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Abstract—Fault tolerance is one of the major design goals for
HPC. The emergence of non-volatile memories (NVM) provides
a solution to build fault tolerant HPC. Data in NVM-based main
memory are not lost when the system crashes because of the non-
volatility nature of NVM. However, because of volatile caches,
data must be logged and explicitly flushed from caches into NVM
to ensure consistence and correctness before crashes, which can
cause large runtime overhead.

In this paper, we introduce an algorithm-based method to
establish crash consistence in NVM for HPC applications. We
slightly extend application data structures or sparsely flush
cache blocks, which introduce ignorable runtime overhead. Such
extension or cache flushing allows us to use algorithm knowledge
to reason data consistence or correct inconsistent data when
the application crashes. We demonstrate the effectiveness of
our method for three algorithms, including an iterative solver,
dense matrix multiplication, and Monte-Carlo simulation. Based
on comprehensive performance evaluation on a variety of test
environments, we demonstrate that our approach has very small
runtime overhead (at most 8.2% and less than 3% in most cases),
much smaller than that of traditional checkpoint, while having
the same or less recomputation cost.

I. INTRODUCTION

Fault tolerance is one of the major design goals for HPC.
Because of hardware and software faults and errors, HPC
applications can crash or have incorrect computation results
during the execution. The most common strategy to enable
fault tolerant HPC is to periodically store a consistent and
correct application state in persistent storage, such that there is
always a resumable state throughout the application execution.
Such application state is often characterized as the data values
of critical data objects within the application. If the application
crashes or an error is detected during the application execution,
the application can go back to the last consistent and cor-
rect state, and restart. The application-level checkpoint/restart
mechanism is an implementation of such strategy.

However, there is a problem with the strategy of periodical
checkpoint. If the application state to checkpoint is large, the
application has to suffer from a large data copy overhead. This
fact is especially pronounced in HPC systems based on remote
storage nodes for checkpoint. Although there is a large body of
work to reduce the checkpoint overhead, such as hierarchical
checkpoint to save checkpoint in local compute nodes [1],

[2], [3], incremental checkpoint that only checkpoints modified
data to reduce checkpoint size [4], [5], [6], [7], and disk-less
checkpoint [8], [9], [10], [4], the checkpoint overhead remains
one of the major scalability challenges for future extreme-scale
HPC systems [11].

The emergence of non-volatile memories (NVM), such as
phase change memory (PCM) and STT-RAM, provide an
alternative solution to build fault tolerant HPC. Unlike regular
DRAM, those memories are persistent, meaning that data are
not lost when the system crashes because of the non-volatility
nature of NVM. Furthermore, short access latency and large
memory bandwidth of NVM makes the performance of NVM
close to that of DRAM. In fact, with hardware simulation,
the existing work has demonstrated that using NVM as the
main memory to run sophisticated scientific applications may
not have large performance loss [12], because of memory level
parallelism and the overlap between computation and memory
accesses. Hence, using NVM as the main memory to build
fault tolerant HPC is promising.

However, leveraging the non-volatility of NVM to establish
a consistent and correct state, which is called crash consis-
tence, throughout the application execution in NVM is chal-
lenging. Because of volatile hardware caches widely deployed
in HPC systems, there is no guarantee that the application state
in NVM is correct and usable by the recovery process to restart
applications. Ideally, if the application state in NVM is the
same as a one established by the checkpoint mechanism, then
the existing restart mechanism can be seamlessly integrated
into the NVM-based HPC.

To maintain a consistent and correct state in NVM through-
out the application execution, the most common software-
based approaches are redo-log (storing new data updates) or
undo-log (storing old data values) [13], [14], and enable a
transaction scheme for relatively small workloads (e.g., hash
table searching, B-tree searching, and random swap). Those
approaches are often based on a programming model with
the support of persistent semantics [13], [14], [15]. Those
approaches, unfortunately, can impose large overhead, because
they have to log memory update intensively and maintain
the corresponding metadata. Such overhead is especially pro-
nounced when the data objects are frequently updated by
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the application. In fact, our preliminary work with CG and
dense matrix multiplication based on a undo-log [15] has 4.3×
and 5.5× performance loss, respectively. While such large
overhead is tolerable in specific domains (e.g., database) with
data persistence prioritized over performance, this overhead
is not acceptable in HPC. To leverage NVM as persistent
memory and build a consistent and correct state, we must
introduce a lightweight mechanism with minimum runtime
overhead.

In this paper, we introduce a new method to establish a
consistent and correct state for critical data objects of HPC
applications in NVM. The goal is to replace checkpoint for
HPC fault tolerance based on the non-volatility of NVM, while
introducing ignorable runtime overhead.

Our method is based on the following observation. Given
a relatively small cache size (comparing with the main mem-
ory), most of data in an HPC application are not in caches,
and should be in consistent state in NVM, because HPC
applications are characterized with a large memory footprint.
However, how to detect which data in NVM is consistent and
can be reused for recomputation is challenging. The existing
logging-based approaches explicitly establish data consistence
and correctness with logs, but at the cost of data copy. If we
can reason the consistent state of data in NVM, then we do
not need logs, and remove expensive data copy.

Based on the above observation, we propose a novel method
to analyze data consistence and correctness in NVM when the
application crashes. In particular, instead of frequently tracking
and maintaining data consistence and correctness in NVM
at runtime, we slightly extend the application data objects
or selectively flush cache blocks, which introduces ignorable
runtime overhead. Such application extension or cache flushing
allow us to use algorithm knowledge to reason data consistence
and correctness when the application crashes.

In essence, we leverage invariant conditions inherent in
algorithms, and decide if the invariant conditions still hold
when the crash happens. We study using numerical algorithm
knowledge to detect consistence and correctness for restart
from three perspectives. First, we leverage the orthogonality
relationship between data objects to detect consistence and
correctness. We use the conjugate algorithm from sparse linear
algebra as an example to study the feasibility of this method.

