the join queries over a high stream rate. There are
two approaches to address these scalability issues: shedding
loads to sacrifice result quality [5], [3], [6], or diffusingthe
workload to other machines [7]. We partition the streaming
data over a Shared-Nothing cluster connected by high-speed
networks [8].

Scalable processing of data streams over a distributed sys-
tem has been studied by the researchers. Reference[9] proposes
a dynamic load distribution framework by partitioning the
query operators across a number of processing nodes. Thus,
thus approach provides coarse-grained load balancing with
inter-operator parallelism. However, such an inter-operator
parallelism doesn’t allow a single operator to collectively use
resources on multiple servers. In [10], the authors addressthe
issue of diffusing the join (both equijoins and non-equijoins)
processing loads across a number of servers, and provide two
tuple routing strategies satisfyingcorrelation constraints for
preserving join accuracy. The approaches have large network
overhead, achieve poor load-balancing across the nodes, and
in the worst case might result in overloading a master node
receiving a major part of the processing load (Section VII).

In this paper, we consider the issue of parallelizing a
window join over a shared-nothing cluster to achieve gradual
scale-out by exploiting a collection of non-dedicated process-
ing nodes. In such an environment, a processing node can
be shared by multiple applications; therefore, the need for
over-provisioning for the peak load of any application is not
necessary. As multiple applications or users share each node,
the non-query background load and the available memory for
processing queries vary on each of the nodes. Since the con-
tinuous stream join queries run indefinitely, the join operator
will encounter changes in both system and workload while
processing the queries. In such an environment, intra-operator
parallelism of a window join can be achieved by partitioning
the streams across the processing nodes and instantiating the
window joins within every processing node that process the
join over a subset of the partitions of the streams. To achieve
optimal performance, the system should adjust the data stream
partitioning on the fly to balance resource utilization.

We parallelize the window join over a shared nothing clus-
ter by hash-partitioning the input streams, distributing asubset
of partitions to the available nodes, and adjusting the dataflow
towards the nodes based on the availability of the resources
within the nodes. Considering the nature of communication
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primitives (e.g., receiving a packet must block the receiver if
the sender is not available) within any persistent or reliable
connection, e.g., Transmission Control Protocol (TCP) [11],
we propose a framework to distribute the incoming tuples and
adapt the loads across the slaves (i.e., the processing nodes). A
slave node joins the incoming tuples with the partitions from
the opposite streams using a simple nested loop join; other join
algorithms based on sorting are not feasible as the temporal
order of the tuples should be preserved to allow efficient tuple
invalidation.

With the increase in arrival rates, the size of the indi-
vidual partitions within each partition-group increases.This
phenomenon limits the scalability of the join algorithm: as
partitions grow in size, the CPU-time to scan the partitions
and join with a new tuple also increases. To ameliorate this
problem, we fine tune the partition-groups at each processing
node by dynamically adjusting the sizes of each partition. In
summary, the key contributions of the paper are as follows:

1) We propose a technique to support fine-grained, intra-
operator parallelism while executing a stream join
operator over a shared-nothing cluster. The proposed
technique doesn’t assume all-time, any-to-any persis-
tent communication among the participating nodes,
eliminating the scalability overhead.

2) We observe a performance bottleneck in processing
the window join over high stream rates, and propose a
solution methodology based on the fine-tuning of the
window partitions locally in each processing node.

3) We analyze the overheads in scaling the system to a
large number of nodes and propose the methodologies
to optimize the scalability overheads of the system.

4) We implement the algorithm in a real system, and
present experimental results showing the effective-
ness of the techniques.

The rest of the paper is organized as follows. Section II
provides the basic concept in processing sliding window
joins, and presents the system model considered in the paper.
Section III defines the problem and provides an overview of
the proposed algorithm. Section IV describes load balancing
technique in details. Section V considers the issue of scaling
the system to a large number of nodes, and proposes techniques
to reduce the system overheads (e.g., processing and com-
munication overhead). Section VI presents the experimental
studies. Section VII surveys the related work, and Section VIII
summarizes the paper and presents future work.

