Automating the Application Data Placement in
Hybrid Memory Systems

Harald Servat*, Antonio J. Pefia’, Germdn Llort',
Estanislao Mercadal, Hans-Christian Hoppe* and Jestis Labarta'?
*Intel Corporation
TBarcelona Supercomputing Center (BSC)
fUniversitat Politecnica de Catalunya (UPC)

Abstract—Multi-tiered memory systems, such as those based
on Intel® Xeon Phi™processors, are equipped with several mem-
ory tiers with different characteristics including, among others,
capacity, access latency, bandwidth, energy consumption, and
volatility. The proper distribution of the application data objects
into the available memory layers is key to shorten the time-—
to—solution, but the way developers and end-users determine
the most appropriate memory tier to place the application data
objects has not been properly addressed to date.

In this paper we present a novel methodology to build an
extensible framework to automatically identify and place the
application’s most relevant memory objects into the Intel Xeon
Phi fast on-package memory. Our proposal works on top of in-
production binaries by first exploring the application behavior
and then substituting the dynamic memory allocations. This
makes this proposal valuable even for end-users who do not
have the possibility of modifying the application source code. We
demonstrate the value of a framework based in our methodology
for several relevant HPC applications using different allocation
strategies to help end-users improve performance with minimal
intervention. The results of our evaluation reveal that our
proposal is able to identify the key objects to be promoted
into fast on-package memory in order to optimize performance,
leading to even surpassing hardware-based solutions.

Index Terms—heterogeneous memory, hybrid memory, high-
bandwidth memory, performance analysis, PEBS, sampling, in-
strumentation

I. INTRODUCTION

Hybrid memory systems (HME accommodate memories
featuring different characteristics such as capacity, bandwidth,
latency, energy consumption, or volatility. A recent example
of an HM-processor is the Intel® Xeon Phi™, containing
two memory systems: DDR and on-package Multi-Channel
DRAM (MCDRAM) [1]]. While HM systems present oppor-
tunities in different fields, the efficient usage of these systems
requires prior application knowledge because developers need
to determine which data objects to place in which of the
available memory tiers. A common objective is to shorten the
application time—to—solution and this translates into placing
the appropriate data objects on the fastest memory. However,
fast memory is a scarce resource and the application working
set may not fit. Consequently, it is important to characterize the
application behavior to identify the (critical) data that benefits
the most from being hosted into fast memory and, if not
sufficient, keep the non-critical data away in slower memory.

I Also known as heterogeneous or multi-tiered memory systems.

Tools like EVOP [2], ADAMANT (3], MACPO [4] and
Intel® Advisor [3]] solely rely on instruction-level instrumen-
tation to monitor the data object allocation and their respective
accesses to advise the user about the most accessed variables
and even their access patterns. These metrics are valuable to
understand the application behavior, but the imposed over-
head limit their relevance because they alter the application
performance and generate a daunting amount of data for in-
production application runs, leading to long analysis times.

To overcome these limitations, processor manufacturers
have augmented their performance monitoring unit with sam-
pling mechanisms to provide rich information, including
the referenced memory address. Precise-Event Based Sam-
pling (PEBS) is the implementation of such a feature in
recent Intel processors [6]. Performance analysis tools such
as HPCToolkit [7], MemAxes [8], Extrac [9], and Intel®
Vtune™ Amplifier [10] use a hybrid approach combining
instrumentation to track data allocation and PEBS to mon-
itor the application data references. This approach enables
exploring in-production executions with a reduced overhead at
the cost of providing statistical approximations, even though
approximations for long runs resemble the actual results.

These tools typically identify the data structures that are
associated to metrics like high-latency loads or high number
of cache misses but leave the tedious work of substituting
the memory allocation calls to the application developer. This
paper advances the current state of the art by introducing a
novel framework design to help end-users, application devel-
opers and processor architects understand the usage of HM
systems, and to automatically promote the critical data to the
appropriate memory layer. The framework design consists of
four stages: (1) low-overhead data collection using hardware-
based sampling mechanisms; (2) attribution of a cost based
on Last-Level Cache (LLC) misses to each data object; (3)
distribution of data objects for a given memory configuration;
and (4) re-execution of the application binary automatically
promoting the different data objects to the proper memory tier.
The two first stages rely on an unmodified open-source tools,
while the third stage is a derivative from an already existing
tool and the fourth stage relies newly developed interposition
library.

The contributions of this paper include:

1) the design of an extensible framework to automatically

distribute the data objects of in-production binaries in

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/CLUSTER.2017.50

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/CLUSTER.2017.50

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

HM systems targeting performance, and implementing
it for Intel Xeon Phi processors;

2) an exploration of several strategies to help determine
which application variables to place on which memory
tier in HM systems;

3) the evaluation of the proposed distribution approaches
on a set of well-known benchmarks using the presented
framework methodology, including a comparison with
already existing hardware and software solutions; and

4) the proposal of a novel metric to report the efficient use
of the fast on-package memory by applications.

This paper follows contextualizing the work we present with
already existing state—of—the—art tools and methodologies in
Section [l Section [describes in detail the framework and
its components. In Section we put the framework in use
through several benchmarks and applications while analyzing
the obtained results. Finally, Section E draws conclusions and
discusses possible future research directions.

II. RELATED WORK

There exist several alternatives for taking advantage of the
MCDRAM on Intel Xeon Phi processors. The user can benefit
from the fast on-package memory transparently by using it as
a direct-mapped LLC. However, if MCDRAM is configured
in flat mode (i.e. sits on a different part of the address space),
then the easiest alternative for the user is to rely on the
numactl command to place as much application data as
possible into the fast memory. Another alternative is to use
the aut ohbw library provided by the memkind package [11].
This library is injected into the application before process
execution and it forwards dynamic allocations into MCDRAM
if the requested memory is within a user-given size range
(as long as it fits). The most tedious situation requires the
developer to learn (somehow) about the application behavior
with respect to main memory accesses and manually change
the memory allocations so that they reside on MCDRAM using
memkind. Even though using MCDRAM in cache mode leads
to good performance results, it is not as efficient as consciously
exploiting it in flat mode (see Figure [1), especially for those
workloads where the lack of associativity is a problem. Using
the numact1 approach, irrelevant data objects may be placed
on MCDRAM and prevent critical objects from fitting, while
using autohbw or changing the application code requires
detailed application knowledge.