Second, we leverage the invariant conditions established by
the algorithm-based fault tolerance method (ABFT) to detect
data consistence and correctness. It has been shown that ABFT
introduces ignorable runtime overhead by slightly embedding
extra information (e.g., checksum) into data objects. Using
the extra information, we can determine data consistence and
correctness when the application crashes, and even correct
inconsistent data. We use an algorithm-based matrix multi-
plication from dense linear algebra as an example to study the
feasibility of this method.

Third, we study the Monte-Carlo (MC) method. MC is
known for its statistics nature and error tolerance. In a
sense, the inconsistency data is an “error”. Hence MC can
restart from the crash without knowing the consistent state

of the critical data objects in NVM. However, contrary to
the common intuition, we find that some critical intermediate
results in MC could be lost and have big impact on com-
putation result correctness. We must ensure the consistence
and correctness of those critical intermediate results. Based
on the above algorithm knowledge, we only flush the data
of the critical intermediate results out of caches. This brings
ignorable overhead while ensuring the computation correctness
when restarting MC.

Algorithm knowledge has been used to address the problems
of fault tolerance [16], [17], [18], [19], [20], performance
optimization [21], [22], [23], and energy efficiency [24], [25].
In this paper, we extend the usage of numerical algorithm
knowledge into a new territory: by using algorithm-inherent in-
variant relationship between data objects or algorithm-inherent
statistics, we determine consistence and correctness of data
objects without expensive data copy or cache flushing.

Our main contributions are summarized as follows.
• We introduce an algorithm-directed approach to address

crash consistence in NVM for HPC. This approach has
very small runtime overhead (at most 8.2% and less
than 3% in most cases), much smaller than that of
traditional checkpoint, while providing the same or less
recomputation cost.

• We reveal that with the algorithm-directed approach, the
recomputation cost varies because of caching effects.
With a sufficiently large input problem, most of data
objects in HPC applications can be consistent and correct
in NVM. Hence, the recomputation cost can be small.

• We demonstrate that based on the algorithm-directed ap-
proach, leveraging the non-volatility of NVM to enhance
or even remove the traditional checkpoint is feasible for
future HPC.

II. BACKGROUND

Recent progresses on NVM techniques have implemented
NVM with different performance characteristics. Some reports
have shown that certain NVM techniques (such as ReRAM and
STTRAM) can achieve very similar latency and bandwidth as
DRAM [26], and some NVM techniques (such as PCM) may
have less than an order of magnitude reduction in performance
(up to 4× higher latency and 8× lower bandwidth [26], [27]).

Leveraging byte addressability, better scalability, and excel-
lent performance of NVM, using NVM as the main memory
is promising. In this NVM usage model, NVM may be built
as NVDIMM modules, and physically attached to high-speed
memory bus and managed by a memory controller [28].
Furthermore, for those NVM techniques with a performance
gap between NVM and DRAM (such as PCM), the likely
deployment of NVM is to build a heterogeneous NVM and
DRAM system. In such system, most of the memory is NVM
to exploit their low cost and scalability benefits, and a small
fraction of the total memory is DRAM. A large body of
work has explored NVM as the main memory, including those
software-based solutions [27], [29], [30], [31] and hardware-
based solutions [32], [33], [34], [35]. In this paper, we assume
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that NVM is used as the main memory, and explore a software-
based solution to enable resilient HPC on NVM.

To build a consistent and correct state for critical data
objects in NVM, the data objects in NVM must be updated
with the most recent data in caches. This can be achieved by
using cache flushing instructions to flush cache blocks of data
objects out of caches. Because there is no mechanism to track
which cache block is dirty and whether a specific cache block
is in caches, we have to flush all cache blocks of the data
objects, as if those cache blocks are in caches. Flushing clean
cache blocks in caches and flushing cache blocks not in caches
have performance cost at the same order as flushing dirty
cache blocks. Hence, depending on the size of the data objects,
flushing cache blocks of the data objects can be expensive.

We use CLFLUSH, the most common cache flush instruc-
tion, in this paper. Other cache flush instructions include
WBINVD, CLFLUSH OPT, and CLWB. However, WBINVD
is a privileged instruction used by operating system (OS);
CLFLUSH OPT is only available in the most recent Intel pro-
cessor (skylake) and CLWB is not available in the commercial
hardware yet. Hence we do not use them in the paper. But
considering them should further improves performance of our
proposed approach.

III. ALGORITHM-DIRECTED CRASH CONSISTENCE

In this section, we explain our approach in details for three
representative and popular algorithms. We first explain our
performance evaluation methodology, commonly used to study
the three algorithms.

A. Evaluation Methodology

To study data consistence between caches and NVM-based
main memory when the application crash happens, we develop
a “crash emulator” that allows us to examine the values of
remaining data in caches and main memory. To study appli-
cation performance in NVM, we use an NVM performance
emulator. We explain the crash emulator and test environment
as follows.

Crash emulator. We develop a PIN [36] based crash
emulator. In essence, the crash emulator intercepts memory
read and write instructions from the application, and emulates
a configurable LRU cache. But different from the traditional
PIN-based cache emulator, our crash emulator records the
most recent data values in caches and main memory. The crash
emulator also allows the user to specify when to trigger appli-
cation crash. When a user-specified crash point is triggered,
the crash emulator will output the values of data in caches and
main memory.

The user can specify the application crash point in two ways.
In the first way, the user can ask the crash emulator to output
the data values after a specific statement is executed. This is
achieved by inserting an API (particularly crash sim output())
right after the statement in the application. In the second way,
the user can ask the crash emulator to output the data values
after a specific number of instructions have been executed.
To implement the second way, the crash emulator first profiles

the application to collect total number of instructions, and then
reports it to the user. The user chooses an instruction number to
trigger application crash, and then re-runs the crash emulator.
The data values will be output by the crash emulator when the
user-specified number of instructions is executed.

Test environment. To measure runtime performance, we
use a system with two Xeon E5606 (2.13GHz) and 32GB
memories. To emulate NVM performance, we use Quartz em-
ulator [37], a lightweight DRAM-based emulator that allows
us to change DRAM bandwidth and latency. Quartz has low
overhead and good accuracy (with emulation errors 0.2% -
9%) [37]. More importantly, it allows us to emulate HPC
workloads with large data sets within reasonable time.

