
Lawrence Berkeley National Laboratory
LBL Publications

Title
DINO: Divergent node cloning for sustained redundancy in HPC

Permalink
https://escholarship.org/uc/item/3nj2j95x

Authors
Rezaei, Arash
Mueller, Frank
Hargrove, Paul
et al.

Publication Date
2017-11-01

DOI
10.1016/j.jpdc.2017.06.010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nj2j95x
https://escholarship.org/uc/item/3nj2j95x#author
https://escholarship.org
http://www.cdlib.org/


End-to-End Application Resilience to Protect Against Soft Faults

Abstract
A plethora of resilience techniques have been investi-
gated ranging from checkpoint/restart over redundancy
to algorithm-based fault tolerance. Each technique works
well for a different subset of application kernels, and de-
pending on the kernel, has different overheads, resource
requirements, and fault masking capabilities. If, however,
such techniques are combined and they interact across
kernels, new vulnerability windows are created.

This work contributes the idea of end-to-end resilience
by protecting windows of vulnerability between kernels
guarded by different resilience techniques. It introduces
the live vulnerability factor (LVF), a new metric that
quantifies any lack of end-to-end protection for a given
data structure. The work further promotes end-to-end
application protection across kernels via a pragma-based
specification, implemented as an extension to OpenMP,
for diverse resilience schemes with minimal programming
effort. This lifts the data protection burden from appli-
cation programmers allowing them to focus solely on
algorithms and performance while resilience is specified
and subsequently embedded into the code through the
compiler/library and supported by the runtime system.
Two case studies demonstrate that end-to-end resilience
meshes well with different execution paradigms and as-
sess its overhead and effectiveness for different codes. In
experiments, end-to-end resilience has an overhead over
kernel-specific resilience of 1% on average.

1 Introduction
In large-scale parallel systems, faults are not an excep-
tion but rather the norm [15, 27]. Faults such as bit flips
or hardware faults may result in application or operating
system failures. Hardware and software techniques have
been devised to make such systems more resilient to fail-
ures. But future exascale systems are projected to see an
increase in the frequency of faults, which would require
20% more circuitry and energy to counter them [31].
However, hardware vendors tend to design and build
general-purpose, and not exascale-specific hardware due
to manufacturing costs. As a result, the future systems
will be likely built with off-the-shelf components while
delegating a significant part of the resilience responsibil-
ity to the software layer.

The significance of resilience in future HPC systems
has been emphasized in prior research, e.g.., [31]. HPC
systems are particularly interesting to study as multiple
challenges arise from the size (millions of cores) and the
programming model (tightly coupled). Intuitively, larger
numbers of components result in a higher probability of

failures. What’s more, a tightly coupled programming
model may result in fast fault propagation after just one
node has been hit [14]. As a result, resilience is considered
a major roadblock on the path toward next-generation
HPC systems.

In practice, hardware protection is generally comple-
mented by software resilience. A variety of software tech-
niques have been developed, such as checkpoint/restart
(CR), redundancy, and algorithm-based fault tolerance
(ABFT), each with their own benefits and limitations in
terms of applicability and cost. CR has high storage over-
heads and requires backward recovery via re-execution,
which limits scalability [13]. Redundancy requires either
only extra memory or both extra memory and process-
ing resources, which is costly [14]. ABFT results in low
overheads and supports forward execution, but each
numerical algorithms has to be customized [9, 12, 16].

A choice of a low-cost resilience scheme is best made
per numerical kernel rather than for an entire applica-
tion. The composition of different resilience techniques,
however, results in a generally overlooked problem: It
creates windows of vulnerability. Consider kernel K1
with redundant execution followed by kernel K2 with
ABFT protection. K1’s result is consumed by K2, yet
the result’s integrity is no longer checked after K1 has
finished. This leaves variables storing K1’s result vulner-
able until K2 has consumed all of them. In contrast, by
protecting both K1 and K2 with redundancy, intermedi-
ate and final results can be compared (dual redundancy)
or even corrected (triple redundancy with voting).

We introduce end-to-end resilience to allow the selec-
tion of different low-cost resilience techniques across dif-
ferent application phases. End-to-end resilience composes
protection spaces of kernels with disjoint resilience tech-
niques such that windows of vulnerability are avoided.

Another problem is that programmers are often forced
to clutter numerical methods with tangential resilience
concerns making codes hard to maintain. Resilience APIs
try to reduce this clutter but cannot eliminate it, e.g.,
Containment Domains [6], GVR [37], Charm++ [19],
etc. Also, transparent resilience techniques, such as
BLCR [10], tend to impose much higher overhead than
application-specific resilience via CR [23] or ABFT [12].
But the interleaving of algorithmic and resilience con-
cerns makes it hard to maintain such programs.

End-to-end resilience can be realized elegantly via
pragmas at the program level, which provides the benefits
of aspect-oriented programming (AOP) paradigm [20]
as it increases modularity by allowing the separation
of algorithmic and resilience concerns at no extra cost



while still meshing with a variety of execution paradigms
and resilience methods.

This work makes the following contributions:
∙ We identify the vulnerabilities between protected ker-

nels and offer a systematic solution via end-to-end
resilience.

∙ We propose a metric to quantify vulnerability across
otherwise protected kernels.

∙ We design and implement an OpenMP pragma exten-
sion to support separation of the resilience aspects
from the algorithms to increase portability and modu-
larity imposing minimal programming effort.

∙ We show that, in contrast to prior work, auto-
generated protection provides full end-to-end protec-
tion at just 1% additional time overhead on average.

