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Abstract—The availability of large number of processing nodes  could have numerous window join queries registered by the
in a parallel and distributed computing environment enables users. Thus, a single server may not have enough resources
sophisticated real time processing over high speed data s&ms,  to process the join queries over a high stream rate. There are
as required by many emerging applications. Sliding window o approaches to address these scalability issues: stgeddi
stream joins are among the most important operators in a |na4s to sacrifice result quality][5].][3].1[6], or diffusindpe
stream processing system. In this paper, we consider the &\ oynad to other machine§][7]. We partition the streaming

of parallelizing a sliding window stream join operator over . .
a shared nothing cluster. We propose a framework, based on data over a Shared-Nothing cluster connected by high-speed

fixed or predefined communication pattern, to distribute thejoin ~ networks [8].
processing loads over the shared-nothing cluster. We comksr Scalable processing of data streams over a distributed sys-

various overheads while scaling over a large number of nodes tem has been studied by the researchers. Refefénce[9]ge®po

and propose solution methodologies to cope with the issues. . A Lo
We implement the algorithm over a cluster using a message & dynamic load distribution framework by partitioning the

passing system, and present the experimental results shawj ~ JUEry operators across a number of processing nodes. Thus,

the effectiveness of the join processing algorithm. thus approach provides coarse-grained load balancing with
inter-operator parallelism. However, such an inter-ofmera
. INTRODUCTION parallelism doesn't allow a single operator to collectyvake

Data st t svst DSMS ¢ resources on multiple servers. [n [10], the authors addhtess
" a al S reaml manage;;men I_syst_ems ( h ) err;ergket OO?UB'SUEI of diffusing the join (both equijoins and non-equig)i
port a large classes of applicalions, Such as sStock trading,,cessing loads across a number of servers, and provide two

surveillance, network traffic monitoring, sensor data gnal ; ; oy : :
. -~ . ' . P tuple routing strategies satisfyingprrelation constraints for
sis, real time data warehousing, that require sophisticate P 9 g y

: : reserving join accuracy. The approaches have large nietwor
processing over online data streams. The DSMS pro‘?essg%rhead, achieve poor load-balancing across the nodds, an
continuous queries (CQ)_I[1] over high-volume and time-

X . X ~"in the worst case might result in overloading a master node
varying data streams.The long running continuous QUEeN€Raceiving a major part of the processing load (Sedfion VII).
differ from traditional request-response style queriesroa

persistent (non-streaming) database. In a CQ-systems user In this paper, we consider the issue of parallelizing a
register queries specifying their interests over unbodnde window join over a shared-nothing cluster to achieve gradua
streaming data sources. A query engine continuously eteslua scale-out by exploiting a collection of non-dedicated pss:

the query results with the arrival of incoming data from theing nodes. In such an environment, a processing node can
sources, and delivers the unbounded, streaming outputs te shared by multiple applications; therefore, the need for
the appropriate users. A core operator in a CQ-system igver-provisioning for the peak load of any application i€ no
sliding window join among streams, calledndow join. A necessary. As multiple applications or users share each, nod
sliding window limits the scope of the join operator over the non-query background load and the available memory for
a recent window, thus unblocking the join operator. Suchprocessing queries vary on each of the nodes. Since the con-
a window join is relevant to many applications which needtinuous stream join queries run indefinitely, the join opera

to correlate each incoming tuple with recently arrived é&spl will encounter changes in both system and workload while
from the other streams][2]. Such a window join is used toprocessing the queries. In such an environment, intrazoper
detect correlations among different data streams, and hay m parallelism of a window join can be achieved by partitioning
applications in video surveillance, network monitoringnsor ~ the streams across the processing nodes and instantihéng t
or environmental monitoring. window joins within every processing node that process the
ejoin over a subset of the partitions of the streams. To aehiev

meggeoﬁr?ﬁénsagtgﬁatg?; pflgrciisﬁviﬂaﬁa:g?e'gtyaﬁ%q% optimal performance, the system should adjust the datarstre
: . ystem. o g . 9 artitioning on the fly to balance resource utilization.
window sizes, a sliding window join might consume large

memory to store the tuples of the stream winddws [3]. Second, We parallelize the window join over a shared nothing clus-
as results need to be computed upon the arrival of incominter by hash-partitioning the input streams, distributirgpaset
data, fast response time and high data throughput are edsentof partitions to the available nodes, and adjusting thefliata
Third, some join queries such as video analysis can be CPUewards the nodes based on the availability of the resources
intensive [4]. Fourth, a typical data stream managemem¢sys within the nodes. Considering the nature of communication
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primitives (e.g., receiving a packet must block the receifie Input streams
the sender is not available) within any persistent or rédiab
connection, e.g., Transmission Control Protocol (TCP)],[11 o
we propose a framework to distribute the incoming tuples and Yy v
adapt the loads across the slaves (i.e., the processingnéde ( Buffer )
slave node joins the incoming tuples with the partitionsrfro
the opposite streams using a simple nested loop join; obirer | y
algorithms based on sorting are not feasible as the temporal
order of the tuples should be preserved to allow efficienfetup
invalidation.