We next describe earlier approaches from a variety of
performance tools that have focused on the analysis of data
structures to bring this knowledge to the user. We divide
this research into two groups depending on the mechanism
used to capture the addresses referenced by the load/store
instructions. Then, we describe how these approaches fit within
the framework design we propose.

a) Instrumenting-based Solutions: The first group of
tools includes those that instrument the application instructions
to obtain the referenced addresses. MemSpy [l12] is a prototype
tool for profiling applications on a system simulator that
introduces the notion of data-oriented—in addition to code-
oriented—performance tuning. This tool instruments every
memory reference from an application run and leverages the

references to a memory simulator that calculates statistics
such as cache hits and misses for a given cache organization.
SLO [13] suggests locality optimizations by analyzing the
application reuse paths to find the root causes of poor data
locality. This tool extends the GCC compileIE] to capture the
application’s memory accesses, function calls and loops to
track data reuses, and then it analyzes the reused paths to
suggest code loop transformations. MACPO captures memory
traces and computes metrics for the memory access behavior
of source-level data structures. The tool uses PerfExpert [[14]] to
identify code regions with memory-related inefficiencies, then
it employs the LLVM compilelﬂ to instrument the memory
references, and finally it calculates several reuse factors and
the number of data streams in a loop nest. Intel Advisor is a
performance analysis tool that focuses on the thread and vector
performance, and it also explores the memory locality charac-
teristics of a user-given code. The tool relies on PIN [15] to
instrument binaries at instruction-level allowing correlation of
the instructions and the memory access patterns. Tareador [16]]
is a tool that estimates the amount of parallelism that can
be extracted from a serial application using a task-based
data-flow programming model. The tool employs dynamic
instrumentation to monitor the memory accesses of delimited
regions of code to determine whether they can simultaneously
run without data race conditions, and then it simulates the
application execution based on this outcome. EVOP is an
emulator-based data-oriented profiling tool to analyze actual
program executions in a system equipped only with a DRAM-
based memory [17]. EVOP uses dynamic instrumentation
to monitor the memory references in order to detect which
memory structures are the most referenced and then estimate
the CPU stall cycles incurred by the different memory objects
to decide their optimal object placement in a heterogeneous
memory system by means of the dmem_advisor tool [2].
ADAMANT uses the PEBIL instrumentation package [18]]
and includes tools to characterize application data objects,
to provide reports helping on algorithm design and tuning
by devising optimal data placement, and to manage data
movement improving locality.

b) Hardware-based Solutions: The second group con-
sists of tools that benefit from hardware mechanisms to sample
addresses referenced when processor counter overflows occur
and that estimate the access cost from the samples. The
Oracle Developer Studio (formerly known as Sun ONE Studio)
incorporates a tool to explore memory system behavior in
the context of the application’s data space [19]. This exten-
sion provides the analyst with independent and uncorrelated
views that rank program counters and data objects according
to hardware counter metrics and it shows metrics for each
element in data object structures. HPCToolkit was extended
to support data-centric profiling of parallel programs using
hardware sampling capabilities to expose the long latency
memory operations. Similarly, Intel Vtune Amplifier shows
application data objects that induce more cache misses. These
two tools provide their respective graphical user interface that

Zhttp://gcc.gnu.org
3http://www.llvm.org

http://gcc.gnu.org
http://www.llvm.org

W
i3
(=}

»n
3 400
)
= 300
m
Z 200
g
Z 100
=

0

1 2 4 8 16 32 34 64 68
NUMBER OF CORES USED
DDR ——MCDRAM/Flat MCDRAM/Cache

Fig. 1: Bandwidth observed on the Triad kernel of the Stream
benchmark when executed with a single thread per core on
an Intel Xeon Phi processor 7250 running at 1.40 GHz and
placing the data in DDR or MCDRAM.

presents data- and code-centric metrics, easing the correlation
among the two. MemAxes uses PEBS to monitor long-latency
load instructions that access addresses within memory regions
delimited by user-specified data objects. The novelty of its
approach is that it associates the memory behavior with
semantic attributes, including the application context which
is shown through a visualization tool. BSC tools have been
extended to sample memory references and then show detailed
access patterns on the application address space, and correlate
them with the application code and other performance counters
through the Folding technique [20].

The work described in this paper combines aforementioned
mechanisms to identify the data objects and report which
would benefit the most from moving to a faster memory. The
report is then analyzed by a novel mechanism that automati-
cally substitutes dynamic allocations referring to critical data
at run-time, letting developers and end-users apply the method
easily even for production binaries. This approach leverages
finer granularity than that of autohbw. Although we have
used the BSC tools and a dmem_advisor derivative to leverage
the data analysis and object selection stages of our proposed
methodology, it is possible to swap them with analogous tools.

III. DESIGN AND PROPOSED IMPLEMENTATION

We present an overview of the framework and its main
components in this section. The components of the framework
are executed sequentially as illustrated in Figure [2| leading to
a profile-guided execution. The framework starts by collecting
metrics of the memory objects into a trace-file by using
Extrae. Then, Paramedir [21] identifies those objects that
have missed the most in the LLC (and likely to be the
most bandwidth-demanding) and their respective sizes. Third,
hmem_advisor reports which memory objects are best to place
in fast memory according to a given memory specification.
Finally, auto-hbwmalloc automatically substitutes the regular
allocation memory calls to MCDRAM memory honoring the
previous report in a final application execution. The following
subsections provide further details on the components of our
framework proposal.

Step 1
Execution profile
Step 2
Generate
metrics

(g / Paramedir

hmem _
advisor

Step 3
Determine
allocations

auto-
hbwmalloc

Step 4
Swap memory
allocations

Fig. 2: The framework design and its components.

Step 1: Extrae

Extrae is an open-source tracing package developed at BSC
that generates Paraver trace-files. This package automatically
instruments applications using the LD_PRELOAD mechanism
to capture information from parallel programming models
such as MPI, OpenMP, POSIX threads, OpenCL, CUDA and
combinations of them. Extrae complements the trace-files with
sampling mechanisms, making sure that performance analysts
get performance details even for long uninstrumented regions.

While Extrae has traditionally focused on capturing the
activity of parallel runtimes, it has been recently extended
to instrument memory allocations, and to sample load and
store instructions from the application using the PEBS mech-
anism, to include further information regarding data objects
and their accesses. This information includes the time-stamp,
performance counters, and the parameters and results of the
call, (i.e. requested size, input and output pointers), and the
call-stack. Extrae uses binutils [22] to obtain human-readable
source code references for the memory accesses. Dynamically-
allocated variables are identified by their allocation call-stack’]
while static variables are referenced by their given name.

Although Extrae is able to collect data from many sources of
information, to perform this analysis the framework only needs
dynamic-memory allocations and deallocations and sampled
memory references for the LLC misses. For the former, Extrae
registers the allocated address range through the returned
pointer and the size of the allocation. For the latter, Extrae
registers the address of the particular load or store instruction
that missed in LLC, and it correlates with its corresponding
object by matching the accessed address against the previously
allocated object’s address ranges. The association of memory
references to automatic (stack) variables is not supported at
the time of writing this document.

Regarding the PEBS hardware infrastructure, the metrics as-
sociated to the memory samples depend on the processor fam-

4The call-stack is captured using the backtrace () call from glibc.

ily as well as on the performance counter used. For instance,
the PEBS mechanism in the Intel Xeon Phi processors tracks
L2 (LLC) cache load references (either hits or misses) and
provides information regarding the address being referenced.
The information provided for Intel® Xeon ® processors is
richer: it additionally provides the access cost (in cycles) and
which part of the memory hierarchy provided the data for load
instructions, and whether the access did hit or missed in the
L1 cache for store instructions.