2 Background
Hardware faults could be persistent or transient. Persis-
tent faults are typically due to aging or operation beyond
temperature thresholds. Failures due to persistent faults
interrupt the application. They may render an HPC job
of thousands of processes useless. Transient hardware
errors, also called soft errors, are often due to cosmic
radiation. They allow the application to continue execu-
tion, albeit with tainted data. Such faults manifest as bit
flips in the data in memory or anywhere in the data path
(e.g., caches, data bus). Although CPU registers, caches,
and main memory are often equipped with ECC, only
single bit flips are correctable while double-flips generally
are not (by SEC-DED ECC while chipkill can correct
some multi-bit errors depending on their device local-
ity).1 Jaguar’s 360TB of DRAM experienced a double
bit flip every 24 hours [15]. Some soft faults may remain
undetectable and may result in so-called Silent Data
Corruption (SDC). SDCs may manifest at application
completion by producing wrong results or, prior to that,
wrong interim results. Several studies show that SDC
rates are orders of magnitude larger than manufacture
specifications [25, 28, 32].

Resilience methods usually compensate for the com-
putation/state loss by performing a backward or for-
ward recovery. Backward recovery recreates an older
state of an application through classic rollback recov-
ery methods, such as system-level or application-level
checkpoint/restart (CR) [24]. Forward recovery typi-
cally handles errors by repairing the affected data struc-
tures. A correction procedure is invoked that may re-
cover the intended values from a peer replica (redun-
dant computing) [14], or via Algorithm-Based Fault

1Bit flips in code (instruction bits) create unpredictable outcomes
(most of the time segmentation faults or crashes but sometimes
also incorrect but legal jumps) and are out of the scope of this
work.

Tolerance (ABFT) from checksums or solver proper-
ties [5, 9, 12, 16, 29].

Many HPC applications are comprised of multiple
kernels that form a multi-phase pipeline. The above-
mentioned methods are resilient to one or multiple types
of faults with different overhead. Intuitively, there is
no single solution that fits all scenarios while providing
the best performance. Thus, a combination of methods
enables the selection of the best resilience mechanism
per application phase considering factors such as com-
putation time and size of data that needs protection.
End-to-end data integrity is a goal explicitly cited in
exascale reports [31]. Our end-to-end resilience fills this
very gap.

3 Assumptions
Our fault model is one that considers soft errors / SDCs
that materialize in memory in a fault agnostic man-
ner, i.e., SDCs may occur in unprotected DRAM (no
ECC) due to cosmic rays or they may be the result
of bit flips in the processor core during calculations,
unprotected register files, or caches. In the latter case,
results of (faulty) calculation are subsequently written
to memory, which creates an SDC even if memory is
protected with ECC/chipkill. This is consistent with
findings of past work [28, 32] indicating that undetected
errors in SECDED ECC-protected DRAM present a
problem today, and that some SRAM structures remain
unprotected.

On the software side, we assume that the correctness
of a data structure can be verified (through a Checker
method) and the stored values can be recovered through
a Recover method should an inconsistency be detected.
Many algorithms commonly used in HPC, such as nu-
meric solvers, have approximation methods based on
convergence tests. These convergence tests could be used
as the Checker. If an algorithm lacks a simple check-
ing method or invariant, the Checker can be provided
through comparison with a checksum over the data that
was computed beforehand and stored in a safe region.2
The Recover method can be supplied through the for-
ward recovery phase in ABFT methods, or simply by
restoring a light-weight deduplicated [1] or compressed
[17] checkpoint of the data.

We further assume that the computation is (or can be
made) idempotent with respect to the encapsulated region,
i.e., if globals are changed inside the region, they have to
be restored by the recovery method. In other words, if a
method/region is called twice in a row, the result would
2Extra checks are added to guarantee the correctness of data stored
in a safe region. A safe region is assumed to neither be subject
to bit flips nor data corruption from the application viewpoint —
yet, the the techniques to make the region safe remain transparent
to the programmer. In other words, a safe region is simply one
subject to data protection/verification via checking.
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be the same as the inputs (or global variables) remain
unmodified by the computation (no side effects). CR and
redundant computing already ensure idem-potency since
identical state is restored in the former while redundant
state exists for the latter, but ABFT methods have to
be complemented, e.g., by compiler-driven live variable
analysis to capture/restore globals at region boundaries.
Existing solutions to I/O idem-potency are required as
well [2]. We can then retry a computation if needed,
i.e., when no other recovery methods exist (or if the
other recovery methods have failed). Notice that we do
allow the side effects of communication inside regions
(see Section 6.1).

4 Live Vulnerability Factor
We introduce a new metric, the term Live Vulnerability
Factor (LVF), defined as:

𝐿𝑉 𝐹 = 𝐿𝑣 × 𝑆𝑣,
where 𝐿𝑣 is the (dynamic) length of the dynamic live
range of an arbitrary data structure/variable 𝑣 (vulner-
ability window), and 𝑆𝑣 is the space required to hold
the related data in memory. Length is measured as wall-
clock time from the first set to the last use (dynamic
live range) of a variable during execution.