Since NVM techniques may have inferior performance
than DRAM (e.g., 4× higher latency and 8× lower band-
width [27]), we configure NVM bandwidth as 1/8 of DRAM
bandwidth with Quartz. We change memory bandwidth, be-
cause our evaluation tests include cache flushing and memory
copying, which are sensitive to memory bandwidth. Since
NVM has inferior performance with the lower bandwidth,
we introduce a DRAM cache to bridge performance gap be-
tween NVM and DRAM. Such heterogeneous NVM/DRAM-
based main memory is common [27], [29], [38], [33], [39].
The DRAM cache size is 32MB, the same as a recent
algorithm-based work for NVM [40]. With this heterogeneous
NVM/DRAM-based main memory, we must decide data place-
ment between NVM and DRAM. We decide data placement
in this memory system based on a recent work [27].

Besides the above NVM emulation based on Quartz, we also
study an NVM configuration with the same bandwidth and
latency as DRAM. With this configuration, NVM is the same
as DRAM. Hence we use an NVM-only system without DRAM
cache, and do not need Quartz. Such NVM configuration is
based on an optimistic assumption on NVM performance, and
eliminates any performance impact of data placement in a
heterogeneous NVM/DRAM on our study.

We thoroughly evaluate the performance of our algorithm-
based approach with seven test cases. (1) Native execution:
the execution without any checkpoint or algorithm-based ap-
proach; (2) Checkpoint based on a local hard drive; (3) Check-
point based on the NVM-only system; (4) Checkpoint based
on the heterogeneous NVM/DRAM system; (5) Using the Intel
PMEM library [15] on the NVM-only system; (6) Algorithm-
based approach on the NVM-only system; (7) Algorithm-
based approach on the heterogeneous NVM/DRAM system.

Among the seven test cases, checkpoint is the most common
method to establish a consistent and correct state on non-
volatile storage in HPC; The Intel PMEM library represents
the state of the art approach to establish a consistent and cor-
rect state in NVM. We compare our algorithm-based approach
with checkpoint and PMEM to study the performance benefit
of the algorithm-based approach.

With the memory-based checkpoint (i.e., checkpoint based
on the NVM-only system or the heterogeneous NVM/DRAM
system), checkpoint is equivalent to perform data copying plus
cache flushing to ensure data consistence between NVM and
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1 r ← b−A · x, z ← 0, p← 0, q ← 0, ρ← rT · r;
2 for i← 1 to n
3 q ← Ap
4 α← ρ/(pT · q)
5 z ← z + αp
6 ρ0 ← ρ
7 r ← r − αp
8 ρ← rT · r
9 β ← ρ/ρ0

10 p← p+ βp
11 Check r = b−A · z.
12 end for
Fig. 1. Pseudo-code for CG. Capital letters such as A represent matrices;
lowercase letters such as x, y, z represent vectors; Greek letters α, ρ represent
scalar numbers.

caches. The cache flushing in the NVM-only system includes
using CLFLUSH instruction to flush CPU caches; The cache
flushing in the heterogeneous NVM/DRAM system includes
flushing both CPU caches (using CLFLUSH) and the DRAM
cache (using memory copy).

We explain our algorithm-directed crash consistence in
details as follows.

B. Algorithm-Directed Crash Consistence for Iterative
Method

Conjugate Gradient (CG) is one of the most commonly used
iterative methods to solve the sparse linear system Ax = b,
where the coefficient matrix A is symmetric positive definite.
Figure 1 lists the algorithm pseudocode. In CG, three vectors
p, q, and z can be checkpointed for resuming other variables
and restarting. In the rest of this section, we use notation pi,
ri and zi to specify p, r, and z in the iteration i before they
are updated in Lines 10, 7, and 5 respectively; qi specify q in
the iteration i.

In CG, there are implicit relationships between multiple data
objects, shown in Equations 1 and 2. In particular, Equation 1
shows that at each iteration i, the vectors p(i+1) and q(i) satisfy
an orthogonality relationship. Equation 2 shows that at each
iteration i, the vectors r(i+1), z(i+1), b, and the matrix A
satisfy an equality relationship.

p(i+1)T · q(i) = 0 (1)

r(i+1) = b−A · z(i+1) (2)

Algorithm extension. Instead of using the checkpoint
method (in which at least three arrays p, q, and z should be
explicitly saved) to achieve the crash consistence, we rely on
the existing hardware-based caching mechanism to evict data
out of caches and opportunistically build the crash consistence.
We extend CG and leverage the above implicit relationships
between the data objects to reason the crash consistency of p,
q, and z in NVM. This method removes runtime checkpoint
and frequent cache flushing, hence improving performance.

In particular, if a crash happens at an iteration i, we examine
the data values of p(i+1), q(i), z(i+1), and r(i+1) in NVM, and
decide if the above implicit relationships are held. If not, then
p, q, z, and r are not consistent and valid, and we cannot

restart from the iteration i. We then check p(i), q(i−1), z(i)

and r(i) and examine the implicit relationship for the iteration
i−1. We continue the above process, until we find an iteration
j (j < i) where the four data objects satisfy the above implicit
relationship. This indicates that p(j+1), q(j), z(j+1), and r(j+1)

are consistent and valid. We can restart from the iteration j.
To implement the above idea, we need to extend the original

implementation shown in Figure 1). In the figure, p, q, r and
z are one-dimensional arrays overwritten in each iteration.
We add another dimension into the four arrays, such that
each array has the data values of each iteration. We also
flush the cache line containing the iteration number i at the
beginning of each iteration. This makes the iteration number
consistent between caches and NVM, which is helpful for the
examination of the data values in NVM after the crash. Note
that we only flush one single cache line at every iteration.
This brings ignorable performance overhead. Figure 2 shows
our extension to the original implementation.

1 r ← b−A · x, z ← 0, p← 0, q ← 0, ρ← rT · r;
2 for i← 1 to n
3 flush the cache line containing i
4 q[i+ 1]← Ap[i]
5 α← ρ/(pT · q)
6 z[i+ 1]← z[i] + αp
7 ρ0 ← ρ
8 r[i+ 1]← r[i]− αp
9 ρ← rT · r

10 β ← ρ/ρ0
11 p[i+ 1]← p[i] + βp
12 Check r = b−A · z.
13 end for
Fig. 2. Extending CG to enable algorithm-directed crash consistence. Our
extension to CG is highlighted with red color.

