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Abstract—We evaluate the on-node interference caused when
co-locating traditional high-performance computing applications
with a big-data application. Using kernel benchmarks from the
NPB suite and a state-of-art graph analytics code, we explore
different process placements and effects they have on application
performance. Our results show that the most memory intensive
HPC application (MG) experienced the highest performance
variation during co-location.

I. INTRODUCTION

The high-performance computing (HPC) systems at large
research centers typically serve users from a variety of disci-
plines with varying resource requirements. In systems that em-
ploy conventional node-exclusive resource allocation schemes,
nodes are over-provisioned with resources to meet the varying
needs of all users. However, this generalized node design re-
sults in inefficient resource utilizations; users do not use all of
the resources on their assigned nodes, leading to system-wide
resource fragmentation and wastage [1]. Resource sharing at
the node level is therefore required to ensure good occupancy
and achieve high system-wide efficiency [1], [2].

Co-locating multiple applications on the same system can
result in significant degrees of performance variation. For
example, the potential for inter-application contention over
network resources is increased with application node-sharing
since communication endpoints are now being shared. Fur-
thermore, cache, memory, local storage devices, and other on-
node resources become points of inter-application interference.
These on-node resources are not optimized for parallel access
and are therefore susceptible to causing major performance
bottlenecks.

Researchers have started investigating the effects of on-
node interference due to node-sharing on HPC systems [3].
However, recent trends in the workload on HPC systems are
not reflected in these studies. These studies have centered
on traditional HPC applications without much focus on Big
Data workloads, which have an increasing presence on HPC
systems [4].

Graph coloring for streaming graphs is one of the important
Big Data problems that is needed in areas such as resource
allocation and independence testing [5]. It should also be
noted that many real-world problems are modeled as streaming
graphs, including mapping neurons of the human brain and
social network analytics. Hence, studies of future systems must
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Fig. 1. Process-to-core mapping for our 2-socket nodes. For socket-exclusive
mappings, we investigated using both one and four Big Data processes/node.

include this important class of applications in order to truly
understand the resulting performance of these systems.

We empirically quantify the effective interference caused
by a Big Data workload on HPC applications during co-
location. We use graph coloring as the representative Big Data
application in this study and the FT, IS, CG, and MG kernel
benchmarks from the NAS Parallel Benchmark (NPB) suite as
the representative HPC benchmarks.

Using three different process-to-core mappings, we con-
firmed socket-sharing will yield the best performance for HPC
applications. The memory-intensive MG benchmark experi-
enced 4% slowdown when it ran in socket-exclusive mode
while getting a performance boost in socket-sharing mode.
Furthermore, the graph coloring benchmark experienced no
notable performance variations due to the presence of HPC
applications on the same node.

II. METHODOLOGY

A. System Setup

Experiments were conducted on TSUBAME-KFC, a 44-
node supercomputer with two (2) interconnected InfiniBand
FDR switches. Each node runs CentOS Linux release 7.3.1611
and has two Intel Xeon E5-2620 v2 processors with 64 GB of
main memory. Red Hat’s GCC v4.8.5 and Open MPI v2.1.1
were used to compile the benchmarks.

The effect of socket-sharing and socket-exclusive process
placement on application performance was explored. The
recommended shared-stripe mapping [3] was compared against
two socket-exclusive mappings shown in Figure 1. All pro-
cesses were pinned to their target cores using Open MPI’s
rankfile.

The system’s SLURM scheduler policy did not support
node-sharing, hence 32 nodes were reserved using the sched-
uler and then application co-location was achieved by execut-
ing the jobs interactively.



Fig. 2. Performance variation seen by NPB benchmarks (upper plot) and
the graph color benchmark (lower plot) due to on-node interference under
different mappings. The interfering application is indicated in brackets. E.g.,
“FT [GC]” indicates the performance variation of the FT benchmark when it
experiences interference from the graph coloring (GC) benchmark.

B. Benchmarks

The following kernels from the NPB suite were used. These
benchmarks were chosen because they displayed both inter-
esting performance characteristics and could be conveniently
mapped across 32 nodes using 128 processes. The problem
sizes are indicated in parentheses.

1) NPB FT (D): A communication bound benchmark that
features a discrete 3D fast Fourier Transform with all-to-all
communication.

2) NPB IS (D): An integer sorting benchmarks that features
irregular memory access patterns.

3) NPB CG (E): A conjugate gradient benchmark that
features irregular communication and memory access patterns.

4) NPB MG (E): A memory-intensive, multi-grid bench-
mark that features long- and short-distance communication.

For the Big Data workload, a DegAwareRHH-based graph
coloring benchmark was used. DegAwareRHH is a high-
performance state-of-the-art graph data store that has been
shown to improve data-locality, load balancing and reduce
communication [6].

5) Graph Coloring (GC)1: This Big Data benchmark was
used with the Orkut social network dataset [7], which has over
three million nodes and over one billion edges.

Baselines measurements were recorded for each benchmark
per mapping while no other applications ran on the assigned
nodes. Interference measurements were done for each mapping
by co-locating an HPC and the Big Data benchmark on the
same nodes. Each measurement was the average of five trials.

III. RESULTS

Figure 2 shows the performance variation due to co-location
for the different process mappings. For the NPB benchmarks,
the shared-stripe mapping appeared to yield speedups
for all benchmarks while the socket-exclusive mappings gener-
ally resulted in slowdowns. The standard deviation for CG, IS,
and MG measurements were 1% or lower, while FT’s standard

1from https://github.com/LLNL/havoqgt/tree/develop keita on 2017-06-21

deviation increased up to 8.4%, even for the baseline runs.
Therefore, FT’s performance variation cannot be attributed to
its co-location with GC.

MG experienced the most significant slowdown for socket-
exclusive allocations. The intra-application contention for last-
level cache is very high under compact socket-exclusive map-
pings [3], hence, the presence of GC likely increases con-
tention for access to DRAM and degrades MG’s performance.

The results in the lower plot of Figure 2 indicate that the
GC benchmark has a very different interference profile from
the HPC benchmarks. While the exclusive4bd mapping
seemed to produce the best results for co-locating GC, the
individual baseline and inference measurements varied non-
trivially. The standard deviation for most cases ranged from
1.4% to 5.4%. The load-balancing and locality optimiza-
tions of this implementation introduces performance variations
across baseline runs. Hence, a more in-depth study of these
optimizations in the context of co-location is required.

IV. SUMMARY

Using kernel benchmarks from the NPB suite and a state-
of-the art graph coloring implementation, we have begun to
quantify the effects of co-locating HPC and graph analytics ap-
plications. The memory-intensive MG benchmark experienced
the largest performance variation due to co-location. We also
confirmed that using socket-sharing, striped process placement
actually improves the performance of HPC applications when
co-located with graph analytics programs.
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