Step 2: Paramedir

The result of an instrumented run with Extrae is a Paraver
trace-file, a sequence of time-stamped events reflecting the
actual application execution. Paraver is the visualization tool
of the BSC tool-suite, which enables users to conduct a global
qualitative analysis of the main performance issues in the
execution by visual inspection, and then focus on the detailed
quantitative analysis of the detected bottlenecks. These analy-
ses can be stored in the so-called configuration files that can
be applied to any trace-file as long as it contains the necessary
data. Paramedir, on the other hand, is the non-graphical version
of Paraver which allows to automatize the analysis through
scripts and configuration files, reporting metric values in a
comma-separated-value (CSV) file.

In this stage Paramedir is applied to compute two statistics
from the trace for each application data object: (1) the cost
of the memory accesses, and (2) the size of the object. We
approximate the access cost by the number of LL.C misses, but
this could be easily extended on Intel Xeon processors thanks
to their richer PEBS infrastructure. Regarding the object’s data
size, it is worth mentioning that dynamically-allocated objects
are identified by their call-stack. If an application loops over
a data allocation, the call-stack will be the same for each
iteration, and hence it can not unequivocally distinguish among
the different allocations. In these cases we report the maximum
requested size observed for each repeated allocation site.

Step 3: hmem_advisor

hmem_advisor is a tool based on EVOP’s dmem_advisor. It
parses Paramedir’s output containing the object-differentiated
memory access information and computes an optimized ob-
ject distribution among the available memory layers. Like
dmem_advisor, hmem_advisor is based on a relaxation of the
0/1 multiple knapsack problem (solving separate knapsacks in
descending order of memory performance at memory page
granularity), where the memory subsystems represent the
knapsacks and the memory objects correspond to the items
to be packed. Each memory subsystem is defined by a given
size and a relative performance in a configuration file, ensuring
that we can extend this mechanism in the future for different
memory architectures.

Ideally, we want to minimize the number of stalled cycles
by the CPU due to main memory accesses. We achieve this
by maximizing the potential CPU stall cycles due to memory
accesses that each memory tier avoids with respect to the
slowest of them. We approach this as the number of per-
object accesses (i.e., LLC misses), as proposed in [2]. We
also devise a future additional refinement enabled by our

approach based on the PEBS metrics provided in Intel Xeon
processors benefiting from object-differentiated information on
miss latency.

Computing a pure 0/1 knapsack (with pseudo-polynomial
computational cost) involving potentially hundreds of mem-
ory objects and large memory levels has proven to be im-
practical in our experiments. We approach this problem by
implementing in hmem_advisor two independent and greedy
relaxations of the problem. The first alternative is an approach
that selects the data objects based on the number of LLC
misses and an optionally user-provided percentage thresh-
old. The threshold allows preventing that rarely referenced
objects (but that still fit in the knapsack) are promoted to
fast-memory. The second alternative is a relaxation based
on profit density, i.e. promoting those variables with higher
memory access/data object size ratio. Either approach has
a linear computational cost. No matter the approach leveraged,
the current hmem_advisor implementation considers that the
application address space is static. While this assumption does
not hold true for all applications, it may be reasonable for
many applications that allocate data from the start and keep
it until they finalize. Since the generated trace-file in the first
stage of the framework contains a time-varying representation
of the application address space, hmem_advisor could use this
information to further tune the suggested allocations.

The output of the tool is a list of selected data objects
that should be promoted to fast memory. This list is written
in a human-readable format for two reasons. First, statically
allocated objects cannot be migrated to a memory layer differ-
ent from the default without modifying the application code.
Second, application developers may prefer to have full control
of the memory placement and modify the code themselves to
migrate the selected data objects into a different memory tier.

Step 4: auto-hbwmalloc

The auto-hbwmalloc component consists of a shared li-
brary that substitutes several dynamic-memory allocation and
deallocation callsE] through the LD_PRELOAD mechanism and
forwards them to an alternate memory allocator. Currently,
the auto-hbwmalloc forwards memory allocations to routines
from the memkind library, but the auto-hbwmalloc component
has been developed so that it can be easily extended to
other allocation mechanisms. At the moment the library only
supports dynamically-linked binaries but we foresee the pos-
sibility of substituting the memory-related calls in statically-
linked binaries using instrumentation frameworks such as PIN
or DynlInst [23]].

The library contains wrappers to substitute all the
memory-related calls and use the information provided by
hmem_advisor to replace the selected dynamic allocations.
Algorithm (1| shows an example of this interposition for the
malloc call with details explained through this section. Each
time the application invokes a malloc, the library intercepts
the call and then checks whether the invocation call-stack
matches with any of those identified in the report from step

5Including malloc, realloc, posix_memalign, free,
kmp_malloc, kmp_aligned_malloc, kmp_free and kmp_realloc.

Algorithm 1 Pseudo-code for a substituted malloc.

1: function MALLOC(size)

2 allocated < false

3 if [b_size < size < ub_size then

4: callstack < BACKTRACE()

5: < found, in, alloc> < ALLOC_CACHE_SEARCH(callstack)
6: if = found then

7 tx_callstack <— CS_TRANSLATE(callstack)

8 <in, alloc> +— MATCH(tz_callstack, sel_callstacks)
9: ALLOC_CACHE_ANNOTATE (callstack, in, alloc)
10: end if

11: if in then

12: if alloc — FITS(size) then

13: ptr < (alloc — MALLOC(size))
14: ALTERNATE_REGION_ANNOTATE(ptr, size, alloc)
15: alloc — STATS_ADD(size)

16: allocated < true

17: end if

18: end if

19: end if

20: if —allocated then

21: ptr < (posiz — MALLOC(size))

22: posiz — STATS_ADD(size)

23: end if

24: return ptr
25: end function

3 (line 8). In case of a positive match, it returns a pointer
to the appropriate allocator object (alloc) that forwards the
allocation to the selected memory allocation call (in this case
memkind) and is used to allocate the data object (line 13).
Due to the inclusion of the ASLR (Address Layout Space
Randomization) security features that randomize the position
of library symbols in the application address space, it is
necessary not only to unwind (line 4) the call-stack but also
to translate it at run-time (using the binutils package [line 7]).

The library itself needs to perform some book-keeping in-
cluding the following items: (1) allocated regions per allocator,
(2) memory used per allocator and (3) execution statistics.
First, memory allocations and deallocations need to be handled
by their specific memory allocation package and cannot be
mixed with others. This makes it necessary to keep a relation
of which allocations have been done by the alternate allocators
in order to use the appropriate calls (line 14). Second, in
Step 2 we mentioned that the framework currently reports the
highest allocation values for dynamically-allocated objects in
loops. This means that hmem_advisor may not be aware of the
exact amount of memory used by an application a priori. We
have implemented auto-hbwmalloc so that it keeps the total
amount of alternate space used by the process (line 15) and
it will not request from the alternate allocator more memory
than that specified by the advisor (line 12). This approach
also covers the case where applications allocate memory from
inlined routines. In this case, different allocation sites sharing
the same call-stack may exist and thus mislead the library to
substitute allocations when it should not. Third, and finally, the
auto-hbwmalloc component also captures several application
metrics upon user request that may be valuable for analysis
and debug purposes. These metrics include, among others,
the number of allocations, the average allocation size, the
observed High-Water Mark (HWM) and whether any variable
did not fit into memory due to user size limitations given to
hmem_advisor.