Master

Network

With the increase in arrival rates, the size of the indi-
vidual partitions within each partition-group increasgsis
phenomenon limits the scalability of the join algorithm: as
partitions grow in size, the CPU-time to scan the partitions
and join with a new tuple also increases. To ameliorate this
problem, we fine tune the partition-groups at each procgssinFig. 1
node by dynamically adjusting the sizes of each partition. |
summary, the key contributions of the paper are as follows:

The System Model for processing window join

. ) . . _interval [t — W;, t]. The output of a sliding window equi-join
1) We propose a technique to support fine-grained, mtrak—g1 [Wy] X --- X S,[W,] on a join attributed consists of al

operator parallelism while executing a stream join . . .
operator over a shared-nothing cluster. The proposeﬁoingcf'f Zuiliséi 'é t;r?e Ssm;cgrt]réa(IZsz Ae ,S " vsﬁ § Sﬁng]
X 7Y, 2] 1.44 — """ — 9n- .

technique doesn’t assume all-time, any-to-any persis- —
tent communication among the participating nodes,  The distributed stream processing system consists of a clus
eliminating the scalability overhead. ter of processing nodes connected by a high-speed network.
2) We observe a performance bottleneck in processin@ata streams from various external sources are pushed to a
the window join over high stream rates, and propose anaster node that serves as gateway to distribute workload
solution methodology based on the fine-tuning of theacross the slaves as shown in Figlie 1. The join queries
window partitions locally in each processing node. from the users are submitted to the master node. For a given
3) We analyze the overheads in scaling the system to stream join query, the master node selects the number of
large number of nodes and propose the methodologiesiaves to instantiate the join operator in. Moreover, thetara
to optimize the scalability overheads of the system. node stores the incoming stream tuples within a buffer, and
4)  We implement the algorithm in a real system, andperiodically sends the tuples to the slaves which carry logit t
present experimental results showing the effective-actual processing. The join results from the slaves arecbtat
ness of the techniques. a collector node that merges the query results and sends to th

) ) respective users. Thus, the shared-nothing stream piogess
The rest of the paper is organized as follows. Sedfion Iy siem appears to an user (or client) as a unified stream
provides the basic concept in processing sliding Wlndow%

g : , rocessing service to serve a large number of continuous
joins, and presents the system model considered in the .papefindowed join queries over high volume data streams.
Section[l] defines the problem and provides an overview o

the proposed algorithm. SectiénllV describes load balancin

technique in details. Sectidnl V considers the issue ofrsgali Ill. PROBLEM DEFINITION AND SOLUTION APPROACH

the system to a large number of nodes, and proposes tecknique
to reduce the system overheads (e.g., processing and com-
munication overhead). Sectidn]VI presents the experir’henteh-
studies. Section VIl surveys the related work, and Se¢fiifi V
summarizes the paper and presents future work.

This section presents the problem considered in this paper,
d provides various approaches to the problem and their
mitations. The section ends with detailed definition oé th
problem.

This paper considers an operator that joins sliding windows
II. SYSTEM MODEL of two streamsS; and S, i.e., Wy and W5, respectively.
) o o For a join attributeA, we aim at answering the continuous
The windowed join operator computes the join results OVeloin operatorW; X W, with condition s;.A = s,.A, for
sliding windows of multiple streams. For a streath, we g|| 5, € Wi(i = 1,2). The join operator over the recent
user; to denote the average arrival rate in stredfm In a  indows of the streams are continuously evaluated, atreiffe
dynamic stream environment, this arrival rate can change ov time points, with the arrival of stream tuples. Tuples in a
time. Each tuples € S; has a timestamp.t identifying the  stream are organized inte,,,; partitions. Thus each window
arrival time at the system. As in[12], we assume that theetupl s splitted inton,,,, partitions based on a hash functitn and
within a stream have a global ordering based on the systemgenote thej-th partitions of a windowV; asW;[j]. Given the
clock. We useS[IV;] to denote a sliding window on the stream partitions of the windows, the hash join can be evaluated by
S;, whereWV; is the window size in time units. Abusing the simply joining the tuples within the partitions (from diffnt

notation a little, we uséV; to denote the windows[W;]; the  joining streams) with the same partition ID, as given by
difference will be explicit from the context. At any time a

tuple s belongs toS;[W;] if s has arrived onS; within the Wi, X Wy = U;Z“{*Wl [4] X Wa[4]



Input Streams

Slave k Master nodes, adjusts (a) the mappings between the partitionpgrou
: and the slave nodes, and (b) the degree of declustering, i,e.
( wiodule ) spaontorer L the number of slaves actively participating in processimg t

L3_> sliding window join. The controller module in the master
- . ; - . node carries out the processing for reorganization. On the
< Module > < Module )

other hand, a slave node receives stream tuples and special
L instructions (e.g., move a window partition) from the maste
and initiate relevant processing. Algorithh 1 shows thehhig

| Network | level overview of the operations carried out at the mast.si
Fig. 2. System Architecture showing various software conepts at different
types of nodes Algorithm 1 MASTERPROCESSS;, SN, ASN)
Require: Data StreamsS; (1 <4 < 2), A set of slave nodes
SN

