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Abstract—The performance model of an application can pro-
vide understanding about its runtime behavior on particular
hardware. Such information can be analyzed by developers for
performance tuning. However, model building and analyzing is
frequently ignored during software development until perfor-
mance problems arise because they require significant expertise
and can involve many time-consuming application runs. In this
paper, we propose a fast, accurate, flexible and user-friendly
tool, Mira, for generating performance models by applying static
program analysis, targeting scientific applications running on
supercomputers. We parse both the source code and binary
to estimate performance attributes with better accuracy than
considering just source or just binary code. Because our analysis
is static, the target program does not need to be executed on
the target architecture, which enables users to perform analysis
on available machines instead of conducting expensive exper-
iments on potentially expensive resources. Moreover, statically
generated models enable performance prediction on non-existent
or unavailable architectures. In addition to flexibility, because
model generation time is significantly reduced compared to
dynamic analysis approaches, our method is suitable for rapid
application performance analysis and improvement. We present
several scientific application validation results to demonstrate the
current capabilities of our approach on small benchmarks and
a mini application.

I. INTRODUCTION

Understanding application and system performance plays
a critical role in high-performance software and architecture
design. Developers require a thorough insight of the appli-
cation and system to aid their development and improvement.
Performance modeling provides software developers with nec-
essary information about bottlenecks and can guide users in
identifying potential optimization opportunities.

As the development of new hardware and architectures
progresses, the computing capability of high performance
computing (HPC) systems continues to increase dramatically.
However along with the rise in computing capability, it is
also true that many applications cannot use the full available
computing potential, which wastes a considerable amount
of computing power. The inability to fully utilize available
computing resources or specific advantages of architectures
during application development partially accounts for this
waste. Hence, it is important to be able to understand and
model program behavior in order to gain more information
about its bottlenecks and performance potential. Analyzing the
instruction mixes of programs at function or loop granularity
can provide insight on CPU and memory characteristics, which
can be used for further optimization of a program.

In this paper, we introduce a new approach for analyzing and
modeling programs using primarily static analysis techniques
combining both source and binary program information. Our
tool, Mira, generates parameterized performance models that
can be used to estimate instruction mixes at different gran-
ularity (from function to statement level) for different inputs
and architectural features without requiring execution of the
application.

Current program performance analysis tools can be catego-
rized into two types: static and dynamic. Dynamic (runtime)
analysis is performed through execution of the target program
and measurement of metrics of interest, e.g., time or hardware
performance counters. By contrast, static analysis operates
on the source or binary code without actually executing it.
PBound [1] is an example static analysis tool for automatically
modeling program performance based on source code analysis
of C applications. Because PBound considers only the source
code, it cannot capture compiler optimizations and hence
produces less accurate estimates of performance metrics. We
discuss other examples of these approaches in more detail in
Sections II and V.

While some past research efforts mix static and dynamic
analysis to create a performance model, relatively little effort
has been put into pure static performance analysis and increas-
ing the accuracy of static analysis. Our approach starts from
object code because the code transformations performed by
optimizing compilers would cause non-negligible effects on
the analysis accuracy. In addition, object code is language-
independent and more directly reflects runtime behavior. Al-
though object code could provide instruction-level informa-
tion, it still fails to offer some critical factors for understanding
the target program. For instance, it is difficult or impossible
to obtain detailed information about high-level code structures
(user-defined types, classes, loops) from just the object code.
Therefore, source code is also analyzed in our project to
supplement complementary high-level information.

By combining source code and object code representa-
tions, we are able to obtain a more precise description of
the program and its possible behavior when running on a
particular architecture, which results in improved modeling
accuracy. The output of our tool can be used to rapidly explore
program behavior for different inputs without requiring actual
application execution. In addition, because the analysis is
parameterized with respect to the architecture, Mira provides
users valuable insight of how programs may run on particular

ar
X

iv
:1

70
5.

07
57

5v
1 

 [
cs

.P
F]

  2
2 

M
ay

 2
01

7



Fig. 1. Workflow of Mira for generation of performance model and analysis.

architectures without requiring access to the actual hardware.
Furthermore, the output of Mira can also be applied to create
performance models to further analyze or optimize perfor-
mance, for example Roofline arithmetic intensity estimates [2].

This paper is organized as follows: Section II briefly de-
scribes the ROSE compiler framework, the polyhedral model
for loop analysis, and the background of performance mea-
surement and analysis tools. In Sections III, we discuss the
details of our methodology and the implementation. Section IV
evaluates the accuracy of the generated models on several
benchmark codes. In Section V, we introduce related work
about static performance modeling. Section VI concludes with
a summary and future work discussion.