60

50
@ 40
=

=g

m 30
= 20

0

1 2 3 4 5 6 7 8 9
CALL-STACK DEPTH

@ Unwind [Translate

Fig. 3: Overhead breakdown for call-stack unwinding and call-
stack translation on an Intel Xeon Phi 7250 processor running
at 1.40 GHz using glibc 2.17 and binutils 2.23.

Since applications may face large number of memory
call invocations during execution, we have also explored the
overhead that these may suffer using this library in order
to evaluate whether the overhead could hide the gains by
promoting the data objects to MCDRAM. Figure [3] shows
a breakdown of the unwind and translation cost (Y-axis in
pseconds) when varying the call-stack depth (X-axis). The
results show that the cost of unwinding a short call-stack is
larger compared to the cost of translating its frames, but the
translation cost increases faster than the unwind cost when
increasing the call-stack depth. In this particular case, the
translate cost surpasses the unwind cost eventually and for
the machine tested this occurs when processing a call-stack
deeper than 6 levels. We address this overhead with two
approaches. First, we include a small cache indexed by the
unwound addresses that keep whether an allocation invoked in
that position shall or shall not be allocated using the alternate
allocator (lines 5 and 9). Second, the hmem_advisor tool
provides the lowest and highest allocation sizes (1b_size
and ub_size) to filter the allocations to be checked by their
size (line 3), although this can be disabled upon user request.

IV. EXPERIMENTAL EVALUATION

To demonstrate the value of the proposed framework we
evaluate the following applications and provide some of their
characteristics in Table [I, The applications include:

o High Performance Conjugate Gradient (HPCG) [24] -
a code that benchmarks computer systems based on a
simple additive Schwarz, symmetric Gauss-Seidel pre-
conditioned conjugate gradient.

o Livermore Unstructured Lagrange Explicit Shock Hydro-
dynamics (Lulesh) proxy application [25] - a representa-
tive of simplified 3D Lagrangian hydrodynamics on an
unstructured mesh.

o Block-Tridiagonal (BT) benchmark - part of the NAS
parallel benchmarks [26] that mimics the computation
and data movement in CFD applications.

e MiniFE - a proxy application for unstructured implicit
finite element codes from the Mantevo and CORAL
benchmark collections [27]].

TABLE I: Explored applications and their characteristics.

HPCG 3.0mod [24]

Lulesh 2.0 [25]

NAS BT 3.3.1 [26]

miniFE 2.0rc3 [27]

Lines of code 5,718 7,240 6,415 4,609
Language C++ C++ Fortran C++
Parallelism MPI+OpenMP MPI+OpenMP OpenMP MPI+OpenMP
Execution geometry 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank 272 threads 64 ranks, 4 threads/rank
Problem size 1043, 400s 963, 50 its D 4083, 250 its 520x512x512, 200 its
Commilat -g -03 -xMIC-AVX512 -g -03 -xMIC-AVX512 €03 XMIC-AVXS12 o3 viic-avxsi2
snplaiion g -qopenmp -qopenmp -fno-inline ~qopenmp -qopenmp
-mcmodel=medium
Figure of Merit (FOM) GFLOPS z/s Mop/s MFLOPS
Allocation statements® 0/0/0/33/17/0/0 1/0/1/35/23/0/0 0/0/0/0/0/15/15 0/0/0/5/1/0
Number of allocations/process/second 3,263 29.48 0.49 1,006.55
Memory used-HWM? (MB/process [total]) 928 [59,399] 859 [54,992] 11,136 [11,136] 1,022 [65,439]
Monitoring overhead® 0.42% 0.29% 0.32% 4.10%
Number of samples/process 13,629 3,201 38,215 3,194
Number of samples/process/second 30.46 9.08 12.59 12.25
CGPOP 1.0 [28] SNAP 1.0.7 [29] MAXW-DGTD ([30] GTC-P 160328 [31]
Lines of code 4,612 8,583 20,835 8,362
Language Fortran Fortran Fortran C
Parallelism MPI MPI+OpenMP MPI+OpenMP MPI+OpenMP
Execution geometry 64 ranks 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank
Problem size 180x 120, 200 trials 32x64x64, 20 its 4th order mi=3, 861, 390, 50 its

Compilation flags

-g -03 -xMIC-AVX512

-g -03 -xMIC-AVX512
-qno-opt-dynamic-align

-g -03 -xMIC-AVX512
-qopenmp -align

-g -03 -xMIC-AVX512
-qopenmp

-fno-fnalias -qopenmp dcommons

Figure of Merit (FOM) Trials / s Iterations / s Iterations / s Iterations / s
Allocation statements® 0/0/0/0/0/29/6 0/0/0/5/1/0/0 0/0/0/0/0/75/71 156/0/156/0/0/0/0/0
Number of allocations/process/second 18.17 1,006.55 15,853.98 20.57
Memory used-HWM’ (MB/process [total]) 158 [10,173] 1,022 [65,439] 285 [18,276] 1,329 [85,074]
Monitoring overhead® 0.88% 0.15% 0.65% 0.78%
Number of samples/process 8,258 3,194 2,072 17,254
Number of samples/process/second 17.44 12.25 4.13 28.56

o CGPOP [28]] miniapp - the conjugate gradient solver from
LANL POP (Parallel Ocean Program) 2.0, which is the

performance bottleneck for the full POP application.

known modifications (provided by the official website) that
improve the application performance (see [24] for details).

o SNAP [29] - a proxy application to model the perfor-
mance of a modern discrete ordinates neutral particle
transport application solving the linear Boltzmann trans-
port equation in multi-dimensional phase space.

¢ MAXW-DGTD [30] - an adoption of a Discontinuous
Galerkin Time-Domain solver for computational bioelec-
tromagnetics which use 4" order Lagrange basis func-
tions on tetrahedra for the simulation of human exposure
to electromagnetic waves [32].

¢ Princeton Gyrokinetic Toroidal Code (GTC-P) [31] - a
simulator for plasma turbulence within Tokamak fusion
devices generating a magnetic field that confines a plasma
within a toroidal cavity and accelerates the plasma parti-
cles around the torus.

We have used most of the applications out—of—the—box from
sources, changing only the compilation process as stated in
Section and Table [l The only modifications were per-
formed in BT, CGPOP and HPCG. Regarding BT and CGPOP,
the first analyses with the framework indicate that all the
variables that should go into MCDRAM are static variables.
However, since our interposition library cannot promote static
and automatic variables into fast memory, we modified the
most observed variables in BT and CGPOP to be dynamically
allocated so that they can be intercepted. Regarding HPCG, we
have slightly modified the reference code using some well-

A. System Setup

We have used a system with one Intel Xeon Phi 7250
processor running at 1.40 GHz. The system has 96 Gbytes
and 16 Gbytes of DDR and MCDRAM memory, respectively,
meaning that the majority of the working sets do not fit in fast
memory. All the experiments have been executed in flat mode
except for the experiments labeled accordingly. The processor
tiles are interconnected using the quadrant cluster mode.