In a distributed environment, initiating data exchange O"Ensure: Proper distribution of stream tuples among the active
communication by an application at any point in time, and : P P 9

without any prior synchronization or predefined order, is slave nodes and appropriate set of active slave ndde$

. ) S - Definitions:

infeasible. For example, an application receiving datar ave i .

persistent connection must block if the sender node is not ?SN'_ SCeL}r(r)etne:Cstlvsetesrll?\::?ogﬁdt?nie

scheduled to send the data. Such a phenomenon degrades ;cock; : y distribut d T :
the system performance, as an application, while blocked, rj(;d;sgcjt;’\“/z’i' Recent distribution and repartitioning time,
can’t continue to process incoming tuples until the datanfro P .y — N

the sender is received (i.e., the receiver is unblockedjo Al daiat, Orep: Distribution and repartitioning epoch, respec-
asynchronous (non-blocking) communication in high speed tively

stream applications is infeasible due to buffer overflow. 1 initialize ASN

This paper considers the issue of computing sliding win- 2. Tyt < T'rep < Teiock
dow equijoins joins over a shared-nothing cluster forga@ing 3. while (True)do

notion of persistent, any-time, all-to-all communicatjmattern 4. receive tuples; € S; and put in the proper mini-buffer
among the nodes. The algorithm should follow a fixed commu-
nication sequence or predefined order of data exchange amon§. if Terock > (Taist + daist) then
the processing nodes. The problem considered in the pape6. collect tuples for each active slaves from the re-
involves (a) dynamically balancing the join processingdma spective mini-buffers
among the slaves, (b) determining the degree of declugterin 7. send tuples to the active slave nodes
based on the communication overhead, total processing time8. Taist < Telock
and the processing load at the nodes, (c) study the tradeof®. end if
between the latencies in the output tuples and communitatiol0. if Teiock > (Trep + Orep) then
overhead. 11. identify suppliers and consumers
12. for each suppliedo
IV. JOIN PROCESSING BASED ONSYNCHRONOUS ﬁ endsm?(:(reCt an unique consumer
COMMUNICATION 15. Adjust the degree of declustering

In this section, we introduce the load diffusion algorithm, 16. direct partition-movement information/meta-data to
based on Synchronization of communication among the par- each< supplier, consumer > pair
ticipating nodes, to process hash join over a shared-npthini7. Trep < Teiock
cluster. We start with the architectural framework and pnés  18. Synchronize clocks with the active slaves
the detailed features of the system in subsequent partseof th9. end if
section. 7] 20. end while

A. Overview

The join processing system consists of two categoriesB' Tuple distribution

of nodes, a master and the slaves, that communicate over A master node maintains, for each stream, a buffer that
a network using communication primitives (i.esend and  consists of multiple "mini-buffers”, one for each partitio
receive) over a reliable and persistent connection. The softwaréFigure[3). The buffer keeps the mapping between the partiti
components of the nodes are shown in Fidure 2. The mastéd and the slave machines assigned with the partition. From
node stores the incoming stream tuples in a buffer. The slavesuch a mapping, the partitions assigned to a slave can be
communicate with the master node periodically , at the enddentified. At the end of a distribution epoch, when the slave
of predefined time intervals, and receive stream tuplesoand/ node communicates with the master, the master drains the
system load information. At the end of evedjstribution  tuples from the "min-buffers” corresponding to the paotits
epoch, the master node sends the buffered tuples to the slav@ssigned to each slave, and sends the merged tuples to the
nodes; whereas, at the end of evesgrganization epoch, the  slave node in machine independent format. As the tuples
master node, based on the observed workloads at the slafrem all the streams are merged, the merged stream, received



To slave nodes

(via comm-modules) three categoriessupplier, consumer, and neutral. A supplier

1 has an average buffer occupangtyabove a threshold value

Thsup, Whereas a consumer is a slave with the average buffer

occupancy belowl'heon, (0 < Theon < Theyp < 1); the

rest of the nodes, which are neither supplier nor consumer, a
iretrieve (PartiD); } classified as theeutrals. A supplier yields a partition-group to

map {PartID<=>slaveID}; a consumer node, which installs the partition-group inafa |
module and processes the subsequent tuples arriving vtfithin
partition-group. As outlined in sectidnl V, in a stable syste

the number of consumers is higher than that of suppliers.

store (tuple);

Buffer
S~ While reorganizing the placement of partition-groups
T across the nodes, each supplier yield only one randomly
stream tuples selected partition-group to a consumer. For each consumer,
the master node selects a supplier, and sends messages to the
Fig. 3. Buffer at the master node participating nodes to initiate transferring the windoatss of

the partition-groups to move. The supplier-consumer pzars

) . . be identified by a single scan over the list of the slave nodes.
at the Cllent, ShOUId. have enough information to map therhe master node makes necessary Changes in the mapp|ng
tuples to the respective source streams. Two approaches &igtween the stream partitions and the slave nodes. To éransf
possible: augmenting an extra attribute, containing theast 5 state, thestate-mover in a slave node (supplier) extracts
ID, with each stream tuple; and putting special punctuatiorhe tuples from both the stream windows and the buffer (at
marks (which might itself be fictitious tuples) at the seqeeen the join module), and sends to the consumer. The splitting
of tuples from each stream. information, if any, is also sent to the consumer to enable it