II. BACKGROUND

A. ROSE Compiler Framework

ROSE [3] is an open-source compiler framework devel-
oped at Lawrence Livermore National Laboratory (LLNL). It
supports the development of source-to-source program trans-
formation and analysis tools for large-scale Fortran, C, C++,
OpenMP and UPC (Unified Parallel C) applications. ROSE
uses the EDG (Edison Design Group) parser and OPF (Open
Fortran Parser) as the front-ends to parse C/C++ and Fortran.
The front-end produces ROSE intermediate representation (IR)
that is then converted into an abstract syntax tree (AST). It
provides users a number of APIs for program analysis and
transformation, such as call graph analysis, control flow anal-
ysis, and data flow analysis. The wealth of available analyses
makes ROSE an ideal tools both for experienced compiler
researchers and tool developers with minimal background to
build custom tools for static analysis, program optimization,
and performance analysis.

B. Polyhedral Model

We rely on the polyhedral model to characterize the iteration
spaces of certain types of loops. The polyhedral model is an
intuitive algebraic representation that treats each loop iteration
as lattice point inside the polyhedral space produced by loop
bounds and conditions. Nested loops can be translated into
a polyhedral representation if and only if they have affine

bounds and conditional expressions, and the polyhedral space
generated from them is a convex set. Moreover, the polyhe-
dral model can be used to generate generic representation
depending on loop parameters to describe the loop iteration
domain. In addition to program transformation [4], the poly-
hedral model is broadly used for automating optimization
and parallelization in compilers (e.g., GLooG [5]) and other
tools [6]–[8].

C. Performance Measurement and Analysis Tools
Performance tools are capable of gathering performance

metrics either dynamically (instrumentation, sampling) or stat-
ically. PAPI [9] is used to access hardware performance
counters through both high- and low-level interfaces, which
are typically used through manual or automated instrumen-
tation of application source code. The high-level interface
supports simple measurement and event-related functionality
such as start, stop or read, whereas the low-level interface is
designed to deal with more complicated needs. The Tuning
and Analysis Utilities (TAU) [10] is another state-of-the-art
performance tool that uses PAPI as the low-level interface to
gather hardware counter data. TAU is able to monitor and
collect performance metrics by instrumentation or event-based
sampling. In addition, TAU also has a performance database
for data storage and analysis and visualization components,
ParaProf. There are several similar performance tools includ-
ing HPCToolkit [11], Scalasca [12], MIAMI [13], gprof [14],
Byfl [15], which can also be used to analyze application or
systems performance through runtime measurements.

III. APPROACH

Mira is built on top of ROSE compiler framework, which
provides several useful APIs as front-end for parsing the
source file and disassembling the ELF file. Mira is imple-
mented in C++ and is able to process C/C++ source code
as input. Figure 1 illustrates the entire workflow of Mira for
performance model generation and analysis, which comprises
three major parts:

• Input Processor - Input parsing and disassembling
• Metric Generator - AST traversal and metric generation
• Model Generator - Model generation in Python



Fig. 2. Loop structure from a C++ source code AST fragment
(ROSE-generated dot graph output).

A. Processing Input Files

1) Source code and binary representations: The Input
Processor is the front-end of Mira, and its primary goal
is to process source code and ELF object file inputs and
build the corresponding ASTs (Abstract Syntax Trees). Mira
analyzes these ASTs to locate critical structures such as
function bodies, loops, and branches. Furthermore, because
the source AST also preserves high-level source information,
such as variable names, types, the order of statements and
the right/left hand side of assignment, Mira incorporates this
high-level information into the generated model. For instance,
one can query all information about the static control part
(SCoP) of a loop, including loop initialization, loop condition,
and increment (these are not explicit in the binary code). In
addition, because variable names are preserved, it makes the
identification of loop indexes much easier and processing of
the variables inside the loop more accurate.

2) Bridge between source and binary: The AST is the
output of the frond-end part of Mira. After processing the
inputs, two ASTs are generated separately from the source
and compiled binary codes representing the structures of the
two inputs. Mira is designed to use information retrieved from
these trees to improve the accuracy of the generated models.
Therefore, it is necessary to build connections between the two
ASTs so that for a structure in source it is able to instantly
locate corresponding nodes in the binary one.