Regarding the software, the machine runs CentOS Linux 7
with a Linux kernel 3.10.0 and the XPPSL package version
1.3.3. All the explored applications have been compiled using
Intel® C/C++ and Fortran compilers version 2017 update
2 with aggressive optimization flags and generating debug
information. We note that for Lulesh we have disabled inlining
because the application uses it aggressively and this confuses
auto-hbwmalloc due to the same call-stack being reported
from many different allocation sites. MPI applications use
Intel® MPI library 2017 update 2 and we have not utilized
the MCDRAM memory for the internal MPI buffers to avoid

%Direct allocation statements in format: m/t/f/n/d/a/D, where m stands for
malloc, r for realloc (), f for free (), n for new, d for delete,
a for allocate and D for deallocate. Note that container allocations
(such as C++ STL allocations) are not reported and that allocate and
deallocate may operate on multiple data objects in a single invocation.

7As reported by each process by the Virtual Memory High-Water Mark
(VmHWM) in /proc/self/status before the process termination.

8The overhead is calculated using the reported FOM.

interfering with our framework. We use Extrae version 3.4.3
to monitor memory allocations larger than 4 Kbytes and
to sample one out of every 37,589 L2 cache misses. We
have chosen this allocation size to avoid small (and possibly
frequent) allocations such as those related to I/O that are
unlikely to benefit from MCDRAM. The period is a relatively
large number to keep the impact on application execution small
(typically below 1%) although the number of samples depends
on the instruction mix (see details in Table[I). Finally, the auto-
hbwmalloc library employs memkind version 1.5.0 to allocate
selected objects in fast memory.

B. Application Analyses

Following our proposed framework, we have monitored
the applications to obtain trace-files containing their memory
allocations and sampled references. Then we applied the
hmem_advisor tool with a range of memory sizes and several
allocation strategies. In OpenMP-only applications (i.e. NAS
BT) the exploration size ranges from 32 Mbytes to 16 Gbytes.
MPI (and hybrid MPI+OpenMP) applications have been run
with 64 MPI ranks; we explore the performance obtained when
limiting the used MCDRAM memory in a range from 32 to
256 Mbytes per rank. With respect to allocation strategies,
we have explored the two independent strategies provided in
hmem_advisor: based on LLC misses (with 0%, 1% and 5%
thresholds) and the density-based. Each parameter combina-
tion generates an object distribution and then we run again
the application with the auto-hbwmalloc library to check for
improvements by placing the selected objects in MCDRAM.

For comparison purposes with the results obtained using our
framework, we have also executed the applications in four ex-
ecution conditions and we report the results in Figure [4] First,
and as a reference, we measure the application performance
when the workload is located in DDR memory. The second
execution refers to placing as much data as possible into
MCDRAM following a FCFES strategy until it is exhausted and
then fall-backs to DDR (i.e. using numactl -p 1). Third,
we have used the libautohbw library to automatically place
dynamically-allocated data objects larger than 1 Mbyte in fast
memory. Finally, we have also conducted the experiments
when using the MCDRAM in cache mode allowing the user
to completely ignore data object placement.

C. Analysis of the Results

Figure |4| shows the results of the different experiments
executed per application (row). There are three figures per
application (from left to right: absolute performance, MC-
DRAM utilization and good use of the MCDRAM). The
absolute performance refers to the application Figure of Merit
(FOM—the higher the better) if the application reports it
and for the applications that do not report FOM (i.e., SNAP,
CGPOP, MAXW-DGTD and GTC-P) the Figure shows the
iterations/time metric. The values represented in columns
show the performance achieved when executed with our pro-
posed framework and the given configuration based on mem-
ory size limit and allocation strategy. The horizontal lines help
to compare the performance with other approaches, namely:
when the application is executed in DDR (green), when

placing as much as data as possible in fast memory through
numactl -p 1 (red), when using autohbw with 1 Mbyte
threshold (yellow) and when setting MCDRAM in cache mode
(blue). The plots in the middle report the highest MCDRAM
memory utilization (HWM) as reported by the auto-hbwmalloc
library. This information allows us to understand the appli-
cation allocation necessities and explore how much of the
assigned memory has been actually used. Finally, the plot
on the right column depicts the AFOM /mbyte metric. This
metric represents the good use of fast memory’s provided size
and helps identifying sweet-spots for dimensioning different
memory tiers on HM machines. A naive description of this
metric refers to the performance increase achieved when using
a given amount of fast memory. The metric is calculated as:

AFOM /mbyte,(y) = (FOM.(y) — FOMaar(y))/MEM, (1)

where z refers to an experiment, y refers to an application,
FOMyq, represents the FOM achieved when running the
application in the reference (DDR) memory, FOM, and
MEDM, represent the FOM obtained and MCDRAM-size
when using the selection in experiment x, respectively. Since
we do not have the HWM value for cache and numactl
-p 1 experiments we have decided their M E M, value to be
16 Gbytes as this is the provided memory. The aut ohbw/1m
experiment has been left out of this analysis because we do
not know the exact amount of data promoted to MCDRAM.

a) Performance-wise remarks: First, and focusing on the
columns of the performance plots (plots on the left), we
observe the expected behavior where the more data placed
in fast memory, the higher the performance (see HPCG [4a],
Lulesh [4d], BT [Ag], miniFE [, MAXW-DGTD and
GTC-P [Av]). The exceptions to this behavior are SNAP
(@p) and CGPOP (@m)). As stated earlier, CGPOP has been
modified to change most of its static allocations into dynamic
allocations, and the latter already fit in the smaller case
(32 Mbytes per process), so adding more memory does not
provide any benefit. Regarding the knapsack alternatives, we
observe that performance is typically on par with few examples
were density behaves better (Lulesh and GTC-P [4v])
and one (HPCG IIEI) where Misses (5%) is better.

When comparing the absolute performance from the various
placement alternatives (i.e. columns vs horizontal lines) we
notice the following. Our framework provides best results for
HPCG (@a), miniFE (@j) and GTC-P (@v). The best case of
HPCG shows a 78.88% performance increase when compared
to the DDR execution and 24.82% performance increase when
compared to the second best alternative (cache). The cache
mode is superior for Lulesh (4d) and slightly superior for
MAXW-DGTD (@s). For instance, the best case of Lulesh
in cache mode is 46.98% faster than executing in DDR and
12.68% faster than the second best alternative (using our
proposed framework for 256 Mbytes per process with the
density approach). The usage of numactl -p 1 command
outperforms marginally the cache and framework approaches
on BT (@g), CGPOP @m) and SNAP (@p). We have also
explored the reason for the difference in Lulesh and SNAP
when compared to our framework. With respect to Lulesh, it
allocates and deallocates many objects during the application

19
2 17
=
15
s -
" | "
., Em [B} | |
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
= Density = Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/Im
(a) HPCG - FOM
10500
9500
12
o .:
7500 e
6500
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
= Density mmm Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/lIm
(d) Lulesh - FOM
55000

45000

«a
n.
35000
2 I
25000
E— - - R — T
[TEE [) [) [TR TR

l =
15000 -
& & & & & & & & & &
oF o o & ¢ o o o o
A A O N
N % “
SELECTION
I Density = Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/Im
(¢) BT - FOM
13000
@ 12000 l
Q
Z 11000
=
10000 .
9000 L L
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
B Density mm Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/Im
(j) miniFE - FOM
0.9
0.8
£20.7
3
206
Eos
0.4
03 |
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
. Density . Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/Im
(m) CGPOP - FOM
0.085
©»
& 0.080
g
E 0.075
g 0070 . [
0.065
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
. Density = Misses (0%) Misses (1%) Misses (5%)
DDR ——MCDRAM* Cache autohbw/Im

(p) SNAP - FOM

BYTES

BYTES

BYTES

BYTES

BYTES

BYTES

MILLIONS

MILLIONS

MILLIONS

MILLIONS

MILLIONS

MILLIONS

300

250
200
150
100 I
50
.