On the other hand, a slave node receives the tuples frofgconstruct the fine?tL_me(_j partitions. After finishing thates
the master, and stores the tuples in a stream buffer (at the jomMovement, the participating nodes send acknowledgement to
module). Once the tuple distribution phase is finished, dire j the master indicating the completion of the task, upon which
module start to process the tuples from the buffer. The buffeth® master node transfers the pending tuples (in its bufies
maintained at a join module within a slave node is similar toProcessed. This completes both the reorganization andjple t

that in the master except for the mapping information. distribution phases. Note that the slaves not particigatirthe
state movement receives the pending tuples before the maste

receives an acknowledgement from every node participating
the state movement.
The input streams are repartitioned to re-balance the works

across the slave nodes. To facilitate such re-balancingdtsv Processing at the Join Module
across the slaves, we introduce a level of indirection while
partitioning the input streams: instead of having one giant Each slave node receives stream tuples from the master
partition per slave node, we instantiate numerous pantitio at the end of every distribution epoch, and stores the tuples
so that the total number of partitions is much higher than thén stream buffers. As discussed earlier, each buffer kelegs t
maximum degree of declustering of the hash jainl [13]] [14].tuples for each partition in a separate mini-buffer, so that
These numerous partitions are distributed among the aperatblocks corresponding to a partition can be retrieved from
instances at the slaves during initialization, and thostimces each mini-buffer without scanning the whole buffer for the
are responsible for processing the corresponding inputs. T stream. The join module fetches a block for a partition of a
repartitioning task requires moving the window states forstream,maps the tuples to the mini-partition, and keep the
processing the subsequent input tuples. tuples in block at the head of the mini window-partition oé th
eam (Figurg 4(R)). When the head block is full or the buffe
ntains no more blocks for the respective stream partition
{he newly added tuples are joined with the mini-partitiotosr
he opposite stream windows. Also, as obvious from the above
description, the tuples in a head block may participate & th
join when it is not full. To utilize the empty portion of the
head block, we should keep a variable to track the newly added
‘?ne., fresh) tuples within a head block. To eliminate duplicate
output results, we omit the fresh tuples within the headkdoc

f the opposite mini window-partitions, as the head blockk w
CEhrticipate in the join when they become full. While expirin
a block from a mini-window, the block is joined with the fresh
tuples within the head block of the opposite mini-windowsth
ensures the completeness of the join results.

C. Repartitioning

The processing nodes in the system (master and the slaveisg
start the repartitioning protocol periodically at the enfl o
an interval called reorganization epoch, which is a order o
magnitude larger than the distribution epoch; a large value
the reorganization epoch is necessary to capture the long te
variation in join workloads. In this protocol, the slave esd
send to the master the information about the loads. We use
average buffer occupancy metric, over the current reorgani
tion epoch, at a slave as the indication of the load appli¢ddo
slave. A slave node records the buffer size at the end of ea
distribution epoch within current reorganization intdread
calculate their average. The average buffer occupancyianetr
is obtained by dividing the calculated average buffer sige b
the total buffer size (i.e., memory allotted to the buffexp
assume that the memory allocated to the buffer in every slave The size of a (mini) partition of a stream may grow and
is the same. Based on this average buffer occupafitydlues shrink depending on the arrival rates of the tuples withia th
of the nodes, the master classifies the slaves into one of threspective partition. As the size a window partition inces



Stream Buffers Within each mini-partition-group, the incoming tuples are
joined using a simple Block-Nested Loop join. The tuples

Partition-group _window within each window partition should be expired periodigall
s Partitions Thus, the tuples should maintain the temporal order in the
I:Elfetch (1) —— 1~ hashtable stream; this constraint makes any sort-based algoritheainf
sible. At first look it appears that tuples in a window paotits
ol [0 I 1[ NENEEEN 7} can be sorted using a out-of-place storage that stores ttezlso
Y (R | \ \ tuple IDs, whereas the actual tuples reside in the window
map \ partition. Such an approach suffers from both storage @aeth
o—|| =3 :‘ — and computation overhead due to frequent expiration of the
: — i O stream tuples.
partition—group k . .
mini partition—groups \

mini—partition group mini—partitions V. SCALABILITY ISSUES

@ ®) In this section, we consider the system performance with a

Fig. 4. (a) Processing tuples at a join module, and (b) Finmtuthe window !arge number Of processing r_10des. Considering the sciyabil
partitions at a slave node based on extendible hashing issue, we describe two techniques to control system ovdshea

time needed join the partition with the tuples from the opifgos A. Degree of Declustering

streams also increases. On the other hand, a small partit_ion Determining the appropriate degree of declustering (i.e.,
size increases the memory overhead. Thus we should adjustimber of slave nodes) is an important issue while usingintr
the size of the partitions. We adapt the size at the grarylari gperator parallelism. Selecting low degree of declustecan