Although both ASTs are representations of the inputs, they
have totally different shapes, node organizations and meaning
of nodes. A partial binary AST (representing a function) is
shown in Figure 3. Each node of the binary AST describes
the syntax element of assembly code, such as SgAsmFunction,
SgAsmX86Instruction. As shown in Figure 3, a function in the
binary AST is composed of multiple instructions, while in the
source AST, a functions is composed of statements. Hence,
one source AST node typically corresponds to several nodes in
the binary AST, which complicates the building of connections
between them.

Because the differences between the two AST structures
make it difficult to connect source to binary, an alternate
way is needed to make the connection between ASTs more

Fig. 3. Partial binary AST (ROSE-generated dot graph output).

precise. Inspired by debuggers, line numbers are used in our
tool as the bridge to associate source to binary. When we are
debugging a program, the debugger knows exactly the source
line and column of the error location. By using the -g option
during program compilation, the compiler will insert debug-
related information into the object file for future reference.
Most compilers and debuggers use DWARF (debugging with
attributed record format) as the debugging file format to
organize the information for source-level debugging. DWARF
categorizes data into several sections, such as .debug info,
.debug frame, etc. The .debug line section stores the line
number information.

The line number debugging information allows us to decode
the specific DWARF section to map the line number to
the corresponding instruction address. Because line number
information in the source AST is already preserved in each
node, unlike the binary AST, it can be retrieved directly.
After line numbers are obtained from both source and binary,
connections are built in each direction between the two ASTs.
As mentioned in the previous section, a source AST node
normally links to several binary AST nodes due to the different
meaning of nodes. Specifically, a statement contains several
instructions, but an instruction only has one connected source
location. Once the node in the binary AST is associated to
the source location, further analysis can be performed. For
instance, it is possible to narrow the analysis to a small scope
and collect data such as the instruction count and type in a
particular code fragment, such as function body, loop body,
and even a single statement.

B. Generating metrics

The Metric Generator is an important part of the entire
framework, which has significant impact on the accuracy of
the generated model. It receives the ASTs as inputs from the
Input Processor to produce metrics for model generation. An
AST traversal is needed to collect and propagate necessary
information about the specific structures in the program for
appropriate organization of the program representation to
precisely guide model generation. During the AST traversal,
additional information is attached to the particular tree node



TABLE I. Loop coverage in high-performance applications

Application Number of loops Number of statements Statements in loops Percentage
applu 19 757 633 84%
apsi 80 2192 1839 84%
mdg 17 530 464 88%
lucas 4 2070 2050 99%
mgrid 12 369 369 100%
quake 20 639 489 77%
swim 6 123 123 100%
adm 80 2260 1899 84%
dyfesm 75 1497 1280 86%
mg3d 39 1442 1242 86%

as a supplement used for analysis and modeling. For example,
if it is too long, one statement is probably located in several
lines. In this case, all the line numbers are collected together
and stored as extra information attached to the statement node.

To best model the program, the metric generator traverses
the source AST twice: first bottom-up and then top-down.
The upward traversal propagates detailed information about
specific structures up to the head node of the sub-tree. For
instance, as shown in Figure 2, SgForStatement is the head
node for the loop sub-tree; however, this node itself does
not store any information about the loop. Instead, the loop
information such as loop initialization, loop condition and step
are stored in SgForInitStatement, SgExprStatement and Sg-
PlusPlusOp separately as child nodes. In this case, the bottom-
up traversal recursively collects information from leaves to
root and organizes it as extra data attached to the head node
for the loop. The attached information will serve as context in
modeling.

After bottom-up traversal, top-down traversal is applied to
the AST. Because information about sub-tree structure has
been collected and attached, the downward traversal primarily
focuses on the head node of sub-tree and those of interest, for
example the loop head node, if head node, function head node,
and assignment node, etc. Moreover, the top-down traversal
must pass down necessary information from parent to child
node in order to model complicated structures correctly. For
example, in nested loop and branch inside loop the inner
structure requires the information from the parent node as
the outer context to model itself, otherwise these complicated
structures can not be correctly handled. Also, instruction
information from ELF AST is connected and associated to
correspond structures in top-down traversal.

C. Generating Models

The Model Generator is built on the Metric Generator,
which consumes the intermediate analysis result of the metric
generator and generates an easy-to-use model. To achieve the
flexibility, the generated model is coded in Python so that the
result of the model can be directly applied to various scientific
libraries for further analysis and visualization. In some cases,
the model is in ready-to-execute condition for which users are
able to run it directly without providing any input. However,
users are required to feed extra input in order to run the
model when the model contains parametric expressions. The

parametric expression exists in the model because our static
analysis is not able to handle some cases. For example, when
user input is expected in the source code or the value of a
variable comes from the returning of a call, the variables are
preserved in the model as parameters that will be specified by
the users before running the model.