Performance characterization. The above algorithm-based
approach does not use checkpoint or frequent cache flushing to
explicitly build consistent and valid data state for those critical
data objects in NVM. This greatly reduces runtime overhead,
as shown in our performance evaluation.

The success of this approach heavily relies on the memory
access patterns in CG. The two-dimensional arrays in the new
CG (Figure 2) have a “streaming-like” memory access pattern:
the data values generated in any iteration are used in at most
two iterations. If the working set size of CG is much larger
than the last level cache size, the data values of p, q, r, and z
from the previous iterations before the crash happens have a
very good chance to be evicted out of caches and consistent
in NVM. In fact, CG is common to be applied on large sparse
linear systems that have large data sizes. For those systems,
our approach can effectively leverage the existing hardware
caching management to evict data out of caches and build
consistent and valid data states. In theory, given sufficiently
large linear systems, the data values of the four arrays for a
specific iteration i can be evicted out of caches in the iteration
i+1. If the cache happens at the iteration i+1, we can restart
from the iteration i, which limits recomputation cost to only
one iteration. This literally achieves the same recomputation
cost as checkpointing at every iteration.
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Fig. 3. Recomputation cost (execution time) for CG with our algorithm-based
approach. The recomputation cost is normalized by the average execution
time of individual iterations of CG. The input problem size is ranked in the
increasing order in the x axis.

However, if the linear system to solve by CG is small, the
data values of the four arrays from multiple iterations are in
caches and get lost when the crash happens. Depending on how
many iterations of the data are lost, our approach could result
in larger recomputation cost than the traditional checkpoint.
In the worst case, our approach has to restart from the very
beginning of CG. However, for those small systems with data
sizes smaller than the last level cache size, the recomputation
cost is small, and hence may not be a problem.

Performance evaluation. We evaluate the performance of
our approach from two perspectives, recomputation cost and
runtime overhead. Ideally, we want to minimize recomputation
cost after crashes, and minimize runtime overhead.

To measure recomputation cost, we use the crash emulator
to trigger a crash at a specific program execution point,
particularly Line 10 (Figure 2) in the 15th iteration of the
main loop in NPB CG (one benchmark in NAS parallel
benchmark suite [41]). Figure 3 shows the performance on
the heterogeneous NVM/DRAM system with different input
problems of CG. The recomputation time in the figure is
broken down, and it includes the time to detect from which
iteration CG is resumable (labeled as “Detecting where to
restart”) and the time to resume from the resumable iteration
to the crashed iteration (labeled as “Resuming computation
time” in the figure). The recomputation time is normalized
by the average execution time of individual iterations of the
main loop in CG. The number of iterations on the top of each
column is the number of iteration we lose because of the crash.

Figure 3 reveals that the recomputation cost becomes
smaller when we use a larger input problem size. When the
input problem size is small (Classes S and W), the recom-
paution time is relatively large. We lose all of the iterations
(15 iterations) when the crash happens. However, when the
input problem size is large (Classes B and C), we lose only 1
iteration and the recomputation time is very small. This result
is aligned with our performance characterization: in particular,
a larger input problem tends to lose smaller computation when
a crash happens.

We further compare runtime overhead between traditional
checkpoint, Intel PMEM library [15], and our approach. With
Class C as the input problem, recomputation with our approach
is limited to one iteration, already shown in Figure 3. Hence,
we make checkpoint at the end of each iteration of the

Fig. 4. Runtime performance (execution time) with various mechanisms and
our algorithm-based approach to enable crash consistence. Performance is
normalized by the performance of native execution without any checkpoint
or algorithm extension.

main loop in CG. This frequent checkpoint enables a fair
performance comparison, because checkpoint at the end of
each iteration results in the same recomputation cost as our
algorithm-based approach. For the PMEM library, we use its
transaction mechanism and enable transactional updates on
the three arrays (i.e., p, r, and z). Each iteration of the main
loop of CG is a transaction, which makes the recomputation
cost with PMEM also limited to one iteration. The transaction
mechanism in the PMEM library is based on undo log.
Figure 4 shows the results.

Figure 4 reveals that the traditional checkpoint based on
hard drive has very large overhead (60.4%), comparing with
the native execution), even if the hard drive is local. Assuming
that NVM has equivalent performance as DRAM, NVM-based
checkpoint leads to ignorable overhead (4.2%). However,
if NVM performance is not as good as DRAM, frequent
checkpoint causes large overhead (43.6%). Our further study
reveals that 51.9% of the overhead comes from data copying
and 48.1% comes from cache flushing (including DRAM
cache flushing). The PMEM library also causes large overhead
(329%), because of frequent and expensive data logging. Our
approach, on the other hand, has ignorable runtime overhead
(less than 3%, no matter whether on NVM-only or NVM/-
DRAM system) because our approach does not come with
any extra data copying and only flushes one single cache line
per iteration.

Conclusions. Our evaluation results demonstrate that CG
with our algorithm extension achieves superior runtime perfor-
mance with close to zero runtime overhead. Furthermore, when
the input problem size is large enough, the recomputation cost
is limited to only one iteration. Our approach performs better
than the traditional checkpoint or PMEM library for NVM.

C. Algorithm-Directed Crash Consistence for Matrix Multi-
plication

Matrix multiplication (C = A × B) is a very common
numerical computation. Matrix multiplication (MM) has been
extended to handle fail-continue errors which have the failed
process to continue working when errors occur. To detect and
correct fail-continue errors, MM is extended to add checksum
within matrices A, B, and C. Such method is based on
numerical algorithm (called algorithm-based fault tolerance
or ABFT) has shown success within 5% performance loss
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1 for s = 1; s ≤ n+ 1 ; s← s+ k
2 Verify the checksum relationship of Cf

3 Cf ← Cf +Ac(1 : n+ 1, s : s+ k − 1)×
Br(s : s+ k − 1, 1 : n+ 1)

4 end for
Fig. 5. A practical implementation of ABFT for matrix multiplication.

while detecting and correcting certain number of errors in the
matrices.