of the partition-groups. We keep the size (in blocks) of eachead to under-utilization of the system (i.e., nodes novatst
partition-group within a rang@ ... 26]. We split a partition-  participating in the processing waste their idle CPU cycles
group when its size is abov#, and try to merge partitions and reduce system performance overloading the processing
whenever a partition size falls belofiv We maintain the size npodes. On the other hand, high degrees of parallelism may
of the partition-groups using extendible hashing![15], andynder-utilize the processing nodes and increase comntiorica
maintain one hashtable for each overflowing partition-grou overhead. The decrease communication overhead, the payloa
(Figure[4(B)). We split a partition-group using the extdbeli  (j.e., number of stream tuples) of the messages sent, in each

hashing, and create multiple mini-partition-groups; eahi-  distribution epoch, to every slave node should be as high as
partition-group is pointed to by one or more hashtable estri possible [15].

In extendible hashing, the hashtable size (i.e., number of Setting the upper bound of the degree of parallelism based
entries in the hashtable) is given by a parameter called then bounding the communication cost as in_|[17] is infeasible
global depth d; the hashtable uses least significant bits of in the scenario of continuous queries for a number of reasons
some adopted hash functioi(k), and has size? entries. firstly, unlike traditional queries, the degree of decluisig
Each mini-partition-group, that is meant to be a bucket inmay vary during execution. Secondly, the communication cos
a hashtable, is assigned a local degth The number of during the execution can’t be estimated by a fixed, simple
hashtable entries pointing to a bucket is givendy<’; the  model. Therefore, an adaptive approach is necessary. More-
d' least significant bits of these entries are the same. Wheaver, in a multi-process environment, measuring the ei@cut
the size of a mini-partition-group, with local depth lesarth time and communication delay is impossible due to frequent
the global depth, is larger tha#, we split the mini-partition- context switching, which is transparent to the processes or
group by assigning half of the—¢" entries to each new mini- threads, by the operating system. Based on these obs@satio
group and distributing the tuples accordingly; the locgbtle we propose a simple approach to maintain the degree of
of the newly created partitions are increased by one. Ta splideclustering.

a mini-partition-group with the local depth same as the glob
depth, the total entries in the hashtable should be doulbykd fi
increasing the global depth; now that the local depth is les
than the global depth, the mini-group can be splitted udieg t
same approach as before.

Our approach adjusts the degree of declustering based
gn the observation of the loads of the processing nodes.
he master node decreases the processing nodes when the
load of the processing nodes are very low, and increases the
active slave nodes when the loads of the processing nodes are

When the size of a mini-partition-group is less tharthe  high. Our approach keeps the system minimally overloaded by
bucket is merged with itbuddy bucket, if any, provided the €ensuring at least one supplier in the system. If all the nodes
sum of the sizes of two buckets is less tihand the local —are eithemeutral or consumer, the master node decreases the
depths of the two buckets are same. Lgt; be the first entry degree of declustering. This minimizes the underutilaati

of the buddy of a bucket with starting enttylet the local and  of the active slave nodes. On the other hand, the master
the global depth bé’ d, respectively. node increases the degree of declustering when the number
of supplier in the system is greater th@ntimes the number
{l 4 9d—d'_jf 9d—d'+1 divides] of consumers in the system, that is,
lowa = ’

[ —24-9" otherwise Newp > BNeon



Here, N, and N.,,, are, respectively, the number of supplier streams tuples are generated online during system aciivigy

and consumer in the system; afid0 < 3 < 1) is a granularity  stream tuples are generated in real time within the maste no

parameter. This ensures the proper utilization of the syste using a separate module. The stream generation modules are
scheduled during idle period, within each distribution @po

B. Sub-group Communication after the master has already sent the pending tuples to the

o slaves.
The master node distributes the buffered tuples to all the

slaves at the start of every distribution epoch. As the tiple o ) )

are sent to every node in a serial order, such an approach We assume that tuples within a streafn arrive with a
might increase average idle time in waiting for the tuples. F Poisson arrival rate,. The inter-arrival time for each tuple is
example, in a system witly slaves, a slave, in the worst case, 9iven by the Poisson process. Each stream tuple has a length
should have wait in idle until the master node transmits thef 64 bytes. The domain of the join attributé is taken as
tuples to othetN — 1 slaves. To minimize such an overhead, integers within the rangg ... 10 x 10°]. The distribution of

we divide the slave into a numben,) of groups, and allow the join attribute values for the stream tuples is captussdgu

the slaves within each sub-group communicate with the mastd-model [18], which is closely related to the "80/20 law” in

at a time; the distribution epoch is divided intg slots, and ~databases [19].