5 Related Work
LVF differs from other metrics that assess resilience. The
Failures in Time (FIT) rate is defined as a failure rate
of 1 per billion hours. FIT is inverse proportional to
MTBF (Mean Time Between Failures). The Architec-
tural Vulnerability Factor (AVF) [32] is the probability
that a fault (in microprocessor architecture) leads to
a failure (in the program), defined over the fraction of
time that data is vulnerable. The Program Vulnerability
Factor (PVF) [33] allows insight into the vulnerability
of a software resource with respect to hardware faults
in a micro-architecture independent way by providing
a comparison among programs with relative reliability.
The Data Vulnerability Factor (DVF) [35] considers data
spaces and the fraction of time that a fault in data will
result in a failure. DVF takes into account the number of
accesses as a contributor to fault occurrence. Past work
has taken value live ranges into account to design a fault
injection framework and measure CPU vs. GPU vulner-
abilities in terms of PVF in Hauberk [34] and to protect
critical data for GPU kernels [21]. Value live ranges en-
capsulate the live time of variables promoted to registers
for short program segments while our variable live range
captures the live time of compound structures/arrays
over the entire program (from first define to last use)
irrespective of register promotion. This is necessary as a
singular structure/array element cannot be checked in
isolation as required by end-to-end resilience (see next
section), it can only be checked in conjunction with a

subset of structure/arrays elements. Our LVF metric
captures this difference and is thus different from AVF,
PVF, and DVF. Furthermore, LVF takes into account
time × space, which covers the effect of soft errors. Our
metric is agnostic to architectural aspects of a processor
(covered by AVF) and their impacts on programs (see
PVF). It is also agnostic of the number of references
(unlike DVF) as it considers both (a) written, incorrect
results and (b) SDCs that may occur, even in the ab-
sence of write instructions (which other work does not).
Simon et al.[30] use a Poisson distribution over a task’s
lifetime to determine the probability of task failures
and derive from it the need for task-based replication.
Unlike our work, they do not address the issue of data
vulnerability when applications mix multiple resilience
techniques. Diniz et al. [8] propose a resilience pragma to
protect a single kernel. In contrast, our work contributes
protection for end-to-end resilience across kernels.

6 End-to-End Resilience
Applications are typically composed of phases during
which different algorithmic computations are being per-
formed. Intermediate results are created and passed from
phase to phase before the final result is generated. Our
core idea is to exploit the live range of variables within
and across phases, and to immediately perform a correct-
ness check after the last use of any given variable. Live
range analysis is a well-understood technique employed
by compilers during code optimizations, such as register
allocation (among others). Fig. 1 outlines the idea for
our running example, a sequence of two matrix multipli-
cations, enhanced by an extra checksum row and column
per matrix for resilience (see Huang et al. [16]).3 Huang’s
method provides protection for result matrices 𝐶 and 𝐸
within a single matmult kernel (arrows on left side) while
end-to-end resilience protects all matrices during their
entire live time across kernels (arrows on right side). If
an error strikes during the lifetime of phase-dependent
variables, single-kernel protection methods cannot pro-
vide any assistance as they are locally constrained to
region boundaries. This is precisely where our end-to-end
protection comes to the rescue.

When a live range ends, data can is checked for cor-
rectness. If correct, no action is taken, otherwise correct
values are recovered (if detected as erroneous), or re-
computation is performed (if erroneous but direct recov-
ery has failed). The intuition here is to avoid the high
overhead of frequent checks (e.g., after every variable
redefinition or use inside the live range) while providing
a guaranteed end-to-end correctness of the computation.

3Due to space limitations, we omit the formal specification for of
the end-to-end protection pragma for sequential composition plus
control-flow splits and joins for Turing completeness (sequential,
conditional, loops) as the examples suffice to cover the semantics.
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Load(A);

Load(B);         

mult(A,B,C);

Load(D);

mult(C,D,E);    

Store E;
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Fig. 1. Sequentially composed matrix multiplication and
the range of live variables

6.1 The Protect Pragma
We propose a pragma-based resilience scheme and show
how the corresponding code is expanded to provide the
extra end-to-end protection. This allows us to cover
the vulnerability window of different variables by auto-
matically expanding codes through the compiler. The
expanded code performs check and recovery actions on
the vulnerable data. We incorporate end-to-end resilience
into OpenMP pragmas to facilitate adoption and code
maintenance with a potential of future synergy between
thread parallelism and resilience (beyond the scope of
this paper). The pragma has a simple, yet powerful and
extendable interface with the following syntax:

#pragma 𝑜𝑚𝑝 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 [𝑀 ] [𝐶ℎ𝑒𝑐𝑘(𝑓1, ..., 𝑓𝑛)]
[𝑅𝑒𝑐𝑜𝑣𝑒𝑟(𝑔1, ..., 𝑔𝑚)] [𝐶𝑜𝑚𝑚] [𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒]

The resilience method, M, which can be CR or
Redundancy (2/3) (dual/triple), is an optional argu-
ment. The integration of both resilience approaches is
discussed in a latter example. Check and Recover re-
ceive a list of functions parameterized by each variable
that needs protection. We use 𝑓 to denote a checker,
and 𝑔 for a recovery methods. A region that contains
communication is annotated with the Comm keyword.
The Continue keyword indicates that data is live beyond
the current region, i.e., crossing phases/kernels, and re-
quires end-to-end protection. Fig. 2 depicts the source
code of our running example with the protect pragmas
with the “Continue” keyword to protect live matrices
across kernels.

Fig. 3 depicts the final code. Every region is contained
within a while loop (protection boundary) with checking
and recovery code after the computation. Lines 8 to
19 represent Region 1. After mmult(A,B,D), a Check is
invoked followed by Recover if the check fails inside the
loop. (Both are called via function pointers.)