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
M Density W Misses (0%) " Misses (1%) Misses (5%)
(b) HPCG - HWM
300
250
200
150
100
50 .
, HE=
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION

WDensity ®Misses (0%) * Misses (1%)

(e) Lulesh - HWM

Misses (5%)

16000
1600 I I I I
R O N I I
c
a‘ a‘ a‘ %‘ \ ¢ ¢ 4.‘ 4.‘
ST TS
SELECTION
W Density ™ Misses (0%) © Misses (1%) Misses (5%)
(h) BT - HWM
80
70
60
50
40
30
20
10
0
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
mDensity ®Misses (0%) Misses (1%) Misses (5%)
(k) miniFE - HWM
80
70
60
50
40
30
20
10
0
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
mDensity ®Misses (0%) Misses (1%) Misses (5%)
(n) CGPOP - HWM
300
250
200
150
100
i | . N
, W=
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION

W Density 8 Misses (0%) Misses (1%)

(q) SNAP - HWM

Misses (5%)

GFLOPS / MBYTE
=
8

F + 11

0.01
0.00
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
s Density mmm Misses (0%) Misses (1%)
Misses (5%) MCDRAM* Cache
(c) HPCG - AFOM /mbyte
16
14
l!-‘_-l 12
E 10
s 8
i 6
N 4
2
0
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
. Density mm Misses (0%) Misses (1%)
Misses (5%) =—=MCDRAM* Cache
(f) Lulesh - AFOM /mbyte
300
£ 250
% 200
E 150
» 100
& 50
=]
2 o =
& & & & &
oF o ¢ @ o @ e@ @* =
L G A) N N
N Vv “
SELECTION
B Density mm Misses (0%) Misses (1%)
Misses (5%) MCDRAM* Cache
(i) BT - AFOM /mbyte
30
Eos
E 20
=
o515
&
Q10
=
S5
0
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
= Density = Misses (0%) Misses (1%)
Misses (5%) =—=MCDRAM* Cache
(1) miniFE - AFOM /mbyte
0.010
=
£ 0.008
@
= 0.006
»
@ 0.004
=<
2 0.002 .:
0.000 -
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
= Density = Misses (0%) Misses (1%)
Misses (5%) =——MCDRAM* Cache
(0) CGPOP - AFOM /mbyte
0.00016
=0.00014
@ 0.00012
2 0.00010
g 0.00008
Z 0.00006
2 0.00004
0.00002 -
% 0.00000 B W
32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION
s Density mmm Misses (0%) Misses (1%)

Misses (5%) =——MCDRAM*

Cache

(r) SNAP - AFOM /mbyte

N
n

)
73
S

2'4 2 =
g 23 8 200 2 0.004
Z22 g Z 0.003
=21 23150 @
5 2.0 £ 2 0.002
Zlo m 100 9
=08 £ 0001

18 - 0 s

1.7 -_ - - E 0.000

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes 0 | [= 32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION 32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes SELECTION
SELECTION)))
mmm Density W Misses (0%) = Misses (1%) © Misses (5%) . Density = Misses (0%) Misses (1%)
DDR ——MCDRAM* Cache autohbw/Im W Density 8 Misses (0%) Misses (1%) Misses (5%) Misses (5%) =—=MCDRAM* Cache
(s) MAXW-DGTD - FOM (t) MAXW-DGTD - HWM (u) MAXW-DGTD - AFOM /mbyte

o 2 300 0.0010
o S 250 2 0.0008
%} —
Zon = 200 = 0.0006
1) f = »
5 0.10 £ 150 2 0.0004
o /A <]
£ 0.09 100 £ 0.0002
i £ =

0.08 - - - 50 & 0.0000

32 Mbytes 64Mbytes 128 Mbytes 256 Mbytes , W | | = 32Mbytes 64 Mbytes 128 Mbytes 256 Mbytes
SELECTION 32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes SELECTION
SELECTION .))
Misses (1%) Misses (5%) = Density = Misses (0%) Misses (1%)

= Density
DDR

m Misses (0%)
——MCDRAM* Cache

(v) GTC-P - FOM

WDensity B Misses (0%)

autohbw/Im

(w) GTC-P - HWM

Cache

MCDRAM*

Misses (1%) Misses (5%) Misses (5%)

(x) GTC-P - AFOM /mbyte

Fig. 4: Application experiment results. Density refers to use the density strategy while Misses (0%, 1%, 5%) refer to use the
strategy based on LLC misses with 0%, 1% and 5% thresholds in hmem_advisor. DDR refers to place everything in regular
memory. MCDRAM" refers to allocate everything in fast memory and use DDR as a fall-back when MCDRAM is exhausted.
Cache refers on configuring MCDRAM as Cache mode. autohbw/1m refers on using autohbw library with 1 Mbyte threshold.

top

9] 8> =] (<] -t» ° (<] -t» o S e3d =}
bottom 76531abab220
1 7653167c1b31 %
3 753123d8443 §
A 7530dfeed5d &,
- 75309¢05666 £
8
. - a
1600 7£530581b£78
1200
£ 500
s
400 1
0
0.00 3307.64 6615.28 992292 13230.56 16538.20
Time (ms)

Fig. 5: Performance evolution for the main iteration of SNAP.
The plots from top to bottom: source code (function) executed,
the address space referenced and the performance achieved (in
MIPS). The X-axis spans for the duration of the main iteration.