II. SYSTEM MODEL

The windowed join operator computes the join results over
sliding windows of multiple streams. For a streamSi, we
use ri to denote the average arrival rate in streamSi. In a
dynamic stream environment, this arrival rate can change over
time. Each tuples ∈ Si has a timestamps.t identifying the
arrival time at the system. As in [12], we assume that the tuples
within a stream have a global ordering based on the system’s
clock. We useS[Wi] to denote a sliding window on the stream
Si, whereWi is the window size in time units. Abusing the
notation a little, we useWi to denote the windowS[Wi]; the
difference will be explicit from the context. At any timet, a
tuple s belongs toSi[Wi] if s has arrived onSi within the

Fig. 1. The System Model for processing window join

interval [t−Wi, t]. The output of a sliding window equi-join
S1[W1] ✶ · · · ✶ Sn[Wn] on a join attributeA consists of all
composite tupless1, . . . , sn, such that∀si ∈ Si, ∀sk ∈ Sk[Wk]
1 ≤ k ≤ n, k 6= i at a timesi.t, and(s1.A = · · · = sn.A).

The distributed stream processing system consists of a clus-
ter of processing nodes connected by a high-speed network.
Data streams from various external sources are pushed to a
master node that serves as gateway to distribute workload
across the slaves as shown in Figure 1. The join queries
from the users are submitted to the master node. For a given
stream join query, the master node selects the number of
slaves to instantiate the join operator in. Moreover, the master
node stores the incoming stream tuples within a buffer, and
periodically sends the tuples to the slaves which carry out the
actual processing. The join results from the slaves are routed to
a collector node that merges the query results and sends to the
respective users. Thus, the shared-nothing stream processing
system appears to an user (or client) as a unified stream
processing service to serve a large number of continuous
windowed join queries over high volume data streams.

III. PROBLEM DEFINITION AND SOLUTION APPROACH

This section presents the problem considered in this paper,
and provides various approaches to the problem and their
limitations. The section ends with detailed definition of the
problem.

This paper considers an operator that joins sliding windows
of two streamsS1 and S2, i.e., W1 and W2, respectively.
For a join attributeA, we aim at answering the continuous
join operatorW1 ✶ W2 with condition s1.A = s2.A, for
all si ∈ Wi(i = 1, 2). The join operator over the recent
windows of the streams are continuously evaluated, at different
time points, with the arrival of stream tuples. Tuples in a
stream are organized intonpart partitions. Thus each window
is splitted intonpart partitions based on a hash functionH, and
denote thej-th partitions of a windowWi asWi[j]. Given the
partitions of the windows, the hash join can be evaluated by
simply joining the tuples within the partitions (from different
joining streams) with the same partition ID, as given by

W1 ✶ W2 = ∪
npart

j=1 W1[j] ✶ W2[j]
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types of nodes

In a distributed environment, initiating data exchange or
communication by an application at any point in time, and
without any prior synchronization or predefined order, is
infeasible. For example, an application receiving data over a
persistent connection must block if the sender node is not
scheduled to send the data. Such a phenomenon degrades
the system performance, as an application, while blocked,
can’t continue to process incoming tuples until the data from
the sender is received (i.e., the receiver is unblocked). Also,
asynchronous (non-blocking) communication in high speed
stream applications is infeasible due to buffer overflow.

This paper considers the issue of computing sliding win-
dow equijoins joins over a shared-nothing cluster forgoingany
notion of persistent, any-time, all-to-all communicationpattern
among the nodes. The algorithm should follow a fixed commu-
nication sequence or predefined order of data exchange among
the processing nodes. The problem considered in the paper
involves (a) dynamically balancing the join processing loads
among the slaves, (b) determining the degree of declustering
based on the communication overhead, total processing time,
and the processing load at the nodes, (c) study the tradeoff
between the latencies in the output tuples and communication
overhead.

IV. JOIN PROCESSING BASED ONSYNCHRONOUS
COMMUNICATION

In this section, we introduce the load diffusion algorithm,
based on Synchronization of communication among the par-
ticipating nodes, to process hash join over a shared-nothing
cluster. We start with the architectural framework and present
the detailed features of the system in subsequent parts of the
section. [?]

A. Overview

The join processing system consists of two categories
of nodes, a master and the slaves, that communicate over
a network using communication primitives (i.e.,send and
receive) over a reliable and persistent connection. The software
components of the nodes are shown in Figure 2. The master
node stores the incoming stream tuples in a buffer. The slaves
communicate with the master node periodically , at the end
of predefined time intervals, and receive stream tuples and/or
system load information. At the end of everydistribution
epoch, the master node sends the buffered tuples to the slave
nodes; whereas, at the end of everyreorganization epoch, the
master node, based on the observed workloads at the slave

nodes, adjusts (a) the mappings between the partition-groups
and the slave nodes, and (b) the degree of declustering, i,e.,
the number of slaves actively participating in processing the
sliding window join. The controller module in the master
node carries out the processing for reorganization. On the
other hand, a slave node receives stream tuples and special
instructions (e.g., move a window partition) from the master,
and initiate relevant processing. Algorithm 1 shows the high-
level overview of the operations carried out at the master side.