each sub-group receives tuples from the master within a slot

assigned to the group. Evaluation Metrics. We evaluate the performance of the

Such a communication in sub-group also minimizes thelyStém based on the capacity of the system, that is, the
total storage or memory required to buffer the pending &iple Maximum stream rates _that overload the system. We provide an
at the master node. Let us consider a stresmwith a indication of the capacity of fche system, measuring a number
uniform rater;, and assume that the master distributes an equ&)f Parametersaverage production delay, communication time
number of tuples to every slaves. The total tuples of stréam (O overhead), total CPU time, and the window size within a
arriving during a distribution epocty, is t4;. With sub-group node. We measure the production delay of an output tuple as

communication, the maximum buffer size for the stream at théhe interval elapsed since the arrival of the joining tupliéhw
master node. can be calculated as the more recent timestamp. For example, if tupleands, are

the joining tuples of the output tuples, s2), wheres;.t > so.t

(s1 being the more recent one) and current tim&is., then

r; r; ty the delay in producing the output tuple(i&,;ocx — s1.t). This

Myy = —ta+ — (td - —) +... metric (i.e., average production delay) indicates how kjaic
output tuple is generated. Thus, this metric also provide an

I _ i 1 indication of the capacity of the system: when the system is
+ 2 (ng ) . ; . .
Nng Ng overloaded, the incoming tuples stays a longer period oé tim
ritq (1 N 1 ) in buffer, resulting in a larger production delay.
T2 ng

Experimental Platform. Unless otherwise stated, the default
From this equation, it is obvious that a for a large value ofvalues used in the experiments are as given in Table 2. We have
ng, the maximum buffer size can be reduced almost by a halfperformed our experiments on cluster of machines connected
by a Gigabit Ethernet Switch. Each machine has two Pentium
VI. EXPERIMENTS Il (coppermine) 930 MHz processors, 256 KB L2 cache,
. . . . and 512 MB of main memory. For each experimental setting,
This section describes the methodologies for evaluatinge ryn the system for 20 minutes, and refresh the observed
the performance of load diffusion in executing a stream join,, ameters by the elapse of a time of 10 minutes. At the master
operator, and presents experimental _resqlts demongriten size, we provide the level of indirection, while distringi
effectiveness of the proposed load diffusion system based Qpg yples, by maintaining 60 partitions; each partitiomeasn
synchronization of the communication among the nodes. o \vindow partitions are fine tuned, at the slave side, based
on a f#-value of 1.5MB. We fix the block size to 4KB.
A. Experimental Methodology We allocate 1MB of memory to buffer the stream tuples.
Ve assume that each processing node has enough memory
fo hold the window partitions; extension of the system to
fidope with memory limited nodes is straightforward, based
on the incorporation of the memory occupancy information
during partition reorganizations. The distribution epacid the
Join Processing TechniqueAs observed earlier in the paper, reorganization epoch are taken as 2 and 4 seconds, reghgctiv
processing sliding window joins requires the maintenarfce o
the temporal order of the tuples within a window. So, within We imol he ioi . laorithm in J Wi
each window partition, we apply a simple Nested Loop Join e Implement the join processing algorithm in Java. We

: : : -, - usempiJava [16], a pure Java interface to MPI, that uses ser-
?r:%ofriggn&xgt?gghtggjézgzsogr%gga/vilr? Ot'f?év SZ;E(IBt;onS apryi vices of a native MPI implementation. We use LAM/MPIL[20]

(version 7.0.6) as the underlying native MPI implementatio
Data Stream Generation We evaluate the performance of Unless otherwise stated, the default values used in therexpe
the load diffusion algorithm, using synthetic data streafiie  iments are as given in Table 2.

The following paragraphs describe the major componen
of our experimental setup: the join techniques we conside
the data sets and the evaluation metrics and the experimen
platform.



[ Parameter | Defaults [ Comment |
W,(i=1,2) 10 Window length(min)
A 1500 Avg. arrival rate(tuples/sec)
b 0.7 skewness in join attribute
values(forb-model)
Theon 0.01 Consumer Threshold
Thsup 0.5 Supply Threshold
0 15 partition tuning parameter (MB) )
4 Block Size (KB)
ta 2 Distribution epoch (sec)
tr 20 Reorganization epoch (sec)
TABLE T. EFAULT VALUES USED IN EXPERIMENTS
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B. Experimental Results

In this section, we present a series of experimental results
for assessing the effectiveness of the proposed hashjpin al Fig. 8.
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rithm. We measure the average delay in generating an output

tuple, maximum window sizes in the nodes, processing time,

and communication overhead. For each set of experimentatioily overloaded node. From the two figures, we observe that
we run the system for 20 minutes. We start to gather perforthe stream arrival rate which overloads the system inceease

mance data after an startup interval of 10 minutes is elapse@s more and more slave nodes are added in the system.

We first present the experimental results with varying

The effectiveness of fine grained partition tuning at the

stream arrival rates. Figufé 5 and Figlile 6 show the averagdave nodes can be observed from the Figure 7 and Fidure 8.
delay, with varying stream arrival rates, observed in thpou  FigurelT shows the average CPU times (both with and without
tuples. Each plot in the figures corresponds to differentesla fine tuning at the slaves) while processing stream joins with
population. Given a number of slave nodes, the average delarying arrival rates. Without fine tuning, the average CPU
increases sharply at a point where the applied load ovesloadime required to process the joins increases sharply with th
the whole system. Before such a saturation point, the ageradgncrease in the stream rates. As shown in Figlire 8, withoat fin

delay shows very little variations with the increase in aitne

tuning, the average delay is around 48 sec for a per-strei@m ra

rates. This is due to the diffusion of the loads from a tempora Of 4000 tuples/sec. On the other hand, with fine tuning, the
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Fig. 6. Average delay with varying stream arrival rates

average delay for the same system (with 4 slave nodes and for
an arrival rate of 4000 tuples/sec) drops to around 2 seconds

(cf., Figure[®).