run and this misleads the framework because hmem_advisor
considers data objects alive for the whole execution. To
overcome this limitation, we have forced hmem_advisor to
consider it has 512 Mbytes of MCDRAM per process but
still limit auto-hbwmalloc to 256 Mbytes per process. With
this approach, which simulates additional address for selecting
data objects the difference shortens to 5.33% (still in favor
of cache mode). Regarding SNAP, we have used the Folding
technique to compare the behavior of the application when
using numactl -p 1 and the framework and we show the
results for the latter in Figure [5] Notice that when the appli-
cation executes the outer_src_calc routine (in orange,

shown in the top plot), then the MIPS rate (in blue, shown in
the bottom plot) drops but this does not happen when using
numactl -p 1 (not shown). The assembly code for this
routine shows register spilling due to register pressure, and as
register copies are stored in stack the execution benefits from
running with numactl -p 1 but not with the framework.
There is no case where the autohbw library outperforms the
rest but still improves the performance in several cases (HPCG,
BT, CGPOP and miniFE) but also decreases the performance
on Lulesh by 8%. This performance drop is explained by two
facts. First, autohbw promotes non-critical data objects into
fast memory which limits its impact. Second, we observe that
allocations ranging from 1 to 2 Mbytes through memkind are
more expensive than regular allocations (this issue is under
investigation at the moment of writing this document). This
second point is important because Lulesh allocates and deal-
locates memory during the main computation while the rest
of the applications allocate memory during the initialization.
b) Memory-usage remarks: Regarding the memory used,
we notice that all workloads tend to use more MCDRAM
when they are allowed to, except for CGPOP and miniFE that
only use 80 Mbytes per process (circa 5 Gbytes in total).
This indicates that CGPOP and miniFE working sets could be
larger and still fit in MCDRAM, and specifically for CGPOP,
that additional performance could be achieved if some static
variables were migrated into fast memory. We also notice
some allocation differences when using the two relaxations of
the 0/1 multiple knapsack problem. The usage of a threshold
(Misses (1%) and Misses (5%) cases) reduces the amount
of data promoted to fast memory, especially in Lulesh (@g),
miniFE (@K), CGPOP and GTC-P (@w). Interestingly, the
behavior in SNAP (q) is the opposite, ie. the density

approach allocates far less memory (64 Mbytes) in the 128 and
256 Mbyte cases. This occurs because the application allocates
few small chunks of memory and one large (256 Mbytes)
buffer, and the selection mechanism favors the placement of
the small chunks in MCDRAM but then the large buffer does
not fit.

¢) MCDRAM-efficiency remarks: Finally, with respect to
the AFOM /mbyte metric we identify different sweet-spots
where the applications get the highest performance metric.
On the one hand, Lulesh @f), CGPOP (@o), SNAP (@) and
GTC-P maximize the use of the fast memory when
using 32 Mbytes per process. On the other hand, miniFE (4I)
and HPCG (@d) raise the sweet-spot to 128 and 256 Mbytes
per process, respectively. In either case, when using more
memory than the sweet-spot, the value of the metric decreases.
This effect means that hmem_advisor selects the data objects
by criticality and that moving non-critical objects into fast
memory does not provide any benefit. Even though HPCG
does not show this effect, one could foresee this to happen if
additional MCDRAM is available.

D. General Discussion

Before concluding this section, we highlight some gen-
eral conclusions extracted from these experiments. First, if
the workload fits in MCDRAM, then it is worth using the
numactl -p 1 command because it places all (static, au-
tomatic and dynamic) data objects on MCDRAM because the
framework can only place dynamic variables in MCDRAM
and cache mode is not as performant as flat mode. If the
workload does not fit, then it is crucial to ensure that critical
data objects are stored in MCDRAM and this can be achieved
through the framework or setting the MCDRAM in cache
mode. Interestingly, cache mode and the framework comple-
ment each other regarding the applications they benefit most
(miniFE, HPCG and GTC-P using the framework and Lulesh,
SNAP, MAXW-DGTD using cache mode). We believe that
this divergence is good to cover wider ranges of applications
in terms of maximizing performance and to promote future re-
search on this topic, but for now requires experimental testing
to determine which approach is better. An additional conclu-
sion is that most of the selected workloads do not require
large amounts of fast memory to increase the performance,
although there may be cases (in our experiments, HPCG)
that will benefit from having more MCDRAM. Furthermore,
our framework may help processor architects to dimension
memory tiers on forthcoming processors.

Also, we remark that all this valuable information has been
generated using relatively coarse-grain sampled information.
Revisiting Table [I] the reader will notice that the number of
samples captured per application is relatively low (up to 38 K
samples). This leads us to believe that a hybrid approach of
minimal instrumentation and hardware-based sampling mech-
anisms is considerably helpful for exploring in-production
executions as opposed to instruction-level instrumentation.

Finally, we want to address productivity in two directions
besides the automatism provided by auto-hbwmalloc. First,
we highlight that hmem_advisor identify a few allocation
sites that greatly benefits from MCDRAM avoiding the user

10

to need to explore every data allocation. For instance, the
fastest cases of HPCG and miniFE reach their maximum
performance by placing 2 and 3 data objects into fast memory,
respectively, which would save coding time if users prefer
to change the source code. Second, modern languages (such
as C++) and runtimes (such as OpenMP) can hide data-
object allocations (using templates/STL and private constructs,
respectively) from a manual exploration. These allocations are
captured by the tools used in our proposed framework, making
sure that they are not ignored during the analysis.

V. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated a framework that promotes
critical application data objects into the appropriate memory
tier to shorten the time—to—solution automatically. The frame-
work is applied to in-production binaries allowing end-users
and developers to take advantage of HM systems without
having to access the application source code. The usage of
the framework increases the performance of many explored
applications on an Intel Xeon Phi processor, surpassing the
performance of using the MCDRAM as a LLC. The results
we have shown may well be valuable for processor architects
that need to dimension future HM systems based on current
and future application demands.

As future work, it would be interesting to explore ways
on predicting the application performance gains when moving
some data objects into fast memory and one possible approach
could be to replay the trace-file containing all the memory
samples using a simulator. We also envision benefiting from
the detailed memory access patterns obtained through the
Folding technique when intelligently combining coarse-grain
samples. First, Folding allows correlating the code regions
and access patterns with other performance counters such
as stalled cycles due to insufficient load and store buffers.
This information might be useful to determine which objects
prevent the processor from running at full speed due to
unavailable hardware resources and promote them into the
fastest memory layer to avoid the processor stalling. Second,
it also leads us to identify regions of code with regular and
irregular access patterns. This analysis would help placing
irregularly accessed variables into the memory with shorter
latency. Finally, the current framework places a whole data
object in fast memory but it is possible that it does not fit or
that not all the object is accessed uniformly, so it could be
wise to place in fast memory only the critical portion. In this
direction, we could take advantage of research that focus on
data object partitioning [33]], [34].

ACKNOWLEDGMENTS

This work has been performed in the Intel-BSC Exascale Lab.
Antonio J. Pefia is cofinanced by the Spanish Ministry of Economy
and Competitiveness under Juan de la Cierva fellowship number [JCI-
2015-23266. We would like to thank the Intel’s DCG HEAT team
for allowing us to access their computational resources. We also
want to acknowledge this team, especially Larry Meadows and Jason
Sewall, as well as Pardo Keppel for the productive discussions. We
thank Rapha&l Léger for allowing us to access the MAXW-DGTD
application and its input.

[1]

[2]

[3]

[4]

[5]
[6]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

A. Sodani, “Knights landing (KNL): 2nd generation Intel® Xeon Phi
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Aug 2015,
pp. 1-24.

A. J. Peiia and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in IEEE International Conference on
Cluster Computing (CLUSTER), 2014, pp. 123-131.

P. Cicotti and L. Carrington, “ADAMANT: tools to capture, analyze, and
manage data movement,” in International Conference on Computational
Science (ICCS), 2016, pp. 450—-460.