1) Loop Modeling: Loops are common in HPC codes
and are typically at the heart of the most time-consuming
computations. A loop executes a block of code repeatedly until
certain conditions are satisfied. Bastoul et al. [16] surveyed
multiple high-performance applications and summarized the
results in Table I. The first column shows the number of loops
contained in the application. The second column lists the total
number of statements in the applications and the third column
counts the number of statements covered by loop scope. The
ratio of in-loop statements to the total number of statements
are calculated in the last column. In the data shown in the table,
the lowest loop coverage is 77% for quake and the coverage
rates for the rest of applications are above 80%. This survey
data also indicates that the in-loop statements make up a large
majority portion of the total statements in the selected high-
performance applications.

Listing 1. Basic loop

for (i = 0; i < 10; i++)
{

statements;
}

2) Using the Polyhedral Model: Whether loops can be
precisely described and modeled has a direct impact on the
accuracy of the generated model because the information about
loops will be provided as context for further in-loop analysis.
The term ”loop modeling” refers to analysis of the static
control parts (SCoP) of a loop to obtain the information about
the loop iteration domain, which includes understanding of the
initialization, termination condition and step. Unlike dynamic
analysis tools which may collect runtime information during
execution, our approach runs statically so the loop modeling
primarily relies on SCoP parsing and analyzing. Usually to
model a loop, it is necessary to take several factors into
consideration, such as depth, data dependencies, bounds, etc.
Listing 1 shows a basic loop structure, the SCoP is complete
and simple without any unknown variable. For this case, it is



(a) Polyhedral representation for double-nested
loop

(b) Polyhedral representation with if constraint

(c) if constraint causing holes in the polyhedral
area

(d) Exceptions in polyhedral modeling

Fig. 4. Polyhedral model for a double-nested loop.

possible to retrieve the initial value, upper bound and steps
from the AST, then calculate the number of iterations. The
iteration count is used as context when analyzing the loop
body. For example, if corresponding instructions are obtained
the from binary AST for the statements in Listing 1, the actual
count of these instructions is expected to be multiplied by the
iteration count to describe the real situation during runtime.

Listing 2. Double-nested loop

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{

statements;
}

However, loops in real application are more complicated,
which requires our framework to handle as many scenarios
as possible. Therefore, the challenge for modeling the loop is
to create a general method for various cases. To address this
problem, we use the polyhedral model in Mira to accurately
model the loop. The polyhedral model is capable of handling
an N-dimensional nested loop and represents the iteration
domain in an N-dimensional polyhedral space. For some cases,

the index of inner loop has a dependency with the outer loop
index. As shown in Listing 2, the initial value of the inner
index j is based on the value of the outer index i. For this
case, it is possible to derive a formula as the mathematical
model to represent this loop, but it would be difficult and time-
consuming. Most importantly, it is not general; the derived
formula may not fit for other scenarios. To use the polyhedral
model for this loop, the first step is to represent loop bounds
in affine functions. The bounds for the outer and inner loop
are 1 ≤ i ≤ 4 and i+1 ≤ j ≤ 6, which can be written as two
equations separately:[

1 0
−1 0

]
×
[

i
j

]
+

[
−1
4

]
≥ 0

[
−1 1
0 −1

]
×

[
i
j

]
+

[
−1
6

]
≥ 0

In Figure 4(a), the two-dimensional polyhedral area pre-
senting the loop iteration domain is created based on the two
linear equations. Each dot in the figure represents a pair of
loop indexes (i, j), which corresponds to one iteration of the
loop. Therefore, by counting the integers in the polyhedral
space, we are able to parse the loop iteration domain and



obtain the iteration times. For loops with more complicated
SCoP, such as the ones contain variables instead of concrete
numerical values, the polyhedral model is also applicable.
When modeling loops with unknown variables, Mira uses
the polyhedral model to generate a parametric expression
representing the iteration domain, which can be changed by
specifying different values to the input. Mira maintains the
generated parametric expressions and uses as context in the
following analysis. In addition, the unknown variables in loop
SCoP are preserved as parameters until the parametric model
is generated. With the parametric model, it is not necessary for
the users to re-generate the model for different values of the
parameters. Instead, they just have to adjust the inputs for the
model and run the Python code to produce a concrete value.