How MM is extended to add checksums in the existing
method [19] is as follows. The input matrices A and B
are encoded into a new form with checksums, shown in
Equations 3 and 4. Equation 3 defines a column checksum
matrix of A (assuming the size of A is m × k), denoted by
Ac, where the vector v is a checksum vector. v is typical set
with all elements as 1. With v, the last row of Ac (am+1,j ,
1 ≤ j ≤ k) is also shown in Equation 3. Equation 4 defines
a row checksum matrix of matrix B (assuming the size of
B is k × n), where the vector w is a checksum vector. w is
typically set with all elements as 1. With w, the last column
of Br (bj,n+1, 1 ≤ j ≤ k) is also shown in Equation 4.

Ac =

(
A
vTc A

)
, am+1,j =

m∑
i=1

ai,j (3)

Br =
(
B Bvr

)
, bj,n+1 =

n∑
j=1

bi,j (4)

With the encoded A and B, instead of computing C = A×
B, we compute their checksum versions, shown in Equation 5.
Cf is the result matrix with checksums. In particular, in Cf ,
the summations of each row of C are stored in the extra
column of Cf , and the summation of each column of C are
stored in the extra row of Cf , shown in Equation 6. If one
element of C is corrupted, using the checksum relationship
shown in Equation 6, we can detect and correct errors.

Cf = Ac ×Br =

(
AB ABvr
vTc AB vTc ABvr

)
(5)

cm+1,j =

m∑
i=1

ci,j , ci,n+1 =

n∑
j=1

ci,j (6)

The above ABFT is commonly implemented based on
Figure 5. This implementation detects errors at every iteration
of the loop (Line 2 in Figure 5) and makes better use of
cache system based on a rank k update (Line 1 in Figure 5) 1.
Within each iteration of the loop, this implementation does a
submatrix multiplication and accumulates the result into Cf .
Our following discussion is based on this implementation.

Algorithm extension. We leverage the checksum informa-
tion to detect crash consistence and correct inconsistent data in
the output matrix C in NVM. To do so, a naive idea is to flush
checksums at the end of each iteration of the loop in Figure 5.
Then, when a crash happens, we check checksums to detect

1For brevity, we assume A and B are n by n square matrix, and (n+ 1)
is divisible by k.

the validness of matrix rows and columns in C. However, the
above idea does not work for the following two reasons.

First, we cannot detect consistence in the middle of an
iteration based on the checksums. Checksums are only useful
to detect consistence at the beginning of each iteration. In the
middle of each iteration, the checksum row and column in
C may be partially updated by computation, and Equation 6
is not held. Second, the matrix Cf is completely overwritten
in each iteration, hence restart will be difficult. Even if we
find inconsistence in Cf (i.e., some elements of Cf come
from the iteration i while other elements come from the
iteration j (j 6= i)), we do not have a consistent copy of
Cf (i.e., all elements of Cf come from the same iteration) to
restart. Checksums may be able to correct some of inconsistent
elements based on Equation 6 at the beginning of the iteration,
but such checksums can only correct limited number of
inconsistent elements.

To address the above problems, we extend the above naive
idea and introduce a new algorithm shown in Figure 6. The
new algorithm decomposes the loop in the original ABFT into
two loops. One loop performs the submatrix multiplication,
and the other loop performs the addition of the submatrix
multiplication results.

In the first loop, the submatrices are still the same as
those in the original ABFT with embedded checksums. But
different from the original ABFT, the first loop saves sub-
matrix multiplication results into temporal matrices Ctemp

s

(s = 1, ..., (n + 1)/k) with row and column checksums, and
flushes those checksums to make sure they are consistent (Line
5 in Figure 6). If a crash happens in the first loop, then using
those checksums we can detect which temporal matrix (Ctemp

s )
is inconsistent in NVM. Any inconsistent and uncorrectable
temporal matrix by checksums will be recomputed.

In the second loop, we perform the addition (matrix addi-
tion) of Ctemp

s (s = 1, ..., (n+1)/k), and save the result with
row checksum embedded in a temporal matrix Ctemp. Note
that we perform matrix addition rows by rows. Hence the row
checksums, once established and consistent in NVM (Line 13
in Figure 6), will not be overwritten. If the crash happens in
the second loop, then the row checksums in Ctemp can decide
which rows are not consistent and should be recalculated.

The new algorithm solves the two problems in the original
algorithm, because checksums in the result matrices (Ctemp

s

and Ctemp), once established and consistent in NVM, are not
overwritten, hence can be used reliably to detect inconsistence
of matrix data at any moment. Furthermore, a set of temporal
matrices enable easy recomputation and easy detection of
inconsistence.

The downside of the above algorithm extension is that we
increase memory consumption. But with the deployment of
NVM with much higher capacity than DRAM, we expect this
problem is alleviated. Also, the memory consumption relines
on a choice of k. A Smaller k results in larger number of
temporal matrices (more memory consumption) and smaller
recomputation cost. We can manage memory consumption by
selecting a good k and exploiting the tradeoff between memory
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1 //submatrix multiplication Ctemp
s (.) = Ac(.)×Br(.)

2 for s = 1; s ≤ (n+ 1)/k ; s← s+ 1
3 Ctemp

s ← Ac(1 : n+ 1, (s− 1)× k + 1 : s× k) ×
4 Br((s− 1)× k + 1 : s× k, 1 : n+ 1)
5 flush row and column checksums in Ctemp

s

6 end for
7
8 //submatrix addition
9 for i = 1; i ≤ n+ 1 ; i← i+ k

10 Ctemp(i : (i+ k − 1), 1 : n+ 1)←
11 Ctemp(i : (i+ k − 1), 1 : n+ 1) +
12

∑n/k
s=1 C

temp
s (i : (i+ k − 1), 1 : n+ 1)

13 flush k rows of row checksums in Ctemp

(particularly, Ctemp(i : (i+ k − 1), n+ 1))
14 end for
15 Cf ← Cf + Ctemp

Fig. 6. A new version of ABFT for MM to facilitate the detection and
correction of crash consistence in NVM.

consumption and recomputation cost.
The above algorithm extension also increases the working

set size which could cause extra cache misses and lose
performance. However, we do not see big performance loss (no
bigger than 8.2%) in our evaluation. The reason is as follows.
Given a large matrix size n × n, the matrix multiplication
based on the submatrix multiplication in the original code
causes similar cache misses as the new algorithm, because
both of the original code and the new algorithm fetch different
submatrices for multiplication and save the results in either Cf

or Cs. Those submatrices multiplications, which dominates
the computation time, have “streaming-like” memory access
patterns — we need to fetch submatrices one by one for
multiplication. Such memory access patterns cause similar
cache misses in the original code and the new algorithm.
Furthermore, the regular memory access patterns in matrix
multiplication allows prefetching to take effect and further
alleviate the effects of cache misses.

