Smith-Waterman Algorithm on Heterogeneous
Systems: A Case Study

Enzo Rucci
and Armando De Giusti
and Marcelo Naiouf
Instituto de Investigacion en Informatica LIDI (III-LIDI)
Universidad Nacional de La Plata
La Plata (1900), Buenos Aires, Argentina
Email: {erucci,degiusti,mnaiouf} @lidi.info.unlp.edu.ar

Abstract—The well-known Smith-Waterman (SW) algorithm
is a high-sensitivity method for local alignments. However, SW
is expensive in terms of both execution time and memory
usage, which makes it impractical in many applications. Some
heuristics are possible but at the expense of loosing sensitivity.
Fortunately, previous research have shown that new computing
platforms such as GPUs and FPGAs are able to accelerate
SW and achieve impressive speedups. In this paper we have
explored SW acceleration on a heterogeneous platform equipped
with an Intel Xeon Phi co-processor. Our evaluation, using the
well-known Swiss-Prot database as a benchmark, has shown
that a hybrid CPU-Phi heterogeneous system is able to achieve
competitive performance (62.6 GCUPS), even with moderate low-
level optimisations.

Keywords—Bioinformatics, Smith-Waterman, HPC, Intel Xeon
Phi, heterogeneous computing.

I. INTRODUCTION

High throughput structural genomic and genome sequenc-
ing are delivering huge amounts of data from the structures
and sequences of thousand of proteins. To keep pace with these
new technologies and to be able to extract useful information
and insights from these massive data, new computational tools
have to be developed in the coming years, being essential the
acceleration of key primitives and fundamental algorithms.

In this paper, we have focused on the acceleration of the
classic Smith-Waterman (SW) algorithm without heuristics.
Almost all the applications of new sequencing technologies are
based on sequence alignment [1] and SW is still (or could be)
a critical and basic primitive in many of those applications.
In high-throughput sequencing, the SW algorithm itself, or
variations of it, are often used to align sequencing reads to
reference sequences. Unfortunately, identifying the optimal
alignment score using SW is computationally expensive (linear
space complexity and a quadratic time complexity) since
it performs an exhaustive search to find the optimal local
alignment between two sequences. However, it guarantees the

©2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The final authenticated version is available online at https://doi.org/10.1109/
CLUSTER.2014.6968784

Guillermo Botella
and Carlos Garcia
and Manuel Prieto-Matias
Dept. Computer Architecture,
Complutense University of Madrid, Madrid 28040, Spain
Email: {gbotella,garsanca,mpmatias} @ucm.es

optimal alignment, which is essential in some applications.
Furthermore, SW has been also used as the basis for many
subsequent heuristic algorithms that were developed over the
last few years.

BLAST (Basic Local Alignment Search Tool) is a popular
example of such heuristic algorithms [2], [3] that increase
speed at the cost of reduced sensitivity. This algorithm keeps
the position of each k-length subsequence (k-mer) of a query
sequence in a hash table (k is usually 11 for a DNA sequence),
with the k-mer sequence being the key, and scans the reference
database sequences looking for k-mer identical matches, which
are the so-called seeds. Once those seeds have been identified,
BLAST performs seed extensions and joins (first without
gaps), and then it refines them using again the classic SW
algorithm. Over the years, BLAST has been significantly im-
proved adding new functionalities although keeping the same
seed-and-extend structure: some proposals have enhanced the
seeding process, while others have improved the seed extension
[1]. Overall, the point is that accelerating SW is still a priority
even though sequence alignment operations are also speeded
up using heuristic tools.

Fortunately, the alignment process exhibits inherent par-
allelism that can be exploited to mitigate the high cost of
SW. Two well-known tools that take advantage of such par-
allelism for SW sequence database searches are Swipe [4]
and CUDASW++ [5]. The former focuses on CPUs with
multimedia extensions such Intel’s SSE. CUDASW++ exploits
CUDA-enabled GPUs from NVIDIA and its latest version
(CUDASW++3.0) uses a hybrid implementation that takes
advantage of GPUs and CPUs simultaneously. Recently, Liu
and Schmidt presented SWAPHI, a tool for Intel Xeon Phi
accelerators [6]. There are also other proposals for SW
acceleration on grid architectures [7], cloud-based systems
using MapReduce [8], an even FPGAs implementations [9],
[10], [11].