Listing 3. Exception in polyhedral modeling

for(i = 1; i <= 5; i++)
for(j = min(6 - i, 3);

j <= max(8 - i, i); j++)
{
statements;

}

There are exceptions that the polyhedral model cannot handle.
For the code snippet in Listing 3, the SCoP of the loop
forms a non-convex set (Figure 4(d)) which is not handled
by the polyhedral model. Another problem in this code is
that the loop initial value and loop bound depend on the
return values of function calls. For static analysis to track and
obtain the such values, more complex interprocedural analysis
is required, which is planned as part of our future work.

Listing 4. Loop with if constraint

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{
if(j > 4)
{
statements;

}
}

3) Branches: In addition to loops, branch statements are
also common structures. In scientific applications, branch
statements are frequently used to verify the intermediate output
during the computing. Branch statements can be handled by
the information retrieved from the AST. However, it com-
plicates the analysis when the branch statements reside in a
loop. In Listing 4, the if constraint j > 4 is introduced into
the previous code snippet. The number of execution times of
the statement inside the if depends on the branch condition.
In our analysis, the polyhedral model of a loop is kept and
passed down to the inner scope. Thus the if node has the
information of its outer scope. Because the loop conditions
combined with branch conditions form a polyhedral space

as well, shown in Figure 4(b), the polyhedral representation
is still able to model this scenario by adding the branch
constraint and regenerate a new polyhedral model for the if
node. Comparing Figure 4(b) with Figure 4(a), it is obvious
that the iteration domain becomes smaller and the number
of integers decreases after introducing the constraint, which
indicates the execution times of statements in the branch is
limited by the if condition.

Listing 5. if constraint breaks polyhedral space

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{
if(j % 4 != 0)
{
statements;
}

}

However, some branch constraints might break the definition
of a convex set that the polyhedral model is not applicable.
For the code in Listing 5, the if condition excludes several
integers in the polyhedral space causing ”holes” in the iteration
space as shown in Figure (c). The excluded integers break the
integrity of the space so that it no longer satisfies the definition
of the convex set, thus the polyhedral model is not available for
this particular circumstance. In this case, the true branch of the
if statement raises the problem however the false branch still
satisfies the polyhedral model. Thus we can use the following
equation to solve:

Counttrue branch = Countloop total − Countfalse branch

Because the counter of the outer loop and false branch both can
be expressed by the polyhedral model, using either concrete
value or parametric expression, so the count of the true branch
is obtained. The generality of the polyhedral model makes it
suitable for most common cases in real applications, however
there are some cases that cannot be handled by the polyhedral
model or even static analysis. For such circumstances, we
provide users an option to annotate branches or the loops
which Mira is not able to handle statically.

4) Annotation: There are loop and branch cases that we
are not able to process in a static way, such as conditionals
involving loop index-unrelated variables or external function
calls used for computing loop initial values or loop/branch
conditions. Mira accepts user annotations to address such
problems. We designed three types of annotation: an estimated
percentage or a numerical value representing the proportion
of iterations branch may take inside a loop or the number
of iterations, which simplifies the loop/branch modeling; a
variable used as initial value or condition to complete the
polyhedral model; or a flag to indicate that a structure or
a scope should be skipped. To annotate the code, users just
need to put the information in a ”#pragma” directive in this
format: #pragma @Annotation information. Mira processes
the annotations during metric generation.



(a) Source code (b) Generated foo function (c) Generated main function

Fig. 5. Statically generated model: (a) Original source code; (b) Python model code excerpt for the foo function; and (c) Python
model code for the main program.

Listing 6. User annotation for if statement

for(i = 1; i <= 4; i++)
for(j = a[i]; j <= a[i+6]; j++)
{
#pragma @Annotation \

{lp_init:x,lp_cond:y}
if(foo(i) > 10)
{
#pragma @Annotation {skip:yes}
statements;

}
}

As the example shown in Listing 6, the if has a function
call as a condition which causes a failure when Mira tries to
generate the model fully automatically. To solve this problem,
we specify an annotation in the pragma to provide the missing
information and enable Mira to generate a complete model. In
the given example, the whole branch scope will be skipped
when generating metrics. Besides, we also annotate the initial
value and condition of the inner loop using variable x and y
because as a static tool Mira is not able to obtain values from
those arrays. Mira will use the two variables to complete the
polyhedral model; these variables will be treated as parameters
expecting sample values from the user at model evaluation
time.