Algorithm 1 MASTERPROCESS(Si, SN , ASN )

Require: Data StreamsSi (1 ≤ i ≤ 2), A set of slave nodes
SN

Ensure: Proper distribution of stream tuples among the active
slave nodes and appropriate set of active slave nodesASN

Definitions:
ASN : set of active slave nodes
Tclock: Current system clock time
Tdist, Trep: Recent distribution and repartitioning time,
respectively
δdist, δrep: Distribution and repartitioning epoch, respec-
tively

1. initialize ASN
2. Tdist ← Trep← Tclock

3. while (True) do
4. receive tuplesi ∈ Si and put in the proper mini-buffer

5. if Tclock ≥ (Tdist + δdist) then
6. collect tuples for each active slaves from the re-

spective mini-buffers
7. send tuples to the active slave nodes
8. Tdist ← Tclock

9. end if
10. if Tclock ≥ (Trep + δrep) then
11. identify suppliers and consumers
12. for each supplierdo
13. select an unique consumer
14. end for
15. Adjust the degree of declustering
16. direct partition-movement information/meta-data to

each< supplier, consumer > pair
17. Trep ← Tclock

18. Synchronize clocks with the active slaves
19. end if
20. end while

B. Tuple distribution

A master node maintains, for each stream, a buffer that
consists of multiple ”mini-buffers”, one for each partition
(Figure 3). The buffer keeps the mapping between the partition
ID and the slave machines assigned with the partition. From
such a mapping, the partitions assigned to a slave can be
identified. At the end of a distribution epoch, when the slave
node communicates with the master, the master drains the
tuples from the ”min-buffers” corresponding to the partitions
assigned to each slave, and sends the merged tuples to the
slave node in machine independent format. As the tuples
from all the streams are merged, the merged stream, received
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at the client, should have enough information to map the
tuples to the respective source streams. Two approaches are
possible: augmenting an extra attribute, containing the stream
ID, with each stream tuple; and putting special punctuation
marks (which might itself be fictitious tuples) at the sequence
of tuples from each stream.

On the other hand, a slave node receives the tuples from
the master, and stores the tuples in a stream buffer (at the join
module). Once the tuple distribution phase is finished, the join
module start to process the tuples from the buffer. The buffer
maintained at a join module within a slave node is similar to
that in the master except for the mapping information.

C. Repartitioning

The input streams are repartitioned to re-balance the works
across the slave nodes. To facilitate such re-balancing of works
across the slaves, we introduce a level of indirection while
partitioning the input streams: instead of having one giant
partition per slave node, we instantiate numerous partitions,
so that the total number of partitions is much higher than the
maximum degree of declustering of the hash join [13], [14].
These numerous partitions are distributed among the operator
instances at the slaves during initialization, and those instances
are responsible for processing the corresponding inputs. The
repartitioning task requires moving the window states for
processing the subsequent input tuples.

The processing nodes in the system (master and the slaves)
start the repartitioning protocol periodically at the end of
an interval called reorganization epoch, which is a order of
magnitude larger than the distribution epoch; a large valueof
the reorganization epoch is necessary to capture the long term
variation in join workloads. In this protocol, the slave nodes
send to the master the information about the loads. We use an
average buffer occupancy metric, over the current reorganiza-
tion epoch, at a slave as the indication of the load applied tothe
slave. A slave node records the buffer size at the end of each
distribution epoch within current reorganization interval and
calculate their average. The average buffer occupancy metric
is obtained by dividing the calculated average buffer size by
the total buffer size (i.e., memory allotted to the buffer);we
assume that the memory allocated to the buffer in every slave
is the same. Based on this average buffer occupancy (fi) values
of the nodes, the master classifies the slaves into one of the

three categories:supplier, consumer, andneutral. A supplier
i has an average buffer occupancyfi above a threshold value
Thsup, whereas a consumer is a slave with the average buffer
occupancy belowThcon (0 ≤ Thcon < Thsup < 1); the
rest of the nodes, which are neither supplier nor consumer, are
classified as theneutrals. A supplier yields a partition-group to
a consumer node, which installs the partition-group in its join
module and processes the subsequent tuples arriving withinthe
partition-group. As outlined in section V, in a stable system,
the number of consumers is higher than that of suppliers.