Our focus in this paper is on heterogeneous Intel Xeon
server equipped with Intel Xeon Phi coprocessor. Unlike
previous research that have focused on extracting the most of
the Xeon Phi coprocessor using low-level optimisations [6],
we are interested on evaluating the potential of a moderate
optimised SW code that can be easily recompiled onto dif-
ferent processors with SIMD extensions. This way, we are

trading portability for performance which could facilitate the
optimisation on more elaborated sequencing tools that improve
SW with heuristics. Nevertheless, we are able to compete with
some of those previous tools taking advantage of both Xeon
and Xeon Phi processors simultaneously.

Section II introduces the basic concepts of the Smith-
Waterman algorithm. Section III briefly introduces the Intel’s
Xeon-Phi architecture and in Section IV we describe our
implementation of the SW algorithm. In Section V we discuss
performance results and finally in Section VI we conclude with
some ideas for future research.

II. SMITH-WATERMAN ALGORITHM

Smith-Waterman (SW) is a well-known algorithm for per-
forming local sequence alignment that is able to return the
optimal local alignment between two sequences. It is based
on a dynamic programming approach and its high sensitivity
comes from exploring all the possible alignments between two
sequences.

In the following paragraphs we explain how the SW
algorithm find a similarity score between two sequences.

Given two sequences: A = ajasas...ap and B =
b1bobs ... by, a matrix H of (N+1)x (M +1) is built, in such
a way that the residues that form sequence A label its rows
(starting with 1), and those from sequence B label its columns
(starting with 1). The following steps are applied to calculate
the values of H that yield the similarity score between A and
B:

1) Initialise the first row (row zero) and the first column
(column zero) of H with zero, as shown in Equa-
tion 1.

Hi_’():Ho_’j:O fO’I’OS’LSMCLTLdOS]SN

ey

2) H;; measures the maximum similarity between two

segments ending in a; and b;, respectively, Vi €

[1,...,M] and Vj € [1,..., N]. This score is com-
puted using Equation 2:

0

Hi 1 -1+ V(a;bj)
Oi_’j

Fi;

H; ; = max

@

where,

a) V(ai,b;) is the substitution matrix. This is
a table that describes the probability of a
residue from sequence A at position i to
occur in sequence B at position j. There
are different options available depending on
the target problem. In most cases, V (a;, b;)
rewards with positive value when a; and b;
are identical, and punishes with a negative
value otherwise.

b) Cj; is the score in column j considering a
gap, and is calculated with Equation 3.

Cij = mazi<p<i {Hi—k; —9(k)} (3)

bo by b, b3
ag
ch
as Hi1j1 |
\
a:z Fi; —H;
as

Fig. 1. Data dependences to compute H.

c) I} is the score in row i considering a gap,
and is calculated with Equation 4.

Fij=mari<<i{H;j-1—g()} (4

d) g(x) is the penalization function for a gap of
length x, and is obtained with Equation 5, ¢
being the penalization applied for opening a
gap and r the penalization for prolonging it.

g(z)=q+rz (¢=0;r>0) (5

3) Obtain the maximum similarity score as indicated in
Equation 6.

G = maz(o<i<no<j<mr {Hij} (©6)

4) Finally, a backtracking process finds the pair of
segments with maximum similarity: starting from the
element of matrix H where G was found, which
represents the tail of the highest-scoring alignment
between both sequences, until reaching a zero value
position (which represent the head of the local align-
ment).

It is importante to note that H values can not be computed
in any order due to the data dependences inherent to this
problem. To be able to calculate the value of any cell, all the
values of the previous cells at the same row and column have
to be computed first, as shown in Figure 1. These dependences
restrict the ways in that H can be computed.

III. INTEL’S XEON-PHI

The adoption of accelerators within the HPC community
continues to grow and it is expected that new designs from
Intel, NVIDIA and AMD will likely dominate most production
systems in the next few years.