Performance evaluation. We evaluate the performance of
our approach from the perspective of recomputation cost and
runtime performance.

Figure 7 shows the recomputation cost on the heterogeneous
NVM/DRAM system. We use four different input matrix sizes.
For each matrix size, we do two crash tests. One crash test
triggers a crash at the end of the 4th iteration of the first loop
in Figure 6. The second crash test triggers a crash at the end of
the 4th iteration of the second loop in Figure 6. Hence, within
Figure 7, we have two columns representing the recomputation
cost for the two crash tests for each matrix size.

The recomputation time for the first crash test is normalized
by the average execution time of one iteration (i.e., submatrix
multiplication) of the first loop in Figure 6. The recomputation
time for the second crash test is normalized by the average
execution time of one iteration (i.e., submatrix addition) of
the second loop in Figure 6. Such normalization can quantify
how many submatrix multiplications or additions are lost when
a crash happens. Similar to the recomputation result for CG,
Figure 7 breaks down the recomputation cost into “detecting
where to restart” and “resuming computation time”.

Figure 7 shows that using different matrix sizes as input

Fig. 7. Recomputation cost (execution time) for ABFT-based matrix multi-
plication for two crash tests happened in the first and second loops. The x
axis is the matrix size. Rank k = 400 in all tests. The recomputation cost is
normalized by the average execution time of one iteration in the first loop or
the second loop in Figure 6.

we lose different numbers of submatrix multiplication in the
first crash test. With n = 2000 as input, we lose about
two submatrix multiplications, but with larger inputs, we lose
only one submatrix multiplication. Using a larger input, our
algorithm-based approach limits the recomputation to at most
one submatrix multiplication because the submatrices are large
and eliminate computation results from other iterations out
of caches. For the second crash test, we always lose one
submatrix addition, even if we use a relatively small matrix
(i.e., n = 2000). The reason is that each iteration of the second
loop has larger memory footprint than that of the first loop,
which eliminates the results of submatrix addition from other
iterations out of caches.

Note that during our crash tests, our algorithm-based ap-
proach cannot correct those inconsistent data in Ctemp

s and
Ctemp, because there are too much inconsistent data in the
same row or column, which are not correctable by the
checksums. Hence we claim in the above discussion that the
submatrix multiplication or addition is lost. However, for some
cases, it is possible that our algorithm-based approach can
directly correct those inconsistence data based on checksums.
In those cases, the submatrix multiplication or addition is not
lost, and the recomputation cost is even smaller.

We further study runtime performance. Similar to CG,
we compare runtime performance with traditional checkpoint,
Intel PMEM library [15], and our approach. We use the
matrix size as n = 8000. Given such large matrix size,
the recomputation cost with our approach is limited to a
submatrix multiplication or a submatrix addition. Hence, we
perform the traditional checkpoint at the end of each sub-
matrix multiplication, such that the recomputation cost for
the traditional checkpoint is a submatrix multiplication. For
the PMEM library, each submatrix multiplication (the first
loop of Figure 6) is a transaction and we enable transaction
update on the submatrix multiplication result, which makes the
recomputation cost also limited to a submatrix multiplication.
Figure 8 shows the runtime performance.

The figure reveals that our algorithm-based approach has
the smallest runtime overhead among all cases (no bigger than
8.2% in all cases, depending on the rank size). Also, a larger
rank size results in a smaller runtime overhead, because the
algorithm does not need to frequently flush checksum cache
blocks. With a large rank size (e.g., rank = 1000), the runtime

7



(a) rank = 200 (b) rank = 400 (c) rank = 1000
Fig. 8. Runtime performance (execution time) with various checkpoint mechanisms and our algorithm extension for ABFT-based matrix multiplication. The
matrix size is n = 8000. Performance is normalized to the native execution with neither checkpoint nor our algorithm extension.

overhead is only 1.3%.
The runtime overhead of our algorithm-based approach is

much smaller than the NVM-based checkpoint. For example,
when rank = 200, NVM-based checkpoint has at least 21.8%
overhead, while our approach has only 8.2%. This is due to
the fact that our approach selectively flushes cache blocks of
the checksums, instead of copying all data blocks of critical
data objects.

Conclusions. Treating inconsistent data as data corrup-
tion and using algorithm-based fault tolerance to detect and
correct data inconsistence in NVM save expensive runtime
overhead to establish crash consistence. Selectively flushing
cache blocks to maintain crash consistence of checksums is
the key. Given a large matrix size, our approach can effectively
limit the recomputation cost to one submatrix multiplication
or addition.

D. Algorithm-Directed Crash Consistence for Monte Carlo
Transport Simulation

Monte Carlo method (MC) has been applied to a broad
range of scientific simulations, such as nuclear reactor physics
and medical dosimetry. In essence, MC employs repeated
random sampling to obtain numerical results and solve prob-
lems that are deterministic in principle. Given MC simplicity,
MC provides significant advantages compared to deterministic
methods. Leveraging MC’s random nature, we explore how to
use MC algorithm knowledge to build crash consistence in
NVM without losing scientific simulation accuracy.

We focus on a specific MC benchmark, XSBench. This
benchmark models the calculation of macroscopic neutron
“cross sections” [42] within a nuclear reactor, which is the
most computationally intensive part of a typical MC transport
algorithm [43]. Listing 9 shows the major computation of
XSBench.