While reorganizing the placement of partition-groups
across the nodes, each supplier yield only one randomly
selected partition-group to a consumer. For each consumer,
the master node selects a supplier, and sends messages to the
participating nodes to initiate transferring the window states of
the partition-groups to move. The supplier-consumer pairscan
be identified by a single scan over the list of the slave nodes.
The master node makes necessary changes in the mapping
between the stream partitions and the slave nodes. To transfer
a state, thestate-mover in a slave node (supplier) extracts
the tuples from both the stream windows and the buffer (at
the join module), and sends to the consumer. The splitting
information, if any, is also sent to the consumer to enable it
reconstruct the fine-tuned partitions. After finishing the state
movement, the participating nodes send acknowledgement to
the master indicating the completion of the task, upon which
the master node transfers the pending tuples (in its buffer)to be
processed. This completes both the reorganization and the tuple
distribution phases. Note that the slaves not participating in the
state movement receives the pending tuples before the master
receives an acknowledgement from every node participatingin
the state movement.

D. Processing at the Join Module

Each slave node receives stream tuples from the master
at the end of every distribution epoch, and stores the tuples
in stream buffers. As discussed earlier, each buffer keeps the
tuples for each partition in a separate mini-buffer, so that
blocks corresponding to a partition can be retrieved from
each mini-buffer without scanning the whole buffer for the
stream. The join module fetches a block for a partition of a
stream,maps the tuples to the mini-partition, and keep the
tuples in block at the head of the mini window-partition of the
stream (Figure 4(a)). When the head block is full or the buffer
contains no more blocks for the respective stream partition,
the newly added tuples are joined with the mini-partitions from
the opposite stream windows. Also, as obvious from the above
description, the tuples in a head block may participate in the
join when it is not full. To utilize the empty portion of the
head block, we should keep a variable to track the newly added
(i.e., fresh) tuples within a head block. To eliminate duplicate
output results, we omit the fresh tuples within the head blocks
of the opposite mini window-partitions, as the head blocks will
participate in the join when they become full. While expiring
a block from a mini-window, the block is joined with the fresh
tuples within the head block of the opposite mini-window; this
ensures the completeness of the join results.

The size of a (mini) partition of a stream may grow and
shrink depending on the arrival rates of the tuples within the
respective partition. As the size a window partition increases,
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Fig. 4. (a) Processing tuples at a join module, and (b) Fine tuning the window
partitions at a slave node based on extendible hashing

time needed join the partition with the tuples from the opposite
streams also increases. On the other hand, a small partition
size increases the memory overhead. Thus we should adjust
the size of the partitions. We adapt the size at the granularity
of the partition-groups. We keep the size (in blocks) of each
partition-group within a range[θ . . . 2θ]. We split a partition-
group when its size is above2θ, and try to merge partitions
whenever a partition size falls belowθ. We maintain the size
of the partition-groups using extendible hashing [15], and
maintain one hashtable for each overflowing partition-group
(Figure 4(b)). We split a partition-group using the extendible
hashing, and create multiple mini-partition-groups; eachmini-
partition-group is pointed to by one or more hashtable entries.

In extendible hashing, the hashtable size (i.e., number of
entries in the hashtable) is given by a parameter called the
global depth d; the hashtable usesd least significant bits of
some adopted hash functionh(k), and has size2d entries.
Each mini-partition-group, that is meant to be a bucket in
a hashtable, is assigned a local depthd′. The number of
hashtable entries pointing to a bucket is given by2d−d′

; the
d′ least significant bits of these entries are the same. When
the size of a mini-partition-group, with local depth less than
the global depth, is larger than2θ, we split the mini-partition-
group by assigning half of the2d−d′

entries to each new mini-
group and distributing the tuples accordingly; the local depth
of the newly created partitions are increased by one. To split
a mini-partition-group with the local depth same as the global
depth, the total entries in the hashtable should be doubled first,
increasing the global depth; now that the local depth is less
than the global depth, the mini-group can be splitted using the
same approach as before.

When the size of a mini-partition-group is less thanθ, the
bucket is merged with itsbuddy bucket, if any, provided the
sum of the sizes of two buckets is less than2θ and the local
depths of the two buckets are same. Letlbud be the first entry
of the buddy of a bucket with starting entryl; let the local and
the global depth bed′ d, respectively.

lbud =

{

l+ 2d−d′

, if 2d−d′+1 dividesl
l− 2d−d′

, otherwise

Within each mini-partition-group, the incoming tuples are
joined using a simple Block-Nested Loop join. The tuples
within each window partition should be expired periodically.
Thus, the tuples should maintain the temporal order in the
stream; this constraint makes any sort-based algorithm infea-
sible. At first look it appears that tuples in a window partitions
can be sorted using a out-of-place storage that stores the sorted
tuple IDs, whereas the actual tuples reside in the window
partition. Such an approach suffers from both storage overhead
and computation overhead due to frequent expiration of the
stream tuples.