The Intel Xeon Phi (Phi) is a many-core co-processor with
the MIC (Many Integrated Cores) architecture that derived
from the defunct Larrabee project [12]. In its current gen-
eration, the Phi features up to 61 x86 pentium cores with
extended vector units (512-bit) capable of executing SIMD
vector instructions and simultaneous multithreading (four hard-
ware threads per core). Each core integrates an L1 cache
(32 KB data + 32 KB instructions) and there is also a fully
coherent L2 cache associated with it (512 KB combined data
and instructions). A high-speed ring interconnect allows data
transfer between the L2 caches and the memory subsystem.

The Phi can support up to 8§ memory controllers, each one
with two GDDRS channels, and is connected to the host
server through a PCle Gen2 bus. From a software perspective,
one of the strengths of these platforms is the support of
existing parallel programming models used traditionally on
HPC systems such as OpenMP or MPI, which simplifies code
development and improves portability over other alternatives
based on accelerator specific languages and other specific
runtime systems.

Unlike GPUs, the Xeon Phi can be run as a completely
standalone computing system, which allows running appli-
cations using exclusively the resources of the co-processor.
This is called the native mode. Building a Xeon Phi native
application usually involves minimal code modifications. In
fact, many HPC codes written for the general purpose pro-
cessor clusters can run in this mode without modification just
recompiling them for this platform using the mmic compiler
flag. Nevertheless, the key to Phi performance is the efficient
use of the per core vector units and the small cache. In other
words, just portability usually does not translate into high
performance on the Phi.

The native mode can be inefficient for applications with
frequent sequential parts or those with high I/O rates. In those
cases, it results better to employ the Phi as a coprocessor
device using the offload mode, which is the Phi’s primary mode
of operation. The programming model in this case is similar
to the corresponding to other accelerators such as CUDA-
enabled GPUs. The host CPU runs the sequential code of
the application and invokes kernel execution on the Phi. From
a software perspective, the offload mode is activated adding
the Intel’s compiler Phi specific #pragma offload, as show
in Figure 2 for a simple axpy subroutine. This is the basic
pragma to annotate those kernels (code regions) that run on the
Phi. The additional in/out tags allow programmers to specify
the required data transfers between the host and the Phi. The
#pragma omp parallel OpenMP pragma shown in the example
distributes loop iterations across Phi cores.

void axpy(float =y, float xx, float a
int n)
{

#pragma offload target(mic) \
in(x,y:length(n)) out(y:length(n))

#pragma omp parallel for
for (int i=0; i<n; i++)
yli]l = a=x[i] + y[il];

Fig. 2. Source code snippet that implements the axpy subroutine kernel on
Intel’s Xeon Phi

A programmer who is familiar with OpenMP, one of the
most popular shared memory programming models within the
HPC community, can find this model easier to learn than
OpenCL or CUDA. This is one of the advantages over previous
accelerators that Intel’s marketing claims. Nevertheless, the
main aspects to be addressed in order to achieve high per-
formance are still (1) the efficient exploitation of the memory
hierarchy, especially when handling large datasets, and (2) how

to structure the computations to take advantage of the Phi
SIMD extensions.

Ideally, programmers would only need to introduce some
directives to inform the compiler about data dependencies,
pointer disambiguation or data alignment, and introduce mini-
mal code modifications to allow automatic vectorization. From
the sofware point of view, this sort of guided vectorization is
usually one of the best options since it allows cross-platform
portability. However, in practice, programmers often need to
hand-tuned their codes using language intrinsics to specify
vector operations. Despite intrinsics may inhibit other loop-
level optimisations that improve performance (this is unusual
if codes are well tuned), hand-tuned codes usually outperform
their guided counterparts. Indeed, intrinsics are the only option
for complex applications with irregular access patterns or
with data dependencies that can be hidden using specific
code transformations. Unfortunately, most processors families
have incompatible SIMD instruction sets (even from the same
vendor) and the gains in performance are at the expense of
developing multiple code branches that are usually difficult to
maintain.