Code resulting from chaining of regions with the
Continue keyword are highlighted and described as fol-
lows. A boolean array of size 3 named completed and
a flag first are maintained for the 3 chained regions
in this code, which indicates the correct completion of
regions 0, 1, and 2. At the end of region 0/1/2, the cor-
responding flag is set (lines 21, 41, and 53). Matrix D is

1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 # pragma omp protect Check ( Checker (A), Checker (B)) \
5 Recover ( Correct (A),Load(A), \
6 Correct (B),Load(B)) \
7 Cont inue
8 mmult (A,B,C); // OpenMP threads
9 Load(D);

10 # pragma omp protect Check ( Checker (C), Checker (D)) \
11 Recover ( Correct (C), Correct (D),Load(D))

\
12 Cont inue
13 mmult (C,D,E); // OpenMP threads
14 # pragma omp protect Check ( Checker (E)) \
15 Recover ( Correct (E))
16 Store (E);

Fig. 2. Sequentially composed matrix multiplication with
protect pragma

only loaded one due to the conditional on the flag (lines
23-26) here. Additional loads may be triggered inside
the Recover() calls for matrices A, B, and D if they
cannot be repaired using checksums.

Recovery from regions that involve communication
with other processes requires coordination among these
processes. The Comm option of the pragma indicates that
such communication exists inside that pragma region.
It results in generating code for a global reduction of
check() return codes indicating if any checks have failed,
in which case recovery with recomputation is required
where all peer MPI tasks participate in recomputation.

Notice that pragmas cannot easily be replaced by
macros. First, variable number of check and recover
routines may be specified, one per data structure, which
cannot be expressed by a macro. Second, a begin and end
macro would be required per pragma, but all three begins
would have to be placed on line 4 of Fig. 2 while the ends
would follow after lines 8, 13, and 16, respectively. This
would make the source code significantly less legible. The
compiler furthermore has the ability to perform semantic
checks, e.g., to ensure that the live range of protected
variables under the Continue keyword extends to the
end of the scope spanning multiple pragmas, and to
capture/restore globals via live range analysis.
6.2 Task-Based Resilience
An alternative to the pragma approach is to design a
task-based programming scheme that implicitly provides
end-to-end resilience. Tasking libraries are becoming
more popular in the HPC community due to their more
graceful load balancing and potentially asynchronous
execution models, e.g., PaRSEC [3], OmpSs [11], the
UPC Task library [18], and Cilk.

Attempts have been made to add resilience to PaR-
SEC [4] and OmpSs [22]. Other work focuses on soft
faults [4], i.e., they take advantage of the algorithmic
properties of ABFT methods to detect and recover from
failures at a fine grain (task level) and utilize periodic

4



1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 bool completed [3]={ false }, first =true;
5 while (! completed [2]){
6 while (! completed [1]){
7 while (! completed [0]){
8 bool check [2]; //2 check flags
9 do{

10 mmult (A,B,C); // OpenMP threads
11 if (!( check [0] = Check (A)))
12 if (! Recover (A)){ // Correct (A)/ Load(A)
13 throw unrecoverable ;
14 }
15 if (!( check [1] = Check (B)))
16 if (! Recover (B)){ // Correct (B)/ Load(B)
17 throw unrecoverable ;
18 }
19 } while (! check [0] || ! check [1]);
20 if ( check [0] && check [1])
21 completed [0]= true;
22 }
23 if ( first ) {
24 Load(D);
25 first = false ; // load D exactly once
26 }
27 bool check [2]; // 2 check flags
28 do{
29 mmult (C,D,E); // OpenMP threads
30 if (!( check [0] = Check (C)))
31 if (! Recover (C)){ // Correct (C)
32 completed [0]= false ;
33 break ;
34 }
35 if (!( check [1] = Check (D)))
36 if (! Recover (D)){ // Correct (D)/ Load(D)
37 throw unrecoverable ;
38 }
39 } while (! check [0] || ! check [1]);
40 if ( check [0] && check [1])
41 completed [1]= true;
42 }
43 bool check [1]; // 1 check flag
44 do{
45 store (E);
46 if (!( check [0] = Check (E)))
47 if (!( Recover (E))){ // Correct (E)
48 completed [1]= false ;
49 break ;
50 }
51 } while (! check [0]);
52 if ( check [0])
53 completed [2] = true;
54 }

Fig. 3. Code generated from pragmas with end-to-end re-
silience for sequentially composed matrix multiplication
(mmult is parallelized with OpenMP)

checkpointing at a coarse grain (application). Yet others
uses CR and message logging at the task granularity to
tolerate faults with re-execution [22].

Instead of focusing on a specific resilience approach,
we target a more complex problem. We propose a task-
ing system that allows for different resilience meth-
ods to interact in an easily understandable and ex-
tendable manner. A resilient task class is provided
with two methods that are called before and after the

actual execution of a task, namely resilience_pre,
resilience_post. In resilience_pre, depending on
the resilience type of the task, CR or Redundancy, the
checkpoint method or wakeup_shadow is called, respec-
tively. In resilience_post, first the shadow process
is put to sleep under redundant execution. Then data
structures that have their last use in the task are checked
and corrected if needed. If the correction fails, a set of
tasks is put into the scheduling queue to recompute the
tainted data structures.
7 Implementation Details
The extension to the OpenMP pragma API is imple-
mented as a transform pass in the Cetus compiler [7].
Source-to-source compilation using Cetus allows us to
transform an input C program to a modified C program
as output. Cetus uses Antlr [26] in order to parse C
programs into an Intermediate Representation (IR). The
compiler passes are then run on the IR in order to gener-
ate the output source code. Each pass iterates over the
IR and is capable of modifying it by adding, removing,
or editing the input source. New code is added as Cetus
IR objects, which is equivalent to building an IR tree
from its leaves. Similarly, a complex IR can be generated
by extending these trees. Cetus allows iterating through
the IR in both a flat and a depth-first manner, the latter
of which is utilized here.
7.1 ProtectPragmaParser Class
We added the ProtectPragmaParser class, a transform
pass that implements our pragma. Each pragma directive
in the input program is represented as an object of the
ProtectPragmaParser class. The ProtectPragmaParser
class is run in order to transform the generated parse
tree to an equivalent parse tree structure, which contains
our protection boundaries, checker functionality, and re-
covery mechanisms. We traverse the input parse tree in a
depth-first manner looking for the protect pragma direc-
tives. On finding the pragma, we parse the directive to
populate the checker and recovery functions associated
with this particular pragma. We also generate the neces-
sary protection boundary, checking, and recovery code
required in the current context and track the variables
defined at these protection boundaries.