XSBench has two large, read-only data arrays, which are a
nuclide grid and an energy grid. The two arrays account for
most of the memory footprint of XSBench. XSBench has a
main computation loop, and each iteration of the loop performs
a lookup of some data (particularly “cross section” data) from
the nuclide grid with the assist of searching the energy grid.
The lookup result of each iteration accumulates to an array
(particularly, macro xs vector) with five elements (Line 7
in Figure 9). Each element of the array macro xs vector is
the value of a macroscopic cross section. Those five values

correspond to five different particle interaction types in the
nuclear reactor. In each iteration, the lookup happens based
on two randomly chosen inputs (particularly, neutron energy
and material, shown in Line 2 in Figure 9).

XSBench is only a benchmark for performance study,
hence its result (particularly macro xs vector) does not have
sufficient physical meaning. From one run to another, the result
can be different due to the random nature of the benchmark.
It is difficult to know if the benchmark result remains correct
for our crash consistence evaluation. Based on the domain
knowledge, we slightly extend the benchmark such that the
benchmark result has physical meaning. In particular, at the
end of each iteration, we apply a cumulative distribution
function (CDF) to the five elements of macro xs vector,
and then normalize the CDF result by the largest element.
Then we generate a uniformly distributed random number x
( 0 < x < 1). This random number represents a computation
result in a full-featured simulation of the nuclear reactor. Based
on the random number, we find which interaction type (i.e.,
which element of macro xs vector) should be chosen based
on the normalized CDF result.

For example, suppose macro xs vector = {0.9, 0.1, 0.3,
0.6, 0.05} in one iteration. We create a CDF of this
macro xs vector, which is {0.9, 1.0, 1.3, 1.9, 1.95}. Then
we normalize the CDF result by the largest element of
macro xs vecotr (i.e., 1.95). The normalization result is
{0.462, 0.513, 0.667, 0.974, 1.0}. Then, we choose a random
number, for example, 0.65. According to the normalization
result, 0.65 falls between the second (0.513) and third elements
(0.667), which means the second interaction type is chosen.

We perform the above process for each iteration of the
XSBench loop, and introduce five counters to count how
many times each interaction type is chosen for all iterations.
Given the sufficient number of lookups (i.e., iterations of the
main computation loop), the number of times an interaction
type is chosen is roughly the same for all interaction types.
This method gives us a deterministic and meaningful way to
quantify the validness of the benchmark result.

Algorithm extension. Because of the random nature of
XSBench, we expect that directly restarting from remaining
data in NVM after a crash does not result in incorrect results,
assuming that macro xs vector and the two arrays (nuclide
grid and energy grid) in NVM are accessible after the crash.
In particular, at every iteration, we flush the cache block
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1 for (i = 0; i < total number of lookups; i++)
2 Generates two randomly sampled inputs

(neutron energy and material);
3 Binary search on the energy grid;
4 for each nuclide in the input material
5 Look up two bounding nuclide grid points

from the nuclide grid;
6 Interpolate the two points to give microscopic

cross sections;
7 Microscopic cross sections accumulate into

macroscopic cross section (i.e., macro xs vector);
8 end for
9 end for

Fig. 9. Pseudo code for XSBench.

containing the loop index variable i, such that we can know
which iteration the crash happens. After the crash happens, we
restart from the beginning of the iteration i. Except flushing the
single cache block, we do not use any mechanism to establish
data consistence and validness in NVM during the execution.

Using the above approach, we may lose the binary search
result (Line 3 in Figure 9), the lookup result in the nuclide
grid (Line 5 in Figure 9), the interpolate result (Line 6 in
Figure 9), and the accumulation result (Line 7 in Figure 9).
However, we expect the impact of those results losses is
limited, because the binary search and the lookup in the
nuclide grid need to load the energy grid and the nuclide
grid into caches. Those two grids are two large arrays, and
Loading them can evict the results of most of the previous
iterations out of caches, and implicitly enable data consistence.
We may only lose the results of a few iterations, and those
results will not be accumulated into macro xs vector (Line 7
in Figure 9). However, losing a few iterations of the results
may not impact the accuracy of counting the number of times
each interaction type is chosen, because XSBench uses a
sampling-based approach and takes a number of samples (i.e.,
the number of lookups shown in Line 1). As the number of
samples is large, losing a few samples is not expected to
impact the counting accuracy.

To verify the above basic idea, we run XSBench with an
input problem of 34 fuel nuclides in a Hoogenboom-Martin
reactor model. With such input problem, the energy grid and
nuclide grid take about 246MB memory. There are 1.5× 107

lookups in the main computation loop. We use our crash
simulator to run the benchmark and trigger a crash when the
benchmark is in the 1.5× 106th lookup (10% of all lookups).

Figure 10 shows how many times each interaction type
is counted for two tests. In one test, we do not have crash
(labeled as “No crash”); in the other test, we have the crash
but immediately restart based on the above basic idea (labeled
as “Crash and restart based on the basic idea”). The numbers
of times counted for the five interaction types are normalized
by the total number of lookups and shown as percentage in the
y axis. These two tests use the same randomly sampled inputs
(Line 2 in Figure 9) for each lookup, such that we enable a
fair comparison of the XSBench results of the two tests.

From Figure 10, we notice that the five interaction types
in the case of no crash have almost the same counting result.
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No crash Crash and restart based on
the basic idea

Fig. 10. Comparing XSBench results of two cases (one case without crash
and the other case with crash and restart based on the basic idea).

1 for (i = 0; i < total number of lookups; i++)
2 Generates two randomly sampled inputs

(neutron energy and material);
3 Binary search on the energy grid;
4 for each nuclide in the input material
5 Look up two bounding nuclide grid points

from the nuclide grid;
6 Interpolate the two points to give microscopic

cross sections;
7 Microscopic cross sections accumulate into

macroscopic cross section (i.e., macro xs vector);
8 if (every 0.01% of total number of lookups)
9 flushing macro xs vector, the five counters and i;

10 end for
11 end for
Fig. 11. Selectively flush cache blocks for XSBench based on the algorithm
knowledge. Our extension to XSBench is highlighted in red.