IV. SW IMPLEMENTATION

In this section we describe our mapping of the SW algo-
rithm on both the Intel’s Xeon and Intel’s Xeon Phi platforms.
One of our goals is to to use the same baseline code for
both platforms. As mentioned above, it should be the compiler
the responsible of optimising the core of the computation and
vectorizing it using AVX (Advanced Vector Extensions) 256-
bit extensions when targeting the Intel Xeon Processor or the
MIC 512-bit extensions on the Xeon Phi.

Our application consists of four major steps:

1) Load query and database sequences.

2) Pre-process database sequences.

3) Perform SW alignments in parallel.

4) Sort all the alignment scores in descending order.

The third step performs several sequence alignments in
parallel using both thread-level and simd-level parallelism.
It is based on the inter-task scheme proposed by previous
research [4]. Other authors have also explored fine-grained
vectorization schemes [13] that are able to exploit the simd
parallelism available within a single sequence alignment. How-
ever, the inter-task approach usually outperform the intra-
task counterpart, especially when aligning short sequences.
Essentially, when aligning several pairs in parallel, we avoid
the data dependences that limit the performance of intra-task
approaches [4]. Nevertheless, special care should be taken to
exploit data locality as well as to avoid unbalanced execution.
For instance, alignment operations take different execution
time depending on the length of the sequences. A straight-
forward optimisation consists in pre-processing the reference
database and sorting its sequences by length in advance. This
way, consecutive alignments operations take similar time [14].

Algorithm 1 shows the pseudo-code of our SW base-
line code. Thread level parallelism is exploited using the
OpenMP programming model. The main loop that iterates
over the groups of database sequences is distributed across
cores with #pragma omp parallel for directive. The iterations

are distributed according to the selected scheduling policy.
The possible values are: static, guided and dynamic. In our
observations, dynamic outperforms static significantly. The
performance difference with guided is slightly minor. This has
sense taking into account that the workload associated to each
iteration is different.

At this level, the code is essentially the same for both the
Intel’s Xeon and the Phi, with as mention above only requires
the #pragma offload directive and the tags that specifies the
data transfers between the host and the device.

The code has also been annotated with directives that
inform the compiler which loops are independent and their
memory access pattern. As shown in the pseudocode, one of
those directives is the new #pragma omp simd introduced by
OpenMP4.0, which instructs the compiler to enforce vector-
ization of the corresponding loops.

Since data locality is the other key element to achieve, high
performance especially on the Phi, we have also implemented
a blocking optimisation to reduce the number of cache misses
[15]. Furthermore, data structures has also been aligned to
avoid the overhead of misaligned memory accesses.

Our baseline code also implements other well-know op-
timisations of the SW algotithm that have been proposed
by previous research such as Query and Sequence Profile
techniques [13], [5]. The former is based on constructing an
auxiliary two-dimensional array of size |Q| X |E|, where Q
is the query sequence and E is the alphabet, in the pre-
processing stage before performing the database search. Each
row of this matrix holds the scores of the corresponding query
residue against each possible residue in the alphabet. Because
of each thread compares the same query residue with different
database residues, this optimisation improves data locality. It
increases memory requirements but it is negligible since the
size of the alphabet is usually quite small compared to the
size database. The sequence profile optimisation is based on
constructing an auxiliary NV x L sequence array , where [V is
the length of the database sequences and L is the number of
vector lanes. Because each row of the sequence profile forms
a L-lane residue vector, all its values can be gathered using
a single vector load. Note that in this case, there is one array
per group of reference sequences and these profiles cannot be
constructed in the pre-processing stage.

Using the same baseline code for both processors has
allowed us the implementation of a simple hybrid version that
is able to take advantage of both the Intel Xeon and Xeon Phi
coprocessor simultaneously. As shown in Figure 2, we just
need to introduce an additional splitting stage that distributes
the computation between both processors using a simple static
distribution of the database sequences. Query distribution is
also possible but it would require a different load balancing
strategy.