5) Functions: Mira organizes the generated model in func-
tions, which correspond to functions in the source code. In the
generated model, the function header is modified for two rea-
sons: flexibility and usability. Specifically, each user-defined
function in the source code is modeled into a corresponding
Python function with a different function signature, which
only includes the arguments that are used by the model. In
addition, the generated model function has a slightly different
name in order to avoid potential conflict due to different
calling contexts or function overloading. For instance, the

Python function with name foo 2 represents the original C++
function foo, but with a reduced number of arguments. In
the body of the generated Python function, the original C++
statements are replaced with corresponding instruction counter
metrics retrieved from binary. These data are stored in Python
dictionaries and updated in the same order as the statements.
Each function, when called, returns the aggregate counts
within its scope. The advantage of this design is to provide
the user the freedom to separate and obtain the overview of
the particular functions with only minor changes to the model.

Correct handling of function calls involves two aspects:
locating the corresponding function and combining the metrics
into the caller function. To combine the metrics, we designed
a Python helper function handle function call, which takes
three arguments: caller metrics, callee metrics and loop it-
erations. It enables Mira to model the function call in the
loop, which each metric of the callee should multiply the
loop iterations. Mira retrieves the name of the callee function
from the source AST node, and then generates a function
call statement in Python and takes the return values that
representing the metrics in the callee function. After that, Mira
calls the handle function call to combine metrics of the caller
and the callee.

6) Architecture Description File: To enable the evaluation
of the generated performance model in the context of specific
architectural features, we provide an architecture description
file where users define architecture-related parameters, such
as number of CPU cores, cache line size, and vector length.
Moreover, this user-customized file can be extended to include
the information which does not exist in source or binary file
to enable Mira to generate more predictions. For instance, we
divided the x86 instruction set into 64 different categories in
the description file, which Mira uses to estimate the number
of instructions in each category for each function in the
source file. This representation strikes a balance between
fine and coarse-grained approaches, providing category-based
cumulative instruction counts at fine code granularity (down



TABLE II. Categorized Instruction Counts of Function
cg solve

Category Count
Integer arithmetic instruction 6.8E8

Integer control transfer instruction 2.26E8
Integer data transfer instruction 2.42E9

SSE2 data movement instruction 3.67E8
SSE2 packed arithmetic instruction 1.93E8

Misc Instruction 2.77E8
64-bit mode instruction 2.59E8

Fig. 6. Instruction distribution of function cg solve

to statement-level), which enables developers to obtain better
understanding of local behavior. Based on the metrics Mira
generated in Table II, Figure 6 illustrates the distribution
of categorized instructions from function cg solve from the
miniFE application [17]. The separated piece represents the
SSE2 vector instructions which is the source of the floating-
point instruction in this function.

7) Generated Model: We describe the model generated
(output) by Mira with an example. In Figure 5, it shows
the source code (input) and generated Python model sep-
arately. The source code (Figure 5(a)) includes a class A
defining a member function foo with two array variables as
the parameters. The member function foo is composed of a
nested loop in which we annotate the upper bound of the
inner loop with variable y. In the main function, it creates
an instance of class A and call function foo. Figure 5(b)
shows part of the generated Python function foo in which
the new function name is replaced with the combination of
its class name, original function name and the number of
arguments in the original function definition. The body of the
generated function A foo 2 consists of the Python statements
for keeping track of performance metrics. As we can see
in the generated function, Mira uses the annotation variable
y to complete the polyhedral model and preserves y as the
argument. Similarly, the generated function main is shown in
Figure 5(c). It calls the A foo 2 function and then updates
its metrics by invoking handle function call. The parameter
y 16 indicates that the function call associates the source code
at line 16. At present, the value of y 16 is specified by users
during model evaluation. Different values can be supplied as
function parameters in different function call contexts.

TABLE III. FPI Counts in STREAM benchmark

Array size / Tool TAU Mira Error
2M 8.239E7 8.20E7 0.47%

50M 4.108E9 4.100E9 0.19%
100M 2.055E10 2.050E10 0.24%

TABLE IV. FPI Counts in DGEMM benchmark

Matrix size / Tool TAU Mira Error
256 1.013E9 1.0125E9 0.05%
512 8.077E9 8.0769E9 0.0012%

1024 6.452E10 6.4519E10 0.0015%

IV. EVALUATION

In this section, we evaluate the correctness of the model
derived by Mira with TAU in instrumentation mode. Two
benchmarks are separately executed statically and dynamically
on two different machines. While Mira counts all types of
instructions, we focus on floating-point instructions (FPI)
in this section because it is an important metric for HPC
code analysis. The validation is performed by comparing
the floating-point instruction counts produced by Mira with
empirical instrumentation-based TAU/PAPI measurements.