However, the case with crash and restart based on the basic
idea has obviously different counting results for the five
interaction types. For example, there is 8% difference in the
counting result between the interaction types 1 and 2.

To investigate the reason why there is such result difference
between the two cases, we examine the five counters in NVM
at the crash trigger point, and compare the values of those
counters in the two cases. We found that the values of the
five counters in the two cases are very different. For the crash
case, the counting results from a number of iterations before
the crash trigger point are still in caches. They are not evicted
out of caches as expected. For the crash case, the counting
results are not consistent between caches and NVM.

Further investigation reveals that although the two grids are
two large arrays, binary search on the energy grid (Line 3 in
Figure 9) and lookup operation in the nuclide grid (Line 5
in Figure 9) do not necessarily access the whole grids, and
hence the five counters and macro xs vector are not evicted
out of caches in many iterations as expected. Also, the five
counters and macro xs vector are frequently updated from one
iteration to another. Such frequent updates keep those variables
in caches and make them inconsistent between caches and
NVM. Hence, when a crash happens, we lose the results of
many iterations.

To address the above data inconsistence problem, we can
flush the five counters and macro xs vector whenever there is
any update happened to them at every iteration. However, such
frequent cache flushing causes 16% performance loss. Hence,
we flush caches lines every n iterations (n = 0.01% of total
number of lookups), shown in Figure 11.

How often we should flush cache blocks is a challenging
problem. For XSBench, if the sizes of the two grids are big
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Fig. 12. Comparing XSBench results of two cases (one case without crash and
the other case with crash and restart based on selectively cache line flushing).

Fig. 13. Runtime performance (execution time) with various checkpoint
mechanisms and our algorithm-based approach.

and a large portion of the two grids are touched at each
iteration, then the five counters and macro xs vector can be
evicted out of caches automatically and frequently, and we do
not have to frequently flush cache blocks. However, due to
the randomness of sampled inputs (i.e., neutron energy and
material at Line 2 in Figure 11), it is difficult to quantify
the memory footprint size of each iteration. We empirically
determine the frequency as every 0.01% of total number of
lookups in our tests. Such frequency of cache flushing has
ignorable performance overhead shown in Figure 13. Also,
using such frequency for flushing cache blocks, we bound the
result loss when a crash happens by 0.01% of total number of
iterations, which is small.

Performance evaluation. We first compare the result cor-
rectness between our approach and no-crash case. We trigger
the crash at the same point as the one in Figure 10, i.e., the
1.5×106th lookup (10% of all lookups). Figure 12 shows the
result. With our approach, the number of times an interaction
type is chosen is almost the same for all interaction types,
which is the same result as the one with no crash.

We further compare the performance of the seven cases. For
those cases with checkpoint, we checkpoint macro xs vector
and five counters at every 0.01% of total number of iterations.
This checkpoint frequency is the same as that in our algo-
rithm. Figure 13 shows the results. Our selective cache block
flushing (labeled as “algorithm-based approach”) has ignorable
overhead (at most 0.05%). NVM-based checkpoint based on
the NVM-only system also has ignorable overhead. However,
when we use the NVM/DRAM system, checkpoint overhead
is as large as 13%, much larger than our runtime overhead.

Conclusions. To ensure result correctness, MC simulation
must flush a few cache blocks to enable crash consistence.
Different from CG which has large data objects frequently
evicting critical data objects out of caches, XSBench with large
data objects may have small memory footprint at each iteration
and cannot evict critical data objects. This is due to the random
nature of MC simulation.

IV. RELATED WORK

Crash consistence in NVM. Leveraging persistent ex-
tensions from ISA (e.g., CLFLUSH), some work introduces
certain program constructs to enable crash consistence in
NVM. Mnemosyne [14], Intel NVM library [15], [44], NV-
heaps [13], and REWIND [45] provide transaction systems
optimized for NVM. NVL-C [46] introduces flexible directives
and runtime checks that guard against failures that corrupt
data consistence. SCMFS [47] provides a PM-optimized file
system based on the persistent extensions from ISA. Atlas [48]
uses those extensions for lock-based code. To use the existing
efforts for HPC applications, we may have to make extensive
changes to applications or operating systems. The application
can suffer from large runtime overhead because of frequent
runtime checking or data logging. Our evaluation with the Intel
NVM library shows such large overhead.

Some work introduces persistent cache, such that stores
become durable as they execute [49], [50], [51]. Those existing
efforts eliminate the necessity of any cache flushing operation,
by not caching NVM accesses, or by ensuring that a batter
backup is available to flush the contents of caches to NVM
upon power failure. However, those existing efforts need
extensive hardware modification. It is not clear if integrating
NVM into processors has any manufacturing challenges.

Some work divides program execution into epochs. In the
epoch, stores may persistent concurrently by flushing cache
lines or bypassing caches. Pelley et al. [52] introduce a couple
of variation of epoch, and demonstrate potential performance
improvement because of a relaxation of inter-thread persist
dependencies. Joshi et al. [53] propose a buffered epoch
persistency by defining efficient persist barriers. Delegated
ordering [54] decouples cache management from the path
persistent writes take to memory to allow concurrent writes
within the same epoch to improve performance. Those existing
efforts can be complementary to our work to improve the per-
formance of cache flushing (especially for algorithm-directed
crash consistence based on ABFT for matrix multiplication).

Algorithm-based program optimization. Leveraging algo-
rithm knowledge is an effective approach to improve perfor-
mance [21], [22], [23], application fault tolerance [16], [17],
[18], [19], [20], and energy efficiency [24], [25]. Different
from the existing efforts, this paper uses algorithm knowledge
to achieve crash consistence in NVM. This is a fundamentally
new approach to explore the usage of algorithm knowledge.

V. CONCLUSIONS

Leveraging the emerging NVM to establish crash con-
sistence is a promising while challenging approach to en-
able resilient HPC. HPC has high requirement for perfor-
mance. We must minimize runtime overhead when building
crash consistence. This paper introduces a fundamentally new
methodology to do so. Based on the algorithm knowledge
and comprehensive performance evaluation, we show that
we can significantly reduce runtime overhead while enabling
detectable crash consistence for future NVM-based HPC.
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