V. EXPERIMENTAL RESULTS
A. Environmental Features

All tests were performed in a computer with a 2XxIntel
Xeon CPU E5-2670 8-core 2.60GHz CPU with hyperthreading
and 32 GB installed RAM memory. The Operating System

Algorithm 1 SW(file_database,
SUBM AT)

file_querysequence,

1. Q = read_file(file_database) > (1)
2: D = read_file(file_querysequence) > (1)
3:

4: vD = sort_by_length(D) > (2)
S:

6: #pragma offload target (mic)

7: in(Q,vD, SUBMAT) out(G)

8:

9: G =SW_core(Q,vD, SUBM AT) > (3)
10: }

11: scores = sort(G)> in descending order > (4)
12:

13: function SW_CORE(Q,vD, SUBMAT)

14: if query_profile then

15: QP = get_query_profile(Q, SUBMAT)
16: end if

17:

18: #pragma omp parallel for

19: for ¢t <|Q| * |vD| do
20: q = get_query_sequence(Q,t)
21: d = get_database_sequence(vD,t)
22: if sequence_profile then
23: SP = get_sequence_profile(SUBM AT, d)
24: end if
25:
26: for i <|q| do
27: #pragma omp simd
28: for j <|d| do
29: if query_profile then
30: V = get_V(QP,q;,d;)
31: end if
32: if sequence_profile then
33: V = get_V(SP, q;,d;)
34: end if
35: H@j = value(Hi_l,j_l,V,CM,FM)
36: end for
37: end for
38: G = get_score(H)> save similarity scores
39: end for
40: return G

41: end function

used is GNU-Linux (CentOS release 6.5). The Xeon Phi copro-
cessor has 60 cores supporting the execution of four hardware
threads (240 hardware threads in total) and 5GB installed RAM
memory. Additionally, the algorithms used in this work were
compiled using Intel’s ICC compiler (icc compiler version
14.0.2.144) with optimizations -O3. It incorporates OpenMP
library for multithreading on Intel Xeon and Xeon Phi. This
compiler also supports hand-tunned by means of intrinsic
functions and guided vectorization (enabled with -vec flag
compiler).

B. Tests Carried Out

This work consists on a first evaluation of heterogeneous
computing approach based on Intel’s Xeon and Xeon Phi
systems. Initially, vector capabilities are assessed. Our studies
include the evaluation of guided vectorization using pragmas

Algorithm 2 SW_het(file_database, file_querysequence,
SUBM AT)

1. Q = read_file(file_database) > (1)
2: D = read_file(file_querysequence) > (1)
3:

4. [vDepy,vDyrc] = sort_and_split(D) > (2)

S:

6: #pragma offload target (mic)

7: in(Q,vDasrc, SUBMAT) out(Gasr¢) signal(sem)
8:

9: Gyre = SW_core(Q,vDpyic, SUBMAT) > (3)

10: }

11:

12 Gopy = SW_core(Q,vDopy, SUBMAT) > (3)
13:

14: #pragma offload target(mic) wait(sem)

15: scores = sort(Gyic, Gepu) > (4)

denoted as simd in the experiments and vectorization based
on intrinsic instructions labeled as intrinsic. As baseline code,
we have considered a version without SIMD exploitation
which is named as no-vec. In addition, we have considered
two substitution score schemes known as query-profile and
sequence-profile (QP and SP in experiments). To provide
the most relevant study, the experiments are performed with
the Swiss-Prot database (release 2013_11)'. This database
comprises 192480382 amino acids in 541561 sequences with
the largest sequence length equal to 35213. The 20 query pro-
tein sequences for performance evaluation were selected from
the aforementioned database (accession numbers: P02232,
P05013, P14942, P07327, P01008, P03435, P42357, P21177,
Q38941, P27895, P07756, P04775, P19096, P28167, POC6BS,
P20930, P08519, Q7TTMAS, P33450, and Q9UKN1), ranging
in length from 144 to 5478. Moreover, BLOSUMG62 was used
as scoring matrix, and values of 10 and 2 as gap insertion and
extension penalties, respectively.