A. Experiment environment

We conducted the validation on two machines whose spec-
ifications are as follows.

• Arya - Two Intel Xeon E5-2699v3 2.30GHz 18-core
Haswell CPUs and 256GB of memory.

• Frankenstein - Two Intel Xeon E5620 2.40GHz 4-core
Nehalem CPUs and 22GB of memory.

B. Benchmarks

Two benchmarks are chosen for validation, STREAM [18]
and DGEMM [19]. STREAM is designed for the measure-
ment of sustainable memory bandwidth and corresponded
computation rate for simple vector kernels. DEGMM is a
widely used benchmark for measuring the floating-point rate
on a single CPU. It uses double-precision real matrix-matrix
multiplication to calculate the floating-point rate. For both
benchmarks, the non-OpenMP version is selected and executed
serially with one thread.

C. Mini Application

In addition to the STREAM and DGEMM benchmarks, we
also use the miniFE mini-application [17] to verify the result
of Mira. MiniFE is composed of several finite-element kernels,
including computation of element operators, assembly, sparse
matrix-vector product, and vector operations. It assembles a
sparse linear system and then solves it using a simple unpre-
conditioned conjugate-gradient algorithm. Unlike STREAM
and DGEMM in which the main function takes the majority
part of the code, miniFE distributes the kernels by several
functions, and associates each other by function calls which
challenges the capability of Mira to handle a long chain of
function calls.



TABLE V. FPI Counts in miniFE

size Function / Tool TAU Mira Error
waxpby 8.95E4 8.94E4 0.011%

30x30x30 matvec std::operator() 1.54E6 1.52E6 1.3%
cg solve 1.966E8 1.925E8 2.09%
waxpby 2.039E5 2.037E5 0.098%

35x40x45 matvec std::operator() 3.57E6 3.46E6 3.08%
cg solve 7.621E8 7.386E8 3.08%

(a) FP instruction counts in STREAM benchmark (b) FP instruction counts in DGEMM benchmark

(c) FP instruction counts in miniFE (d) FP instruction counts in miniFE

Fig. 7. Validation of floating-point instruction counts.

D. Results

In this section, we present empirical validation results and
illustrate the tradeoffs between static and dynamic methods for
performance analysis and modeling. We also show a use case
for the generated instruction metrics to compute an instruction-
based arithmetic intensity derived metric, which can be used
to identify loops that are good candidates for different types of
optimizations (e.g., parallelization or memory-related tuning).

1) Discussion: Tables III, IV and V show floating-point
instruction counts in two benchmarks and mini application
separately. The metrics are gathered by evaluating the model
generated by Mira, and comparing to the empirical results
obtained through instrumentation-based measurement using
TAU and PAPI.

In Figure 7(a), the X axis is the size of the input array, and
we choose 20 million, 50 million and 100 million, respectively.
The logarithmic Y axis shows floating-point instruction counts.

Similarly, in Figure 7(b), the X axis is for input size and the Y
for FPI counts. Figure 7(c) and Figure 7(d) show FPI counts
for three functions for the different problem sizes. We show
details for the cg solve function, which solves the sparse linear
system, because it accounts for the bulk of the floating-point
computations in this mini app. The function waxpby and the
operator overloading function matvec std::operator() are in
cg solve’s call tree and are invoked in the loop. Our results
show that the floating-point instruction counts produced by
Mira are close to the TAU measurements (of the PAPI FP INS
values), with error of up to 3.08%. The difference between
static estimates and measured quantities increases with prob-
lem size, which means that there are discrepancies within
some of the loops. This is not unexpected—static analysis
cannot capture dynamic behavior with complete accuracy. The
measured values capture samples based on all instructions,
including those in external library function calls, which at



present are not visible and hence not analyzed by Mira. For
such scenarios, Mira can only track the function call state-
ments that just contain several stack manipulation instructions
while the content of the invoked function is skipped. In future
we plan to provide different mechanisms for handling these
cases, including limited binary analysis of the corresponding
library supplemented by user annotations.