As part of the ProtectPragmaParser object creation,
we check if the current directive is chained to a previ-
ously encountered directive via the Continue keyword.
If chained, we can recompute these resilient variables in
case their recovery methods fail, and the ProtectPragma-
Parser object of the current context is added to the list
of chained pragmas of the directive it is chained to. Oth-
erwise, it is added as an independent (root) pragma.
When chaining is found in the input IR, we extend the
protection boundaries of the current pragma around that
of the following pragma. When the input source code
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has been completely parsed, a logical structure of these
chained (or unchained) directives is created (see pragmas
in Fig. 2 and expanded code in Fig. 3).

Once the entire input source code has been traversed
and the logical structure of pragmas is created, a re-
cursive function that emits transformed code is invoked
on the root objects. This, in turn, invokes the function
on each of its chained pragmas. It is at this stage that
checking and recovery code for non-last-use variables is
removed so as to reduce the checking overhead. This func-
tion uses the chaining information to correctly emit the
nested while loop structure as part of the output source
code. As part of the code emitting process, if a particular
directive had the CR or Redundancy clause, then the com-
piler emits the appropriate function calls to wake_shadow
and sleep_shadow in case of the Redundancy clause, and
create_ckpt in case of the CR clause.

The Cetus compiler infrastructure along with our Pro-
tectPragmaParser functionality allows us to transform
our input source code in this manner to support end-
to-end resilience. While these transformations could be
performed manually by the programmer for simple exam-
ples, it quickly becomes tedious and error-prone for more
complicated program structures or even chained regions.
Our Cetus implementation transforms the input source
in a single pass through the IR tree, emitting code recur-
sively even for complicated, inter-leaving dependencies
between resilient variables. This allows for the develop-
ment of powerful software that has end-to-end resilience
while off-loading the repetitive and sometimes non-trivial
task of code expansion to the compiler.

8 Experimental Results
All experiments were conducted on a cluster of 108 nodes,
each with two AMD Opteron 6128 processors (16 cores
total) and 32GB RAM running CentOS 7.3 and Linux
4.10 (except for TF-IDF, which uses CentOS 5.5, Linux
kernel 2.6.32 and Open MPI 1.6.1 due to BLCR [10] and
RedMPI [14] requirements). ABFT resilience is realized
via protecting critical data with checksums so that we can
attempt to recover (repair) results, or, if recovery fails,
resort to CR and reload data from disk. Redundancy is
realized via Red-MPI of which we obtained a copy [14].

We present examples of pragma- and task-based end-
to-end resilience for two variants of matrix multiplication
and a page ranking program, followed by experimental
results. To this end, we already discussed end-to-end
resilience for two successive matmult kernels in Figures 2
and 3. The same kernels can also be refactored using
fine-grained tasking as discussed next.

The task-based resilience class/capabilities (Sec-
tion 6.2) plus a task-based runtime system are utilized
to implement a blocked matrix multiplication utilizing
POSIX threads. We add checksums per block of a matrix.

The checksum elements are colored in the 2 examples
of Fig. 4. For a matrix of size 4 × 4, if the block size
𝑘 is 2, then 20 extra elements are needed to hold the
checksums. For a 6 × 6 matrix, 45 extra elements are
needed. In practice, the size of a block (configured to fit
into L1 cache with other data) is much larger than the
extra space overhead for checksums.

6x64x4

Fig. 4. Examples of per block checksums for task-based
approach. Different matrices: 4 × 4 and 6 × 6 with blocks
of size 2 × 2 and checksums per block in blue.

8.1 Matrix Multiplication
We use 5 input sizes for square matrices from 512×512 to
2560×2560. The size of last level cache (L3) is 12MB, and
only the first experiment (𝑁 = 512) completely fits in
the L3 data cache. Thus, data is repeatedly loaded from
main memory (DRAM) in all other experiments. We use
16 OpenMP threads that perform matrix multiplications
in a blocked manner with a tile/block size of 32 × 32.
Each thread needs 3 blocks to perform the multiplication.
Thus, the block size is selected as number of elements
that can be accommodated in 1

4 th of the L1 data cache
size (L1 is 64KB).

Fig. 5 contrasts the performance evaluation of sequen-
tially composed matrix multiplication without resilience
(left bar) with our end-to-end resilience (right bar). For
the pragma-based solution (left half), fault-free execu-
tion ranges from 0.88 (𝑛 = 512) to 35 seconds (𝑛 = 2560)
when no correction needs to be triggered. In this case,
end-to-end resilience has a 0.99% overhead at 𝑛 = 512;
for larger matrix sizes, this overhead is also negligible
(around 0.69%). Task-based execution (right half) results
in slightly higher execution times and overheads that are
between 1.4% (for large matrices) and −0.64% (for small
ones). This can be attributed to the implementation of
per-block checksums in task-based matrix multiplication.
As a result, more computation is performed during the
multiplications and check operations.

Observation 1: End-to-end resilience across kernels
results in the same cost as conventional resilience only
protecting single kernels.