C. Performance Results

This subsection evaluates the performance of the heteroge-
neous system. Initially, the results are shown for each platform
separately and after that, the analysis is completed regarding
the entire system. In order to avoid dependencies from input
sequence and database, performance results are expressed in
GCUPS, a widely used metric by scientific community [4],
[14], [16].

1) Intel Xeon results: Figure 3 shows the performance
on Intel Xeon for the different approaches under evaluation
varying the thread number from 1 to 32. As it was expected, the
two non-vectorized versions hardly offer performances. Vector
capabilities usage improves performance being more plausible
with hand-tunned vectorization (intrinsic version). The best
results correspond to the SP scheme which reaches up-to 30.4
GCUPS with 32 threads.

SW scalability is generally successful, being close to the
ideal efficiency in most cases. In particular, we observe an
efficiency from 99% to 88% with 4 and 16 threads respectively

IThe Swiss-Prot database available at

swiss-prot_guideline.html

http://web.expasy.org/docs/

Threads

==10-vec-QP =fl=no-vec-SP =d=simd-QP

i 51 -S P st [T iNSIC-QP =@ intrinsic-SP

Fig. 3. Performance on Intel Xeon algorithm with different number of threads.

35
30 _#O—M
25 +

20 o

[
3
8 15 S > — = = e He= K
> A re
k_H*_—t_ - = = A
10
5

—{
T
144 375 850 1500 2005 3005 4061 5478
Query length

—i ——a8—_

0

——no-vec-QP —M—no-vec-SP —&—simd-QP

——simd-SP == intrinsic-QP —®—intrinsic-SP

Fig. 4. Performance in Intel Xeon algorithm with a variable query length.

in intrinsic-SP test (when hyper-threading is enabled, it’s
reduced to 70% for 32 threads). The efficiency for intrinsic-
QP is slightly less (73% with 16 threads), mainly motivated by
the difficulty in hand-tuned vectorization which is addressed
below.

Figure 4 illustrates performance evolution varying the
query length with the most favorable configuration of 32
threads. According to the results obtained, we notice that the
query length has practically no impact on the performance in
most of experiments. However, it exists a light improvement
trend in sequence-profile versions (labeled with SP in this
Figure) that reflects a 25.1 and 32 GCUPS for simd-SP and
intrinsic-SP respectively.

There are considerable differences between QP and SP ap-
proaches which are more noticeable using intrinsic functions.
This aspect is mainly due to non-contiguous memory accesses
pattern inside substitution scheme. Despite of the substitution
scores for a matching are close regarding QP approach, they
are not necessary consecutive. Since Intel’s Xeon does not
incorporate vector gather functionality, the substitution scores
matrix cannot be loaded into vector registers in a single
operation (shuffle intrinsic instructions are needed).

2) Intel Xeon Phi results: Figure 5 shows Intel’s Xeon
Phi performance with different versions running from 30
to 240 threads. As in the Intel’s Xeon, the non-vectorized

35
30

25 /
20 /' -

S —

GCUPS

Threads

== no-vec-QP =—ll=no-vec-SP == simd-QP

= SiMA-SP =t intrinsic-QP =@ intrinsic-SP

Fig. 5. Performance of the different Intel Xeon Phi algorithm variants using
a variable number of threads.

versions barely exhibit performances. Both guided vector-
ization implementations labeled with simd, present similar
behavior, achieving a maximum of 13.6 and 14.5 GCUPS
for QP and SP, respectively. Regarding Intel Xeon case, both
versions developed with intrinsic functions offer much more
performance rates: 27.1 and 34.9 for QP and SP approaches.
Because Intel Xeon Phi provides vector gather capabilities,
non-contiguous memory accesses in query profile scheme have
less influence on intrinsic-QP performance. Results suggest
that hand-vectorization have more impact in term of GCUPS
than in Intel Xeon. Regarding to multi-threading scalability,
this figure shows that OpenMP implementations are scalable
with the number of threads. This fact suggests that future
coprocessors with more cores and threads per core will provide
better GCUPS.