V. SCALABILITY ISSUES

In this section, we consider the system performance with a
large number of processing nodes. Considering the scalability
issue, we describe two techniques to control system overheads.

A. Degree of Declustering

Determining the appropriate degree of declustering (i.e.,
number of slave nodes) is an important issue while using intra-
operator parallelism. Selecting low degree of declustering can
lead to under-utilization of the system (i.e., nodes not actively
participating in the processing waste their idle CPU cycles),
and reduce system performance overloading the processing
nodes. On the other hand, high degrees of parallelism may
under-utilize the processing nodes and increase communication
overhead. The decrease communication overhead, the payload
(i.e., number of stream tuples) of the messages sent, in each
distribution epoch, to every slave node should be as high as
possible [16].

Setting the upper bound of the degree of parallelism based
on bounding the communication cost as in [17] is infeasible
in the scenario of continuous queries for a number of reasons:
firstly, unlike traditional queries, the degree of declustering
may vary during execution. Secondly, the communication cost
during the execution can’t be estimated by a fixed, simple
model. Therefore, an adaptive approach is necessary. More-
over, in a multi-process environment, measuring the execution
time and communication delay is impossible due to frequent
context switching, which is transparent to the processes or
threads, by the operating system. Based on these observations,
we propose a simple approach to maintain the degree of
declustering.

Our approach adjusts the degree of declustering based
on the observation of the loads of the processing nodes.
The master node decreases the processing nodes when the
load of the processing nodes are very low, and increases the
active slave nodes when the loads of the processing nodes are
high. Our approach keeps the system minimally overloaded by
ensuring at least one supplier in the system. If all the nodes
are eitherneutral or consumer, the master node decreases the
degree of declustering. This minimizes the underutilization
of the active slave nodes. On the other hand, the master
node increases the degree of declustering when the number
of supplier in the system is greater thanβ times the number
of consumers in the system, that is,

Nsup > βNcon



Here,Nsup andNcon are, respectively, the number of supplier
and consumer in the system; andβ (0 < β < 1) is a granularity
parameter. This ensures the proper utilization of the system.

B. Sub-group Communication

The master node distributes the buffered tuples to all the
slaves at the start of every distribution epoch. As the tuples
are sent to every node in a serial order, such an approach
might increase average idle time in waiting for the tuples. For
example, in a system withN slaves, a slave, in the worst case,
should have wait in idle until the master node transmits the
tuples to otherN − 1 slaves. To minimize such an overhead,
we divide the slave into a number (ng) of groups, and allow
the slaves within each sub-group communicate with the master
at a time; the distribution epoch is divided intong slots, and
each sub-group receives tuples from the master within a slot
assigned to the group.

Such a communication in sub-group also minimizes the
total storage or memory required to buffer the pending tuples
at the master node. Let us consider a streamSi with a
uniform rateri, and assume that the master distributes an equal
number of tuples to every slaves. The total tuples of streamSi

arriving during a distribution epochtd is tdri. With sub-group
communication, the maximum buffer size for the stream at the
master node, can be calculated as,

Mbuf =
ri

ng

td +
ri

ng

(

td −
td

ng

)

+ . . .

+
ri

ng

(

td −
td

ng

(ng − 1)

)

=
ritd

2

(

1 +
1

ng

)

From this equation, it is obvious that a for a large value of
ng, the maximum buffer size can be reduced almost by a half.

VI. EXPERIMENTS

This section describes the methodologies for evaluating
the performance of load diffusion in executing a stream join
operator, and presents experimental results demonstrating the
effectiveness of the proposed load diffusion system based on
synchronization of the communication among the nodes.

A. Experimental Methodology

The following paragraphs describe the major components
of our experimental setup: the join techniques we consider,
the data sets and the evaluation metrics and the experimental
platform.

Join Processing Technique. As observed earlier in the paper,
processing sliding window joins requires the maintenance of
the temporal order of the tuples within a window. So, within
each window partition, we apply a simple Nested Loop Join
algorithm. We tune the sizes of the window partitions applying
the fine tuning technique described in the paper.

Data Stream Generation. We evaluate the performance of
the load diffusion algorithm, using synthetic data streams. The

streams tuples are generated online during system activity. The
stream tuples are generated in real time within the master node
using a separate module. The stream generation modules are
scheduled during idle period, within each distribution epoch,
after the master has already sent the pending tuples to the
slaves.