Performance under Faults and Resulting Failures
We next investigate the correlation between LVF and the
likelihood of failures in matrices. The LVF is computed
from the vulnerability window of data structures (see
Section 4). Fig. 6 depicts the LVF as bars of each matrix
under failure-free execution of the application. The vul-
nerability size is 50.03MB and the vulnerability window
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Fig. 5. Execution time of conventional/end-to-end re-
silience (in seconds) for pragma based (16 OpenMP
threads, left side) and task-based matrix multiplication
(16 threads, right side), overhead in percent above end-
to-end bars.
depends on the live range of each matrix. C has the
highest LVF, next comes E and then A. B and D have
the same LVF, the smallest among the 5 matrices. This
reflects the live ranges of the respective (same size) data
structures during program execution (see Fig. 1). Notice
that conventional resilience would only protect matrices
C and E within, but not across kernels, i.e., they would
only protect about 50% of our LVF for C/E and none for
A/B/D (see Fig. 1). Furthermore, end-to-end resilience
adds overhead, as seen previously. Yet, this increases
the LVF by only 0-5%, as depicted by the labels above
bars in Fig. 6, but, unlike previous work, checks/corrects
SDCs even across kernels that are otherwise only locally
protected.

Observation 2: End-to-end resilience protects data over
significantly larger execution ranges at less than 1% in-
creased LVF.
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We also developed a program variant that injects faults
in uniformly randomized locations over the matrices
(all 5 matrices, each sized at 2560 × 2560) and also at
uniformly randomized times in a time window according
to a given rate (configurable). This allows us study the
effect of fault injections in real life and compare the
results to the LVF metric. We randomly inject faults
during runtime with fault rates from 25 to 45 seconds
for pragma-based execution. Such high fault rates may
be unlikely, but the point is to assess overhead and to

illustrate the robustness of our technique: A second fault
may be injected before the first one has been mitigated,
yet end-to-end resilience is capable of making forward
progress. (Solar flares are actually reported to result in
multiple SDCs in rapid succession.)

The 𝑦 axis of Fig. 7 shows the number of faults. With-
out end-to-end resilience, only the faults in the lower-
most shaded region of matrices C and E can be corrected
by conventional resilience methods that are limited to a
given scope/kernel, such as [8]. For end-to-end resilience,
faults resulting in detectable errors in the lower portion
of all matrices (errors across and in kernels, i.e., including
the shaded regions of C/E) are all subsequently corrected
by end-to-end resilience, even though they cross scope/k-
ernel boundaries. This is the most significant result of
our work as it demonstrates how much more fault cover-
age end-to-end resilience has compared to conventional
resilience schemes. This covers cases where injections hit
data while it is live. In fact, it shows that the majority of
faults occurs outside of ABFT kernel protection, which
is exactly what end-to-end resilience protects.

 0

 10

 20

 30

 40

 50

A B C D E A B C D E A B C D E

Fa
ul

t c
ou

nt

Matrices

error in kernel: detected-corrected
error across kernels: detected-corrected
no error

MTBF = 45secMTBF = 35secMTBF = 25sec
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Other injections do not result in a failure as they hit
stale data (upper-most portion per bar). In other words,
end-to-end resilience never resulted in erroneous results
while conventional ABFT misses errors across kernels,
which are dominant. Furthermore, the distribution of
corrected injection counts over matrices resembles the
distribution of the LVF across matrices in Fig. 6. This
is significant as injection experiments and LVF analy-
sis thus validate each other. Slight differences can be
attributed to the fact the LVF is based on failure-free
execution while Fig. 7 is based on repeated executions
for some corrections for certain detected errors (e.g., in
the input matrices).

Observation 3: End-to-end resilience corrected all
SDCs, i.e., 3 to 4 times as many as single-kernel con-
ventional techniques.

Fig. 8 depicts the corresponding results for task-based
end-to-end resilience. We observe a similar distribution
across matrices to Fig. 7, yet the number of faults lower
since the task-based approach requires less time to exe-
cute. Consequently, fewer faults are injected at the same
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MTTF rate. Task-based injection counts that were cor-
rected also loosely resemble the LVF in Fig. 6 for the
same reasons as before, only that E is now indicated to
be more prone to faults than C due to observed error
corrections.

Observation 4: The LVF (without error injection) in-
dicates the relative vulnerability of data structures.
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Fig. 9 depicts the average completion times after fault
injection, where all faults that resulted in an error were
detected and corrected by end-to-end resilience. The
pragma-based approach (left half) resulted in 8%-15%
overhead for a fault rate from 45 to 25 seconds. No-
tice that such a high fault rate results in one or more
faults per execution, some of which result in detectable
errors that are subsequently corrected at the expense
of executing recovery code. Again, such high SDC rates
are not realistic, but they allow us to compare the rela-
tive overhead between pragma- and task-based. For the
task-based, the overhead ranged from 8%-14%, which
is nearly the same as pragma-based. The absolute time
(y-axis) indicates that task-based in more efficient since
tiling results in higher data reuse in caches on one hand
and due to less overhead for corrections limited to a
single tile on the other hand.

Observation 5: Overall, pragma- and task-based re-
silience result in comparable overheads for matmult.