Figure 6 illustrates the performance on Intel’s Xeon Phi
algorithm varying query lengths with a configuration of 240
threads. As in previous analysis, we can confirm that as the
query length is longer, there is more performance achieved
since there exists more parallelism to be exploited. Besides, a
synergistic effect is achieved on the exploitation of thread level
parallelism with intrinsic vectorization. Respect to QP and SP,
consecutive memory accesses for SP substitution scheme allow
better performance for Xeon Phi intrinsic versions. Even so,
both implementations show good scalability figures.

Because exploiting data locality is a key aspect for im-
proving performance in parallel applications, it is interesting to
study the impact of applying a block technique on each device.
Figure 7 illustrates the performance evolution of blocking and
non-blocking versions of the most advantageous Intel Xeon
and Intel Xeon Phi tests (intrinsic-SP in both cases) using all
available threads on each device. We can notice that exploiting
data locality can seriously improve the performance on both
devices. We would like to remark that this optimization has a
larger improvement in the Intel’s Xeon Phi because its cache
size is lower than its counterpart Intel’s Xeon.

3) Results in Heterogeneous system: In this section we
evaluate SW behavior using both processor and coprocessor.
To analyze the performance we chose SP version which
provided better GCUPS as remarked in previous sections.

This version is based on database sequences distribution be-
tween both devices (see Algorithm 2), where the key to success

35

30
. e
20

15 /

GCUPS

ol ——
144 375 850 1500 2005 3005 4061 5478
Query length

——no-vec-QP —M—no-vec-SP —&—simd-QP
= simd-SP

== intrinsic-QP —®—intrinsic-SP

Fig. 6. Performance of the different Intel Xeon Phi algorithm variants using
variable query lengths.

35
30 +— %
25
P ————
20 _% . 4
15
/

10

GCUPS

0 T T T T T 1
144 375 850 1500 2005 3005 4061 5478

Query length

=== Xeon non-blocking intrinsic-SP == Xeon blocking intrinsic-SP

Xeon Phi non-blocking intrinsic-SP =—===Xeon Phi blocking intrinsic-SP

Fig. 7. Performance of blocking and non-blocking Intel Xeon and Intel Xeon
Phi algorithms variants using variable query lengths.

is a well balanced distribution of the workload. Figure 8 shows
the performance achieved in the heterogeneous system where
the workload between the host and the accelerator is varied.
The percentage of workload sent to Intel’s Xeon-Phi is shown
in abscissa, and thus the remainder workload is performed in
the host.

As shown, the best configuration is close to a homogeneus
distribution (45% in Xeon and 55% in Xeon-Phi). The perfor-
mance achieved is almost the combination of their individual
throughputs (30.4 and 34.9 GCUPS in Xeon and Xeon-Phi
respectively) which is totaled to 62.6 GCUPS.

These successful results open the possibility of considering
the heterogeneous computing not only from the performance
point of view, but also considering other aspects such as power
consumption, price cost, etc. From the point of view of power
consumption we would suggest that it seems appropriate to
explore others configurations with lower consumption since the
TDP (thermal design power) on Intel’s Xeon chip is 120 watts
meanwhile the Xeon-Phi is 240 watts. Once again, there is a
limb difference so that workload distribution could determinate
other aspects. As future work we are considering undertaking
this study.

70
60 A ‘\
50 /4 \
w 40 .
S i Y
© 30
20
10
0 — T T T T T T T — T T T T T T T T 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Intel Xeon Phi workload (%)
Fig. 8. Performance of the heterogeneous algorithm for different workload
distributions.

VI. CONCLUSIONS

The SW algorithm is one of the methods for local sequence
alignments. Nevertheless, in practice, various heuristics are
used due to its computational complexity. In addition, Xeon
Phi is a recent coprocessor designed by Intel specifically for
high performance computing. Among its advantages, it can be
found the compatibility with Intel Xeon codes and the great
multi core vectorization capabilities. In this work, we have
demonstrated the compute capability of current heterogeneous
systems for accelerating SW database searches without losing
precision in the results. Among main contribution of this
research we can summarised:

e To obtain successful performance rates in this type of
devices, exploiting two levels of parallelism is needed:
thread-level parallelism by means of OpenMP and
data-level parallelism using SIMD instructions.

e Regarding the well-known Swiss-Prot database, 32
and 34.9 GCUPS is achieved on the Intel’s Xeon and
the Intel Xeon Phi respectively. For heterogeneous
computing, it reaches 62.6 GCUPS.

e The key to have good scalability in a heterogeneous
system is to find an optimal distribution workload.