We assume that tuples within a streamSi arrive with a
Poisson arrival rateλi. The inter-arrival time for each tuple is
given by the Poisson process. Each stream tuple has a length
of 64 bytes. The domain of the join attributeA is taken as
integers within the range[0 . . . 10 × 106]. The distribution of
the join attribute values for the stream tuples is captured using
b-model [18], which is closely related to the ”80/20 law” in
databases [19].

Evaluation Metrics. We evaluate the performance of the
system based on the capacity of the system, that is, the
maximum stream rates that overload the system. We provide an
indication of the capacity of the system, measuring a number
of parameters:average production delay, communication time
(or overhead), total CPU time, and the window size within a
node. We measure the production delay of an output tuple as
the interval elapsed since the arrival of the joining tuple with
the more recent timestamp. For example, if tupless1 ands2 are
the joining tuples of the output tuple(s1, s2), wheres1.t>s2.t
(s1 being the more recent one) and current time isTclock, then
the delay in producing the output tuple is(Tclock− s1.t). This
metric (i.e., average production delay) indicates how quick an
output tuple is generated. Thus, this metric also provide an
indication of the capacity of the system: when the system is
overloaded, the incoming tuples stays a longer period of time
in buffer, resulting in a larger production delay.

Experimental Platform. Unless otherwise stated, the default
values used in the experiments are as given in Table 2. We have
performed our experiments on cluster of machines connected
by a Gigabit Ethernet Switch. Each machine has two Pentium
III (coppermine) 930 MHz processors, 256 KB L2 cache,
and 512 MB of main memory. For each experimental setting,
we run the system for 20 minutes, and refresh the observed
parameters by the elapse of a time of 10 minutes. At the master
size, we provide the level of indirection, while distributing
the tuples, by maintaining 60 partitions; each partitions stream
or window partitions are fine tuned, at the slave side, based
on a θ-value of 1.5MB. We fix the block size to 4KB.
We allocate 1MB of memory to buffer the stream tuples.
We assume that each processing node has enough memory
to hold the window partitions; extension of the system to
cope with memory limited nodes is straightforward, based
on the incorporation of the memory occupancy information
during partition reorganizations. The distribution epochand the
reorganization epoch are taken as 2 and 4 seconds, respectively.

We implement the join processing algorithm in Java. We
usempiJava [16], a pure Java interface to MPI, that uses ser-
vices of a native MPI implementation. We use LAM/MPI [20]
(version 7.0.6) as the underlying native MPI implementation.
Unless otherwise stated, the default values used in the exper-
iments are as given in Table 2.



Parameter Defaults Comment

Wi(i = 1, 2) 10 Window length(min)
λ 1500 Avg. arrival rate(tuples/sec)
b 0.7 skewness in join attribute

values(forb-model)
Thcon 0.01 Consumer Threshold
Thsup 0.5 Supply Threshold

θ 1.5 partition tuning parameter (MB) )
4 Block Size (KB)

td 2 Distribution epoch (sec)
tr 20 Reorganization epoch (sec)

TABLE I. D EFAULT VALUES USED IN EXPERIMENTS
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Fig. 5. Average delay with varying stream arrival rates

B. Experimental Results

In this section, we present a series of experimental results
for assessing the effectiveness of the proposed hashjoin algo-
rithm. We measure the average delay in generating an output
tuple, maximum window sizes in the nodes, processing time,
and communication overhead. For each set of experimentation,
we run the system for 20 minutes. We start to gather perfor-
mance data after an startup interval of 10 minutes is elapsed.

We first present the experimental results with varying
stream arrival rates. Figure 5 and Figure 6 show the average
delay, with varying stream arrival rates, observed in the output
tuples. Each plot in the figures corresponds to different slave
population. Given a number of slave nodes, the average delay
increases sharply at a point where the applied load overloads
the whole system. Before such a saturation point, the average
delay shows very little variations with the increase in stream
rates. This is due to the diffusion of the loads from a temporar-
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Fig. 6. Average delay with varying stream arrival rates
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Fig. 7. Average processing time (i.e., CPU time) with varying stream arrival
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Fig. 8. Average delay with varying stream arrival rates (total slave nodes=4)

ily overloaded node. From the two figures, we observe that
the stream arrival rate which overloads the system increases
as more and more slave nodes are added in the system.

The effectiveness of fine grained partition tuning at the
slave nodes can be observed from the Figure 7 and Figure 8.
Figure 7 shows the average CPU times (both with and without
fine tuning at the slaves) while processing stream joins with
varying arrival rates. Without fine tuning, the average CPU
time required to process the joins increases sharply with the
increase in the stream rates. As shown in Figure 8, without fine
tuning, the average delay is around 48 sec for a per-stream rate
of 4000 tuples/sec. On the other hand, with fine tuning, the
average delay for the same system (with 4 slave nodes and for
an arrival rate of 4000 tuples/sec) drops to around 2 seconds
(cf., Figure 6).