 0

 10

 20

 30

 40

 50

 60

 70

25 30 35 40 45 25 30 35 40 45

15
.0

9%

12
.0

6%

9.
54

%

8.
79

%

7.
99

%

14
.4

0%

24
.4

6%

9.
82

%

10
.1

1%

7.
52

%

C
om

pl
et

io
n 

tim
e 

(in
 s

ec
)

MTBF (in sec)
Task-basedPragma-based

Fig. 9. Completion time under fault injection scenario
with different fault rates over 100 actual runs

8.2 TF-IDF
We further assessed the resilience capabilities for an MPI-
based benchmark. We ported a term frequency/inverse

document frequency (TF-IDF) benchmark for document
clustering based on prior work [36]. TF-IDF is a clas-
sification technique designed to distinguish important
terms in a large collection of text documents, which
is the basis for page ranking with applications in data
mining and search engines. The classification is broken
into two steps. (1) TF calculates the frequency of a term
on a per document basis. (2) DF counts the number of
occurrences of a given term (document frequency). The
final result is 𝑡𝑓𝑖𝑑𝑓 = 𝑇𝐹 × 𝑙𝑜𝑔 𝑁

𝐷𝐹 . Note that TF is a lo-
cal computation while DF is global across all documents.
As a result, the DFs need to be aggregated.

Fig. 10 depicts the steps in the TF-IDF benchmark.
At first, the names of files are loaded. Then the term
frequency (TF) method is called with filenames as
input and tfs as output. Next, the document frequency
(DF) is called with tfs as input and dfs as output.
Finally, the 𝑡𝑓𝑖𝑑𝑓 value is computed for every term with
a TFIDF call with tfs and dfs as input parameters.
Fig. 10 also depicts single kernel protection areas (arrows
on left) and the vulnerability windows (live ranges) of
variables protected by end-to-end resilience (arrows on
right). The DF method contains MPI communication
for the aggregation of document frequencies across all
MPI ranks.
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Fig. 10. Vulnerability windows in TF-IDF

8.2.1 Check and Recover Methods
TF-IDF does not have any check provided by the algo-
rithm. Thus, we compute a checksum over the data. To
demonstrate the capabilities of end-to-end resilience, we
use a combination of redundancy and CR in this case
study. CR provides a restore function, which we use as
a recovery method.

8.2.2 Pragma Expansion
End-to-end resilience for TF-IDF can be provided by
augmenting the code with three pragmas over as many
regions (see Fig. 11). The first region is executed under
redundancy while the second region is protected with
CR. The data of tfs is live across all three regions, while
dfs is live across the last two pragma regions (Continue
keyword). Inside the DF method, MPI communication is
used and, consequently, the Comm keyword is added to the
second pragma. Table 1 depicts the regions, the input
variable(s) to each region and the check and recover
method per variable. Note that tfs is still live in region
2. Thus, no check should be carried out on tfs in region
1. Thus, region 1 does not have check/recover methods.
The chaining of regions is also shown in Table 1. In
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1 vector <string > filenames ;// input
2 vector < Dictionary > tfs; // output of Region 1
3 map <string ,int > dfs; // output of Region 2
4
5 Load( filenames );
6 # pragma omp protect Redundancy Check ( Checker ( filenames ))\
7 Recover (Load( filenames )) \
8 Cont inue
9 TF(filenames , tfs );

10 # pragma omp protect CR Check ( Checker (tfs )) Comm Cont inue
11 DF(tfs , dfs ); // contains MPI calls
12 # pragma omp protect Check ( Checker (tfs), Checker (dfs ))
13 TFIDF (tfs ,dfs );

Fig. 11. TF-IDF with protect pragma

region 2, tfs can be recovered by recomputing region 0.
Similarly, dfs can be calculated from region 1.

Tab. 1. TF-IDF: Compiler-derived resilience info
Region Variable

Name
Check method Recover

method
0 𝑓𝑛 Checker(𝑓𝑛) Load(𝑓𝑛)
1 𝑡𝑓𝑠 – –

2 𝑡𝑓𝑠 Checker(𝑡𝑓𝑠) Recover(𝑡𝑓𝑠),
Region(0)

𝑑𝑓𝑠 Checker(𝑑𝑓𝑠) Region(1)

We perform the code transformation in two steps.
At first, the pragma region with CR or Redundancy is
transformed to an intermediate code that still contains
the pragma, but the CR or Redundancy part is expanded.
Fig. 13 depicts the final code. Since there are three
chainings, a boolean array of size 3 is defined to show
the completion of regions. The code related to chaining is
highlighted. Region 0 extends from line 12 to 20, where
the shadow rank is signaled to engage in redundant
execution. Lines 24 to 25 comprise region 1, and the
final region is represented by lines 29 to 42.
8.3 Experimental Results of TF-IDF
We used 750 text books with a total size of 500MB for the
TF-IDF benchmark with 4 MPI ranks. We performed the
evaluation with 4 input sizes: 125MB, 250MB, 375MB,
and 500MB, which were protected by checksums.

Fig. 12 depicts the time for conventional per-kernel
resilience of TF-IDF and compares that to our end-to-end
resilience. Execution times are averaged over 30 runs with
small standard deviations (0.01-0.22). The overheads are
almost the same, fluctuations of higher/lower execution
by 0.25% or less are insignificant for input sizes of 125MB
to 16.2% for 500MB. This confirms observation 1.