Figure[9 and Figuré_10 show the idle time and the com-
munication overhead for the system with and without aplyin
fine grained partition tuning. Without partition tuninggtidle
time for the system drops near to zero for an arrival rate of
4000 tuples/sec/stream. On the other hand, with fine grained
partition tuning, the idle time for the slave nodes is near to
zero while the arrival rate is 6000 tuples/sec/stream. \With
increase in arrival rates, the sizes of the partitions otheac
stream window also increases. Thus scanning the window
partitions to join the incoming stream tuples consume highe
CPU times with the increase in the stream rates. Tuning the
partition sizes at the slave nodes significantly lowers tR&JC
time to process the join. Such a fine grained tuning incurs
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Fig. 10. Idle time and communication overhead with varyitrgam arrival  Slave nodes=4)
rates (with fine-grained partition tuning, total slave redé)

the nodes should operate as close to its processing capacity
no communication overhead as evident from Figlre 9 andossible.

Figure[10. Figure[I3 and FigurE14 shows the average delay of the
Figure[T2 shows the communication overhead across th utput tuples and the average communication overheadsacros
9 %e slave nodes, respectively, with varying distributipoehs.

slave nodes. It shows the minimum, maximum and averag the distributi h d th del |
communication overhead over all the slave nodes in themyste ~*> "€ |s(rj| ution r:apcac ecre:_;tseﬁ, € average r:eay also
The communication time is not uniform across the slaves, ad€¢reases due to the decrease in the wait time at the master
the tuples are distributed to the slaves, during a distiobut Rade. However, with the decrease In thg distribution epth,
fommunication overhead increases (Fidure 14) and reathes a

epoch, in a serial order. The divergence in communicatiory -. h in the fi h he s q
overhead across the slaves increases with an increasavial arr POINt (N0t shown in the figure) where the slaves are engage
only in communication, leaving no time for the processor to

rates. Such divergence across the slave nodes can be ngdimiz rocess the incoming tuples. Thus. for a fixed stream arrival
by maintaining a fixed order while distributing tuples aos P g ples. ’

the slaves; now, the slave node can delay its connectio h(t.:‘eé;g#e\ﬁu?])i(gﬁoitg?/g?r?ga%emeen the distribution ko
initiation according to its position in the sequence. '

Figure[11 shows the communication overhead with varying VIl. RELATED WORK
slave nodes. The communication time decreases with the

increase in degree of declustering; however aggregatéeadr Existing relevant work on diffusing loads of a stream join

gperator can be classified into two categories: recent agvan

gverrealtl—;\tteh%\/sel?xgz dlsn(\:/r/(iatﬂsgtsja“r;g/aerly.a;rlllilifsl?rlljr?nsrh?giatg ents in continuous query and stream processing systewhs, an
ggreg P P : ' ((ajarlier work in parallel query processing.

the system automatically fixes the number of slaves base
on instantaneous arrival rates. With adaptive paralleligra The STREAM [6] project focuses on computing approx-

aggregate communication overhead is significantly lowdlevh imate results and minimizing the memory requirement of

compared to non-adaptive counterpart (for an stream a&rrivacontinuous queries over data streams. The Auiora [21] syste

rate of 1500 tuples/sec/stream). As the overhead increées proposes mechanism to sacrifice result quality, based an use
stream arrival rates (Figufe]12), the performance benefit adpecified quality-of-service profiles, while sufficientoasces

an adaptive algorithm would be prominent for a high streanto ensure scalability are not available. In contrast, we ex-
arrival rate.So, it is evident that the degree of declusteaf  ploit inexpensive shared-nothing clusters to ensure bititya

the system should not be increased unless necessarylli.e., without sacrificing result accuracy. Referencel [22] pr@soa



7 In reference[[10], the authors first address the issue of
oL intra-operator parallelism while processing a join oparaver
a number of servers. The paper provides two tuple routing
5r strategies, namekgligned tuple routing (ATR) andcoordinated
Z 4l tuple routing (CTR), that preserve join accuracy. The ATR
8 assigns a segment of the master stream to a selected node,
23 and changes the assigned node at the end of every segment.
oL The ATR works for a segment much higher than the sizes of
the stream windows. Thus, instead of balancing the loads, th
tr approach circulates the join processing load across thesnod
0 L L L L L L during a segment interval the node assigned with the segment
o 2 3 4 5 6 7 of the master node carries out all the join processing loads,
Distribution Epoch (sec) while the remaining slave nodes (assigned with a segment of
Fig. 13. Average production delay with varying distributiepochs (total the slave streams) only forward the incoming tUp_leS of the
slave nodes=3) slave streams to the respective master node. This approach
violates the assumption of resource limited processingsod
160 for example, storing the windows of all the streams in a nraste
. 150 b node (within a segment of the master stream) is infeasilde. S
& 1ol lecting a small segment length doesn’t ameliorate the prabl
¥ 10f in this case, when a subsequent segment of the master stream
£ 120t is assigned to a new node, all the stream windows should
3 1of be routed to the new master node, and this happens at the
% 100 |- end of every segment. On the other hand, CTR distributes the
g %0r stream segments across the participating nodes, and imainta
é jg I a routing path for each stream. _The routi_ng path is a sequence
8 of routing hop , and each routing hdg is a collection of
60 . ) . . ..
% ‘ ‘ ‘ ‘ ‘ ‘ nodes storing a superset of tiwh stream-window in the join