Figure 9 and Figure 10 show the idle time and the com-
munication overhead for the system with and without applying
fine grained partition tuning. Without partition tuning, the idle
time for the system drops near to zero for an arrival rate of
4000 tuples/sec/stream. On the other hand, with fine grained
partition tuning, the idle time for the slave nodes is near to
zero while the arrival rate is 6000 tuples/sec/stream. Withthe
increase in arrival rates, the sizes of the partitions of each
stream window also increases. Thus scanning the window
partitions to join the incoming stream tuples consume higher
CPU times with the increase in the stream rates. Tuning the
partition sizes at the slave nodes significantly lowers the CPU
time to process the join. Such a fine grained tuning incurs
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Fig. 9. Idle time and communication overhead with varying stream arrival
rates (without fine-grained partition tuning, total slave nodes=4)
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Fig. 10. Idle time and communication overhead with varying stream arrival
rates (with fine-grained partition tuning, total slave nodes=4)

no communication overhead as evident from Figure 9 and
Figure 10.

Figure 12 shows the communication overhead across the
slave nodes. It shows the minimum, maximum and average
communication overhead over all the slave nodes in the system.
The communication time is not uniform across the slaves, as
the tuples are distributed to the slaves, during a distribution
epoch, in a serial order. The divergence in communication
overhead across the slaves increases with an increase in arrival
rates. Such divergence across the slave nodes can be minimized
by maintaining a fixed order while distributing tuples across
the slaves; now, the slave node can delay its connection
initiation according to its position in the sequence.

Figure 11 shows the communication overhead with varying
slave nodes. The communication time decreases with the
increase in degree of declustering; however aggregate overhead
over all the slaves increases linearly. The figure shows the
aggregate overheads with adaptive parallelism. In this case,
the system automatically fixes the number of slaves based
on instantaneous arrival rates. With adaptive parallelism, the
aggregate communication overhead is significantly lower while
compared to non-adaptive counterpart (for an stream arrival
rate of 1500 tuples/sec/stream). As the overhead increaseswith
stream arrival rates (Figure 12), the performance benefit of
an adaptive algorithm would be prominent for a high stream
arrival rate.So, it is evident that the degree of declustering of
the system should not be increased unless necessary, i.e., all
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the nodes should operate as close to its processing capacityas
possible.

Figure 13 and Figure 14 shows the average delay of the
output tuples and the average communication overhead across
the slave nodes, respectively, with varying distribution epochs.
As the distribution epoch decreases, the average delay also
decreases due to the decrease in the wait time at the master
node. However, with the decrease in the distribution epoch,the
communication overhead increases (Figure 14) and reaches at
point (not shown in the figure) where the slaves are engaged
only in communication, leaving no time for the processor to
process the incoming tuples. Thus, for a fixed stream arrival
rate, there exists a tradeoff between the distribution epoch and
the communication overhead.

VII. R ELATED WORK

Existing relevant work on diffusing loads of a stream join
operator can be classified into two categories: recent advance-
ments in continuous query and stream processing systems, and
earlier work in parallel query processing.

The STREAM [6] project focuses on computing approx-
imate results and minimizing the memory requirement of
continuous queries over data streams. The Aurora [21] system
proposes mechanism to sacrifice result quality, based on user
specified quality-of-service profiles, while sufficient resources
to ensure scalability are not available. In contrast, we ex-
ploit inexpensive shared-nothing clusters to ensure scalability
without sacrificing result accuracy. Reference [22] proposes a
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contract-based load management framework migrating work-
load among processing nodes based on predefined contracts.
The Borealis project proposes a dynamic inter-operator load
distribution mechanism by utilizing the operators’ load vari-
ance coefficients [9]. StreamCloud [23] parallelizes a set of
stream queries across a number of virtual machines in a
cloud. Stormy [24] uses techniques from key-value stores and
replication to provide a fault-tolerant service for processing
streams in a cloud system. In comparison, our work consider
intra-operator load distribution for window join queries with
large states and high arrival rates.