According to the results obtained, we plan to analyze
other workload distribution strategies taking into account other
considerations as power consumption, device prices, an so
on. We are also interested in evaluating the performance of
these algorithms with larger sequences databases, as UniProt-
TrEMBL. This will allow us to asses the impact of transfer-
ences between host and coprocessor.

ACKNOWLEDGMENT

Enzo Rucci holds a PhD CONICET Fellowship under
Argentinian Government. This work has been partially sup-

ported by the Spanish research project TIN 2012-32180 and
the CAPAP-H4 network (TIN2011-15734-E).

REFERENCES

[1] H. Li and N. Homer, “A survey of sequence alignment algorithms
for next-generation sequencing,” Briefings in Bioinformatics, vol. 11,
no. 5, pp. 473-483, 2010. [Online]. Available: http://bib.oxfordjournals.
org/content/11/5/473.abstract

[2] S. E Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool.” Journal of molecular
biology, vol. 215, no. 3, pp. 403—410, Oct. 1990. [Online]. Available:
http://dx.doi.org/10.1006/jmbi.1990.9999

[3] S. F. Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs.” Nucleic Acids Res,
vol. 25, no. 17, pp. 3389-3402, September 1997.

[4] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelization,” BMC Bioinformatics, vol. 12:221,
2011.

[5S1 Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC Bioinformatics, vol. 14:117, 2013.

[6] Y. Liu and B. Schmidt, “Swaphi: Smith-waterman protein database
search on xeon phi coprocessors,” in 25th IEEE International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP 2014), 2014.

[71 FE. Chichizola, M. Naiouf, L. D. Giusti, IsmaelRodriguez, and A. D.
Giusti, “Overhead Analysis in Parallel Processing DNA Sequences on
Grid Architectures,” in Proceedings of the LAGrid08 (2nd International
Latin American Grid Workshop 2008), 2008.

[8] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S. H. Bae, H. Li,
B. Zhang, T. Wu, Y. Ruan, S. Ekanayake, A. Hughes, and G. Fox,
“Hybrid cloud and cluster computing paradigms for life science appli-
cations.” BMC Bioinformatics, vol. 11 (Suppl12), 2010.

[9] Y. Yamaguchi, K. H. Tsoi, and W. Luk, in ARC, A. K. 0001, R. Krishna-
murthy, J. McAllister, R. Woods, and T. A. El-Ghazawi, Eds. Springer,
pp. 181-192.

[10] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. W. Leong, “A smith-
waterman systolic cell,” in In Proceedings of the 13th International
Workshop on Field Programmable Logic and Applications FPL 2003.
Springer, 2003, pp. 375-384.

[11] T. I Li, W. Shum, and K. Truong, “60-fold acceleration of the Smith-

Waterman algorithm using a field programmable gate array (FPGA),”
BMC Bioinformatics, vol. 8:185, 2007.

[12] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins,
A. Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash,
J. Sugerman, and P. Hanrahan, “Larrabee: A many-core x86 architecture
for visual computing,” IEEE Micro, vol. 29, no. 1, pp. 10-21, 2009.

[13] M. Farrar, “Striped Smith-Waterman speeds database searches six time
over other SIMD implementations,” Bioinformatics, vol. 23 (2), pp.
156-161, 2007.

[14] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled graph-
ics processing units,” BMC Research Notes, vol. 2:73, 2009.

[15] E. Rucci, “Computacin eficiente del alineamiento de secuencias de adn
sobre cluster de multicores,” Master’s thesis, Universidad Nacional de
La Plata, Argentina, 2013.

[16] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “GPU Accelerated Smith-
Waterman,” Lecture Notes in Computer Science, vol. 3994, pp. 188-195,
2006.