Fig. 15 depicts the LVF metric on a logarithmic scale
(y-axis) for the three kernels filenames (filen), tfs, and
dfs and an input of 500MB. The tfs data has the highest
vulnerability. This reflects a combination of data size
(tfs is larger than filenames/dfs) and live range of tfs
during program execution (see Fig. 10). The other two
kernels operate on smaller data and live ranges, and while
this data still critical for resilience (e.g., names of files
that will be opened), they add little overhead and are

��

���

���

���

���

���

���

��� ��� ��� ���

�
��
�
� �
��
�
�

��
��
�

�
��
�
�

�
�
�
�
�
���
�

�
���

�
�
��
�
�
�

���������������

�����������������������
����������

Fig. 12. Failure-free execution time of TF-IDF: without
resilience vs. end-to-end resilience (for 4 MPI ranks)

1 MPI_Init ();
2 Init (); // creates a shadow process
3 // sets the communicator ,...
4 vector <string > filenames ;// input
5 vector < Dictionary > tfs; // output of Region 0
6 map <string ,int > dfs;// output of Region 1
7 Load( filenames );
8 bool completed [3]={ false };
9 while (! completed [2]){

10 while (! completed [1]){
11 while (! completed [0]){
12 wake_up_shadow (); // primary wakes up shadow
13 bool check [1]; // 1 check flag
14 do{
15 TF(filenames , tfs );
16 if (!( check [0] = Check ( filenames )))
17 if (! Recover ( filenames ))
18 throw unrecoverable ;
19 } while (! check [0]);
20 sleep_shadow (); // primary puts shadow to sleep
21 if ( check [0])
22 completed [0]= true;
23 }
24 Create_ckpt (tfs ); // checkpoint "tfs"
25 DF(tfs , dfs ); // contains MPI calls
26 if (1)
27 completed [1]= true;
28 }
29 bool check [2]; // 2 check flags
30 do{
31 TFIDF (tfs ,dfs );
32 if (!( check [0] = Check (tfs )))
33 if (!( Recover (tfs ))){
34 completed [0]= false ;// recompute region 0
35 break ;
36 }
37 if (!( check [1] = Check (dfs )))
38 if (!( Recover (dfs ))){
39 completed [1]= false ;// recompute region 1
40 break ;
41 }
42 } while (! check [0] && ! check [1]);
43 if ( check [0] && check [1])
44 completed [2] = true;
45 }
46 Fin (); // finalizes the shadow process
47 MPI_Finalize ();

Fig. 13. TF-IDF: Generated end-to-end resilience code

less prone to corruption (lower LVF). We observe again
significantly increased protection ranges with end-to-end
resilience at virtually unchanged overheads (0.01% to
2.71%). This confirms observation 2.

9



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

filen tfs dfs filen tfs dfs filen tfs dfs

Fa
ul

t c
ou

nt

Data Structures

error in kernel: detected-corrected
error across kernels: detected-corrected
no error

MTBF = 45secMTBF = 35secMTBF = 25sec

Fig. 14. Fault injection scenario with different fault rates
over 100 actual runs

Similar to the fault injection code for matrix multi-
plication, we inject faults uniformly across the 3 data
structures with fault rates from 25 to 45 seconds for
TF-IDF. Fig. 16 depicts the faults normalized against
the respective data structure sizes. The filenames data
structure is small compared to the tfs and dfs structures,
i.e., fewer faults are injected into filenames even though
it has a larger life range than dfs. Similarly, tfs has the
most injections as it is the largest data structure and
is also live for the longest period of time. Finally, dfs
is live for the shortest period of time, but because of
the its small size we see several injections into it. The
shape of the fault distribution of Fig. 16 for actual in-
jections closely resembles that of the modeling via the
LVF metric in Fig. 15. This confirms observation 4.
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Results indicating different fault handling classes are
presented in Fig. 14. As with the matrix multiplication
example, only the faults in the lower-most shaded re-
gions of the tfs and dfs data structures can be corrected
by conventional resilience methods while end-to-end re-
silience manages to detect and correct all errors, even
those crossing scope/kernel boundaries. Furthermore, tfs
was benefiting the most from end-to-end resilience while
conventional resilience in a single kernel left many SDCs
in tfs and some in dfs undetected (reflecting also the
indication for vulnerability per data structure expressed
by the LVF in Fig. 15). This confirms observation 3.

Discussion: We also experimented with a XOR hash
to protect the data structures of TF-IDF. To produce
a plain text as input for XOR, key/value strings of the
tfs data structure were concatenated per file before they
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Fig. 16. Fault injection scenario with different fault rates
over 100 actual runs (normalized against the respective
data structure sizes)

could be hashed. Due to string concatenation, this re-
sulted in an additional 10% performance overhead for a
total increase in LVF by 13% compared to no protection.
This increase in LVF is clearly inferior to the simple
checksums with 2.71% LVF overhead (Fig. 15), which
underlines the importance of designing resilience mecha-
nisms that require small metadata and perform checks
with little performance overhead. Otherwise, resilience
mechanisms might actually increase the chance of SDCs
(by having a larger data footprint vulnerable for a longer
time), i.e., a 100% increase in LVF doubles the chance
of SDCs (even though they might be caught and fixed
with end-to-end resilience).

Observation 6: The LVF indicates (without error injec-
tion) that The change in LVF (in %) reveals if protection
was effective or counter-productive.

9 Conclusion
We proposed an automatic approach for building highly
modular and resilient applications such that resilience
concerns are separated from algorithms. Our approach
requires a minimal effort by application programmers
and is highly portable.

We introduced and investigated the significance of the
live vulnerability factor, which takes into account the
live range of a data structure and its storage space to
provide insight into the likelihood of failures. We intro-
duced an effective set of building blocks for detection
and correction of soft faults through Check and Recover
methods for arbitrary data structures. We provided two
approaches, pragma- and task-based, to implement end-
to-end resilience. We showed the effectiveness of end-to-
end resilience for two variants of sequentially composed
matrix multiplications and TF-IDF under failure-free
execution and fault scenarios. End-to-end resilience in-
curred 1% overhead on average compared to conventional
single-kernel resilience. Furthermore, the LVF helped in
guiding which data structures to protect and assessing
if protection meta-data and checking algorithms were
effective (or counter-productive) in providing resilience.
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