The Flux operator [13] extends the exchange operator [25]
to support adaptive dataflow partitioning and load balancing
while processing stateful operators ( e.g. joins, groupingoper-
ators) over a shared-nothing cluster. The Flux operator consists
of two types of intermediate operators called Flux-Prod and
Flux-Cons. The Flux-Prod operator stores stream tuples (from
the sources) into a buffer, and distributes the stream tuples
among a number of Flux-Cons operators, that are instantiated
in each of the nodes processing the stream queries. The Flux
operator provides a framework for partitioning dataflows over a
number of nodes; however, it does not consider the sliding win-
dow joins over a shared nothing environment. Moreover, while
implementing a dataflow operator over a number of processing
nodes, maintaining and initiating communication among the
nodes, over a reliable socket or TCP connection [11], without
any prior synchronization or without any predefined order of
data exchange is infeasible, if not impossible.

In reference [10], the authors first address the issue of
intra-operator parallelism while processing a join operator over
a number of servers. The paper provides two tuple routing
strategies, namelyaligned tuple routing (ATR) andcoordinated
tuple routing (CTR), that preserve join accuracy. The ATR
assigns a segment of the master stream to a selected node,
and changes the assigned node at the end of every segment.
The ATR works for a segment much higher than the sizes of
the stream windows. Thus, instead of balancing the loads, this
approach circulates the join processing load across the nodes:
during a segment interval the node assigned with the segment
of the master node carries out all the join processing loads,
while the remaining slave nodes (assigned with a segment of
the slave streams) only forward the incoming tuples of the
slave streams to the respective master node. This approach
violates the assumption of resource limited processing nodes;
for example, storing the windows of all the streams in a master
node (within a segment of the master stream) is infeasible. Se-
lecting a small segment length doesn’t ameliorate the problem;
in this case, when a subsequent segment of the master stream
is assigned to a new node, all the stream windows should
be routed to the new master node, and this happens at the
end of every segment. On the other hand, CTR distributes the
stream segments across the participating nodes, and maintains
a routing path for each stream. The routing path is a sequence
of routing hop , and each routing hopVi is a collection of
nodes storing a superset of thei-th stream-window in the join
order. In addition to the computational overhead associated
with maintaining the routing paths, such an approach incurs
high network overhead, as each incoming tuple (from a stream
source) or intermediate results (generated by a segment of the
intermediaterouting hop) should be forwarded, in a cascading
fashion, to every node in the successiverouting hop.

Reference [26] presents a stream database system that
provides a generic framework for describing distributed exe-
cution strategies as high-level dataflow distribution templates.
The paper implements two partitioning strategies:window
split andwindow distribute. Each window partitioning strategy
provide a partitioning template (OS-Split or S-Distribute)
and a combining SQF (OS-Join or S-Merge). The partition-
ing schemas are content-insensitive, and are chosen to meet
scientific application requirements. Thus the issue of load
imbalance across the partitions doesn’t arise However, the
paper considers a homogeneous cluster environment without
any non-query background load. Thus the issues like dynamic
dataflow partitioning and state movement are irrelevant to such
a system.

Early work on parallel query processing concentrated on
parallelizing individual join operators [27], [28]. Extensive
research has been done on handling data skew (i.e., a non-
uniform distribution of join-attribute values) while paralleliz-
ing an operator in a shared-nothing system (e.g., [29], [30],
[31], [32], [17], [14], [33], [34], [35], [36]). These algorithms
split the persistent relations in a distribution or splitting phase,
and balances the loads by properly assigning the partitions
or buckets across the nodes. Such a holistic approach based
on the complete knowledge of data distribution in static data
sets is infeasible in the streaming scenario. In [14] and [37],
the authors describe how to leverage current CPU utilization,
memory usage, and I/O load to select processing nodes and
determine degree of declustering for hash joins. Reference[38]



presents a method of parallel query processing that uses non-
dedicated, heterogeneous computers. This approach assumes
a shared stored system (e.g., Storage Area Network [39])
to stores input data, and is not relevant to online stream
processing as considered in our work. The hashjoin algorithms
used by all the previous schemes partition data at a single
time point (i.e., between thebuild andprobe phases), and they
do not consider continual, on-the-fly repartitioning of thejoin
operator during execution.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we present a new technique to achieve fine-
grained, intra-query parallelism while processing a sliding
window operator over a cluster of processing nodes. The
proposed algorithm balances the join processing loads over
a shared-nothing cluster. We analyze the issues in scaling the
intra-query parallelism over a large number of nodes in a multi-
query, multi-user environment, and propose techniques to dy-
namically maintain the degree of declustering, optimizingthe
processing and communication overheads of the system. Our
experimental results demonstrate the effective of the algorithm.
The work on parallelizing the stream joins can be extended in
a few directions. Most importantly, deploying the prototype
over a large number of processing nodes and dynamically
tuning various performance parameters (i.e., group size and
distribution epoch) is an interesting future work. Incorporating
disk-I/O at the local nodes is another topic for future work.
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