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Abstract—A clear trend has emerged involving the acceler-
ation of scientific applications by using GPUs. However, the
capabilities of these devices are still generally underutilized.
Remote GPU virtualization techniques can help increase GPU
utilization rates, while reducing acquisition and maintenance
costs. The overhead of using a remote GPU instead of a local one
is introduced mainly by the difference in performance between the
internode network and the intranode PCle link. In this paper we
show how using the new InfiniBand Connect-IB network adapters
(attaining similar throughput to that of the most recently emerged
GPUs) boosts the performance of remote GPU virtualization,
reducing the overhead to a mere 0.19% in the application tested.

I. INTRODUCTION

A clear trend has emerged involving the acceleration of sci-
entific applications by using graphics processing units (GPUs)
in domains as diverse as chemical physics [1], finance [2], and
image analysis [3]. However, the GPU computing resources
are still generally underutilized. Remote GPU virtualization
techniques can help increase GPU utilization rates, while
reducing acquisition and maintenance costs. For these reasons,
many different virtualization solutions are available today, such
as TCUDA [4], [5], SnuCL [6], GVirtuS [7], DS-CUDA [8],
and VOCL [9].

The overhead of using a remote GPU instead of a local
one is introduced mainly by the difference in performance
between the internode network and the intranode PCle link. In
this paper we show how using the new InfiniBand Connect-
IB network adapters, making use of PCle 3.0 x16 connections
like the most recent GPUs (see Figure 1), by means of dual
InfiniBand FDR ports, boosts the performance of remote GPU
virtualization, reducing its overhead to negligible values.

The rest of the paper is organized as follows. Section II
introduces rCUDA, the solution for remote GPU virtualization
used in this study. In Section III we study the impact of the new
Connect-IB network adapters on the performance of rCUDA.
Finally, Section IV summarizes the main conclusions of our
work.

II. RCUDA: REMOTE CUDA

Several solutions exist for using GPUs in the scope of
general-purpose computing on GPUs (GPGPU), being the
most popular CUDA [10] and OpenCL [11]. In this work,
we use CUDA because it is a more mature and widely used
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Fig. 1: Comparison between the theoretical bandwidth of different
versions of PCI Express x16 and those of commercialized InfiniBand
fabrics and network adapters.

technology. Among the remote GPU virtualization frameworks
mentioned in the introduction, we use rCUDA [4], [5] because
it offers the most extensive features.

Remote CUDA, or rCUDA, is compatible with CUDA 5.5
and supports different communication technologies, such as
TCP/IP and InfiniBand. It is organized following a client-server
distributed architecture. When an application running on the
client side requests the use of a remote GPU, this is intercepted
by the rCUDA client and transparently forwarded to the
rCUDA server by means of the communication layer. The
request is then issued to the physical GPU; upon completion,
the result is sent back to the rCUDA client and, finally, to the
initial application. More detailed information about rCUDA
can be found at www.rCUDA .net and [12].

III. IMPACT OF CONNECT-IB ON RCUDA

For all the experiments shown in this section, we have used
two servers, each equipped with two Intel Xeon hexa-core E5-
2680 v2 processors (2.8 GHz, 32 GB RAM) and Mellanox
ConnectX-3 and Connect-IB InfiniBand FDR adapters. Addi-
tionally, one of the nodes had an NVIDIA Tesla K40c GPU.

First, we use the bandwidthTest benchmark available in
NVIDIA CUDA Samples [13] for comparing the bandwidth
when using a local GPU and a remote one.

Figure 2 presents the bandwidth for copies from host
pinned memory to device memory, using native CUDA on
a local GPU and the rCUDA framework over InfiniBand
employing different cards: ConnectX-3 and Connect-IB (with
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Fig. 2: Bandwidth test for copies from host pinned memory to device
memory, using CUDA and the rCUDA framework over InfiniBand
employing different cards: ConnectX-3 and Connect-IB (with 1 and
2 ports).

1 and 2 ports). As can be seen, the bandwidth obtained when
using a remote GPU with the new dual-port Connect-IB card
is 98.23% of the total bandwidth achieved when using a local
GPU. This is a huge improvement over the bandwidth attained
by the previous ConnectX-3 adapter (only 54.38% of the
local GPU bandwidth) and enables the wide use of remote
accelerators.

Second, we study how the new characteristics of
Connect-IB influence the performance of real applications,
using the CUDA-MEME [14] application as an example.

To present the results in this section in their context, we
first show in Figure 3(a) the time spent in transfers (i.e.,
time spent in memory copies between host memory and the
device memory) and the time employed by computations (i.e.,
time employed by CUDA kernels) of CUDA-MEME. As can
be seen, the behavior of this application is representative
of most CUDA applications: moving data to the GPU and
performing intensive computations there to compensate for
the overhead of having transferred the data across the PCle
bus. Obviously, when using remote GPUs, more computations
are needed to compensate for the additional overhead of also
transferring the data through the network. In this case, the time
spent in computations (261.36 seconds) seems large enough to
compensate for the time employed by transfers (5.18 seconds).

In Figure 3(b) we depict the CUDA-MEME execution
time for a dataset containing 1,000 sequences using the DNA
alphabet, choosing the OOPS model for motif distribution and
with a maximum of 1 million sites for each motif. In this
figure, we expose the execution time using CUDA and rCUDA
with different network adapters. The overhead of using rCUDA
in these experiments is 0.19%, 0.56%, and 0.61%, when
using Connect-IB 2 ports, Connect-IB 1 port, and ConnectX-
3, respectively. These results are aligned with those obtained
in the previous experiment and confirm that the overhead of
remote GPU virtualization is negligible when using the new
InfiniBand Connect-IB dual-port adapters.

IV. CONCLUSIONS

In this paper we have shown how using the new InfiniBand
Connect-IB network adapters (with similar performance to that
of the most recent PCle 3.0 GPUs) boosts the performance of
remote GPU virtualization. The result is a reduction of the
overhead to a mere 0.19% in the application tested.
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Fig. 3: (a) NVIDIA profiling results for CUDA-MEME, in particular,
time employed by computations (i.e., CUDA kernels) and memory
transfers (i.e., CUDA memory copies). (b) CUDA-MEME execution
time using CUDA and the rCUDA framework over InfiniBand em-
ploying different cards: ConnectX-3 and Connect-IB (with 1 and 2
ports).
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