In addition to correctness, we compare the execution time of
the static and empirical approaches. In empirical approaches,
the experiment has to be repeated for different input values and
in some cases multiple runs for each input value are required
(e.g., when collecting performance hardware counter data).
Instrumentation approaches can focus on specific code regions,
but most sampling-based approaches collect information for
all instructions, hence they potentially incur runtime and
memory cost for collecting data on uninteresting instructions.
By contrast, our model only needs to be generated once, and
then can be evaluated (at low computational cost) for different
user inputs and specific portions of the computation. Most
important, the performance analysis by a parametric model
can be used to achieve broad coverage without incurring the
costs of many application executions.

Another challenge in dynamic approaches is the differences
in hardware performance counters, including lack of availabil-
ity of some types of measurements. For example, in modern
Intel Haswell servers, there is no support for FLOP or FPI
performance hardware counters. Hence, static performance
analysis may be the only way to produce floating-point-based
metrics in such cases.

2) Prediction: Next, we demonstrate how one can use the
Mira-generated metrics to model the estimated instruction-
based floating-point arithmetic intensity of the cg solve func-
tion. The general definition of arithmetic intensity is the ratio
of arithmetic operation to the memory traffic. With an appro-
priate setting in the architecture description file, we can enable
Mira to generate various metrics. As the data shown in Ta-
ble II, Mira categorizes the instructions in cg solve into seven
categories. In the listed categories, ”SSE2 packed arithmetic
instruction” represents the packed and scalar double-precision
floating-point instructions and ”SSE2 data movement instruc-
tion” describes the movement of double-precision floating-
point data between XMM registers and memory. Therefore the
instruction-based floating-point arithmetic intensity of function
cg solve can be simply calculated as 1.93E8/3.67E8 = 0.53.
This is a simple example to demonstrate the usage of our
model. With sophisticated setting of architecture description
file, Mira is able to perform more complicated prediction.

V. RELATED WORK

There are two related tools that we are aware of designed for
static performance modeling, PBound [1] and Kerncraft [20].
PBound was designed by one of the authors of this paper
(Norris) to estimate “best case” or upper performance bounds
of C/C++ applications through static compiler analysis. It
collects information and generates parametric expression for

particular operations including memory access and floating-
point operations, which is combined with user-provided archi-
tectural information to compute machine-specific performance
estimates. However, it relies purely on source code analysis,
and ignores the effects of compiler transformations (e.g.,
compiler optimization), frequently resulting in bound estimates
that are not realistically achievable.

Hammer et al. have created Kerncraft, a static perfor-
mance modeling tool with concentration on memory hier-
archy. Kerncraft characterizes performance and scaling loop
behavior based on Roofline [2] or Execution-Cache-Memory
(ECM) [21] model. It uses YAML as the file format to describe
low-level architecture and Intel Architecture Code Analyzer
(IACA) [22] to operate on binaries in order to gather loop-
relevant information. However, the reliance on IACA limits the
applicability of the tool so that the binary analysis is restricted
by Intel architecture and compiler.

Tools such as PDT [23] provide source-level instrumen-
tation, while MAQAO [24] and Dyninst [25] use binary
instrumentation for dynamic program analysis. Apollo [26]
is a recent API-based dynamic analysis tool that provides a
lightweight approach based on machine learning to select the
best tuning parameter values while reducing the modeling cost
by spreading it over multiple runs instead of constructing the
model at runtime.

System simulators can also used for modeling, for example,
the Structural Simulation Toolkit (SST) [27]. However, as a
system simulator, SST has a different focus—it simulates the
whole system instead of single applications and it analyzes
the interaction among architecture, programming model and
communications system. Moreover, simulation is computa-
tionally expensive and limits the size and complexity of the
applications that can be simulated. Compared with PBound,
Kerncraft and Mira, SST is relatively heavyweight, complex,
and focuses on hardware, which is more suitable for exploring
architecture, rather than performance of the application.

VI. CONCLUSION

In this paper, we present Mira, a framework for static
performance modeling and analysis. We aim at designing a
faster, accurate and flexible method for performance modeling
as a supplement to existing tools in order to address problems
that cannot solved by current tools. Our method focuses
on floating-point operations and achieves good accuracy for
benchmarks. These preliminary results suggest that this can
be an effective method for performance analysis.

While at present Mira can successfully analyze realistic
application codes in many cases, much work remains to be
done. In our future work, the first problem we eager to tackle
is to appropriately handle more function-calling scenarios,
especially those from system or third-party libraries. We will
also consider combining dynamic analysis and introducing
more performance metrics into the model to accommodate
cases where control flow cannot be characterized accurately
purely through static analysis. We also plan to extend Mira to
enable characterization of shared-memory parallel programs.
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