0 1 2 3 4 5 6 7 order. In addition to the computational overhead assatiate
Distribution Epoch (sec) with maintaining the routing paths, such an approach incurs
) o ) S high network overhead, as each incoming tuple (from a stream
Fig. 14. Communication overhead with varying distributiepochs (total source) or intermediate results (generated by a segmeheoft
slave nodes=3) . . . . .
intermediaterouting hop) should be forwarded, in a cascading
fashion, to every node in the successieating hop.

contract-based load management framework migrating work- Reference [[26] presents a stream database system that
load among processing nodes based on predefined contragigovides a generic framework for describing distributeé-ex
The Borealis project proposes a dynamic inter-operatad loacution strategies as high-level dataflow distribution téatgs.
distribution mechanism by utilizing the operators’ loadiva The paper implements two partitioning strategiegndow

ance coefficients [9]. StreamCloud [23] parallelizes a det osplit andwindow distribute. Each window partitioning strategy
stream queries across a number of virtual machines in provide a partitioning template (OS-Split or S-Distribute
cloud. Stormy|[24] uses techniques from key-value stor@s anand a combining SQF (OS-Join or S-Merge). The partition-
replication to provide a fault-tolerant service for progieg  ing schemas are content-insensitive, and are chosen to meet
streams in a cloud system. In comparison, our work considegcientific application requirements. Thus the issue of load
intra-operator load distribution for window join queriesthv  imbalance across the partitions doesn't arise However, the
large states and high arrival rates. paper considers a homogeneous cluster environment without
ny non-query background load. Thus the issues like dynamic
ataflow partitioning and state movement are irrelevantit s

a system.

The Flux operator [13] extends the exchange operatar [253
to support adaptive dataflow partitioning and load balagcin
while processing stateful operators ( e.g. joins, groupiper-
ators) over a shared-nothing cluster. The Flux operatosists Early work on parallel query processing concentrated on
of two types of intermediate operators called Flux-Prod andarallelizing individual join operators [27]/ [28]. Extsine
Flux-Cons. The Flux-Prod operator stores stream tuplesn(fr research has been done on handling data skew (i.e., a non-
the sources) into a buffer, and distributes the stream supleuniform distribution of join-attribute values) while pdlediz-
among a number of Flux-Cons operators, that are instadtiatdng an operator in a shared-nothing system (e.a..| [29],,[30]
in each of the nodes processing the stream queries. The FIy&1], [32], [17], [14], [33], [34], [35], [36]). These alg@hms
operator provides a framework for partitioning dataflowsros  split the persistent relations in a distribution or spiittiphase,
number of nodes; however, it does not consider the slidimg wi and balances the loads by properly assigning the partitions
dow joins over a shared nothing environment. Moreover,avhil or buckets across the nodes. Such a holistic approach based
implementing a dataflow operator over a number of processingn the complete knowledge of data distribution in staticadat
nodes, maintaining and initiating communication among thesets is infeasible in the streaming scenario.lIn [14] and, [37
nodes, over a reliable socket or TCP connection [11], withouthe authors describe how to leverage current CPU utilinatio
any prior synchronization or without any predefined order ofmemory usage, and 1/O load to select processing nodes and
data exchange is infeasible, if not impossible. determine degree of declustering for hash joins. Referf38je



presents a method of parallel query processing that uses nop3]
dedicated, heterogeneous computers. This approach assume
a shared stored system (e.g., Storage Area Network [39])
to stores input data, and is not relevant to online strear?m]
processing as considered in our work. The hashjoin algosgth
used by all the previous schemes partition data at a single
time point (i.e., between theuild andprobe phases), and they |15
do not consider continual, on-the-fly repartitioning of fba
operator during execution.

[16]

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a new technique to achieve fine-
grained, intra-query parallelism while processing a sfidi [17]
window operator over a cluster of processing nodes. The
proposed algorithm balances the join processing loads OVelg
a shared-nothing cluster. We analyze the issues in scdlimg t
intra-query parallelism over a large number of nodes in dimul
guery, multi-user environment, and propose techniques/to d
namically maintain the degree of declustering, optimizing  [19]
processing and communication overheads of the system. Our
experimental results demonstrate the effective of therdhgn.

The work on parallelizing the stream joins can be extended it
a few directions. Most importantly, deploying the protatyp
over a large number of processing nodes and dynamicallpél]
tuning various performance parameters (i.e., group size an
distribution epoch) is an interesting future work. Incagting
disk-1/0O at the local nodes is another topic for future work.

[22]
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