A. Rane and J. C. Browne, “Enhancing performance optimization of
multicore chips and multichip nodes with data structure metrics,” in 2012
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sept 2012, pp. 147-156.

“Intel Advisor XE,” last accessed May 2017. [Online]. Available:
https://software.intel.com/en-us/intel-advisor-xe

1. Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual, September 2016, vol. Volume 3B: System Programming Guide,
Part 2, ch. 18.4.4.

X. Liu and J. M. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’13, 2013, pp. 28:1-28:12.
A. Giménez, T. Gamblin, B. Rountree, A. Bhatele, 1. Jusufi, P. Bremer,
and B. Hamann, “Dissecting on-node memory access performance: A
semantic approach,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, pp. 166-176.
BSC, Extrae user guide, Barcelona Supercomputing Center, 2016,
last accessed May 2017. [Online]. Available: https://tools.bsc.es/sites/
default/files/documentation/extrae-3.2.1-user- guide.pdf

“Intel VTune Amplifier,” last accessed May 2017. [Online]. Available:
https://software.intel.com/en-us/intel- vtune-amplifier-xe

C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and
S. D. Hammond, memkind: An extensible heap memory manager for
heterogeneous memory platforms and mixed memory policies, Mar 2015.
[Online]. Available: http://www.osti.gov/scitech/servlets/purl/1245908
M. Martonosi, A. Gupta, and T. Anderson, “MemSpy: Analyzing
Memory System Bottlenecks in Programs,” in Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems. ACM, 1992, pp. 1-12.

K. Beyls and E. D’Hollander, “Refactoring for data locality,” Computer,
vol. 42, no. 2, pp. 62-71, 2009.

M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An easy-to-use performance diagnosis tool
for HPC applications,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). Washington, DC, USA: IEEE Computer Society, 2010,
pp- 1-11.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “PIN: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2005, pp. 190-200.

V. Subotic, R. Ferrer, J. Sancho, J. Labarta, and M. Valero, “Quantifying
the potential task-based dataflow parallelism in MPI applications,” Euro-
Par, Parallel Processing, pp. 39-51, 2011.

A. J. Pefia and P. Balaji, “A framework for tracking memory accesses
in scientific applications,” in 43rd International Conference on Parallel
Processing Workshops (ICCPW). 1EEE, 2014, pp. 235-244.

M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for Linux,” in /IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2010, pp. 175-183.

M. Itzkowitz et al., “Memory profiling using hardware counters,” in
ACM/IEEE conference on Supercomputing (SC), 2003, p. 17.

11

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

H. Servat, G. Llort, J. Gonzilez, J. Giménez, and J. Labarta, “Low-
overhead detection of memory access patterns and their time evolution,”
in European Conference on Parallel Processing. Springer, 2015, pp.
57-69.

BSC, “Paraver web-site,” Barcelona Supercomputing Center, 2016, last
accessed May 2017. [Online]. Available: http://tools.bsc.es/paraver
Free Software Foundation, “GNU Binutils,”
http://www.gnu.org/software/binutils

Last accessed May, 2017.

B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317-329, 2000.
J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” IJHPCA, vol. 30, no. 1, pp. 3-10,
2016,

URL: http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz,
SHAT1/10: 39e1b7e45e, modifications cover slides 4-7 from http://www.
hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf.

“Hydrodynamics challenge problem,” Lawerence Livermore National
Laboratory, Tech. Rep., last accessed May 2107.

URL: https://codesign.lInl.gov/lulesh/lulesh2.0.3.tgz, SHA1/10:
1ff51421bf. [Online]. Available: https://codesign.lInl.gov/pdfs/
LULESH2.0_Changes.pdf

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks,” in Proceedings of the ACM/IEEE
Conference on Supercomputing. ACM, 1991, pp. 158-165,
URL: https://www.nas.nasa.gov/publications/npb.html,
70e7271£39.

“Mantevo benchmark suite,” last accessed May 2017.

URL: https://asc.1Inl.gov/CORAL-benchmarks/Throughput/MiniFE_|
ref_2.0-rc3.tar.,gz, SHAI1/10: 64e79502d9. [Online]. Available:
https://mantevo.org/download.

A. Stone, J. Dennis, and M. M. Strout, “The CGPOP miniapp, version
1.0,” Colorado State University, Tech. Rep. Technical Report CS-11-103,
2011,

URL: https://github.com/xiehuc/cgpop, SHA1/10: Se7deea26a.

“SNAP: SN (discrete ordinates) application proxy,” last accessed May
2017.

URL: https://github.com/losalamos/SNAP.git, SHA1/10: b25fd4197c.
[Online]. Available: https://github.com/lanl/SNAP

R. Léger, D. Alvarez Mallon, A. Duran, and S. Lanteri, “Adapting
a finite-element type solver for bioelectromagnetics to the DEEP-ER
platform,” vol. Parallel Computing: On the Road to Exascale, no. 27.
Edinburgh, United Kingdom: IOS Press, 2016, p. 850,

URL: N/A - provided by user directly, SHA1/10: 1ff51421bf. [Online].
Available: https://hal.inria.fr/hal-01243708

“Gyrokinetic Toroidal Code - Princeton,” last accessed May 2017.
URL: http://www.nersc.gov/research-and-development/apex/
apex-benchmarks/gtc-p, SHA1/10: 7b28264821.

C. Durochat, S. Lanteri, and R. Léger, “A non-conforming multi-
element DGTD method for the simulation of human exposure to
electromagnetic waves,” International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, vol. 27, no. 3, pp. 614-625,
2014. [Online]. Available: http://dx.doi.org/10.1002/jnm.1943

A. J. Pefia and P. Balaji, “A data-oriented profiler to assist in data par-
titioning and distribution for heterogeneous memory in HPC,” Parallel
Computing, vol. 51, pp. 46-55, 2016.

P. Roy and X. Liu, “StructSlim: a lightweight profiler to guide structure
splitting,” in Proceedings of the 2016 International Symposium on Code

SHA1/10:

Generation and Optimization, CGO, 2016, pp. 36-46.

https://software.intel.com/en-us/intel-advisor-xe
https://tools.bsc.es/sites/default/files/documentation/extrae-3.2.1-user-guide.pdf
https://tools.bsc.es/sites/default/files/documentation/extrae-3.2.1-user-guide.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.osti.gov/scitech/servlets/purl/1245908
http://tools.bsc.es/paraver
http://www.gnu.org/software/binutils
http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
https://codesign.llnl.gov/lulesh/lulesh2.0.3.tgz
https://codesign.llnl.gov/pdfs/LULESH2.0_Changes.pdf
https://codesign.llnl.gov/pdfs/LULESH2.0_Changes.pdf
https://www.nas.nasa.gov/publications/npb.html
https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz
https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz
https://mantevo.org/download
https://github.com/xiehuc/cgpop
https://github.com/losalamos/SNAP.git
https://github.com/lanl/SNAP
https://hal.inria.fr/hal-01243708
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p
http://dx.doi.org/10.1002/jnm.1943

