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Abstract—Increasing resource demands require relational
databases to scale. While relational databases are well suited
for vertical scaling, specialized hardware can be expensive.
Conversely, emerging NewSQL and NoSQL data stores are
designed to scale horizontally. NewSQL databases provide ACID
transaction support; however, joins are limited to the partition
keys, resulting in restricted query expressiveness. On the other
hand, NoSQL databases are designed to scale out linearly on
commodity hardware; however, they are limited by slow join
performance. Hence, we consider if the NoSQL join performance
can be improved while ensuring ACID semantics and without
drastically sacrificing write performance, disk utilization and
query expressiveness.

This paper presents the Synergy system that leverages schema
and workload driven mechanism to identify materialized views
and a specialized concurrency control system on top of a NoSQL
database to enable scalable data management with familiar
relational conventions. Synergy trades slight write performance
degradation and increased disk utilization for faster join perfor-
mance (compared to standard NoSQL databases) and improved
query expressiveness (compared to NewSQL databases). Exper-
imental results using the TPC-W benchmark show that, for
a database populated with 1M customers, the Synergy system
exhibits a maximum performance improvement of 80.5% as
compared to other evaluated systems.

Index Terms—Transaction processing, materialized views,
NoSQL databases, performance evaluation

I. INTRODUCTION

Application development with relational databases as the
storage backend is prevalent, because relational databases
provide: a formal framework for schema design, a structured
query language (i.e., SQL) and ACID transactions. As appli-
cations gain popularity and the database system reaches its
resource limits, the architecture must scale up to ensure end-
to-end response time (RT). Relational databases are well suited
for vertical scaling; however, vertical scaling has known limi-
tations and requires expensive hardware. On the contrary, the
new brand of NewSQL and NoSQL databases are known for
their ability to scale out linearly [1], [2], [3]. Hence, as the data
size and the resource demands increase, application designers
can consider transitioning from their relational database to a
NewSQL/NoSQL database. Recently Facebook [4] and Netflix
[5] transformed part of their relational databases to HBase [6].

A short version of this paper appeared in IEEE Cluster Conference 2017.
Available Online: http://ieeexplore.ieee.org/document/8048951/

NewSQL architectures enable a database to scale out lin-
early while providing ACID transaction guarantees. How-
ever, their schema design requires careful consideration when
choosing partition keys, since joins are restricted to parti-
tion keys only [7], resulting in limited query expressiveness.
Similarly, NoSQL databases can also scale out linearly, but
are limited by slow join performance due to the distribution
of data across the cluster and data transfer latency, which
has also been identified in previous work [8]. Thus, while
NewSQL and NoSQL systems allow data stores to scale, their
designs sacrifice query expressiveness and join performance,
respectively. More generally, there exists a design space that
makes trade-offs between performance, ACID guarantees,
query expressiveness and disk utilization.

This paper considers if NoSQL join performance can be
improved while ensuring ACID semantics and without drasti-
cally sacrificing write performance, disk utilization and query
expressiveness. One option for improving the performance of
NoSQL workloads is materialized views (MVs), which pre-
compute expensive joins [9], [10]. However, deploying MVs
on top of a NoSQL store does not guarantee consistency as
atomic key based operations allow for the MV’s data to be
stale relative to the base table [6], [11], [12]. Hence, additional
concurrency controls such as locking or multi-versioning are
required to ensure data consistency.

Standard concurrency control methods, such as locking or
multi-versioning, can provide ACID semantics for NoSQL
stores with materialized views, but induce performance degra-
dation (i.e., by grabbing many locks or checking multiple
versions, respectively) because the concurrency control mech-
anism and MVs selection mechanism are not designed in
tandem. Instead, this paper considers a synergistic design
space in which the concurrency control mechanism and MV’s
selection mechanism operate together such that only a single
lock is grabbed per transaction. The proposed system relies on
the hierarchical structure of relational data and the workload
to inform the views selection mechanism, which can then be
leveraged to grab a single lock for MVs and base tables.

In this work, we present the Synergy system that leverages
MVs and a light-weight concurrency control on top of a
NoSQL database to provide for scalable data management
with familiar relational conventions and more robust query
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Fig. 1. Design choices and decisions in the Synergy System.
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Fig. 2. Relations in the Company schema.

expressiveness. Figure 1 presents the design decisions for
MVs selection and concurrency control mechanisms in the
Synergy system. Synergy harnesses databases’ hierarchical
schemas to generate candidate MVs, and then uses a workload
driven selection mechanism to select views for materialization.
To provide ACID semantics in the presence of views, the
system implements concurrency controls on top of the NoSQL
database using a hierarchical locking mechanism that only
requires a single lock to be held per transaction. The Synergy
system provides ACID semantics with the read-committed
transaction isolation level. Our contributions in this work are
as follows:

• We present the design of Synergy system that trades slight
write performance degradation and increased disk utiliza-
tion for faster join performance (compared to standard
NoSQL databases) and improved query expressiveness
(compared to NewSQL databases).

• We propose a novel schema based–workload driven ma-
terialized views selection mechanism.

• We implement and evaluate the proposed system on an
Amazon EC2 cluster using the TPC-W benchmark.

• We compare and contrast the performance of Synergy
system with four complementary systems.

II. BACKGROUND

We first review the concepts of a relation, index and
schema which are common to both SQL and NoSQL data
models. Then, we present a model for the database workload.
Finally, we provide an overview of the data store used and its
associated SQL skin.

A. Relation, Index and Schema Models

Relation– A relation R is modeled as a set of attributes. The
primary key of R denoted as PK(R), is a tuple of attributes
that uniquely identify each record in R. The foreign key of R
denoted as FK(R), is a set of attributes that reference another
relation T. A relation can have multiple foreign keys, hence
let F(R) denotes the set of foreign keys of R.

Index– In this work we utilize covered indexes that store
the required data in the index itself. An index X on a relation R
denoted as X(R), is modeled as a set of attributes (s.t. X(R) ⊂
R). Let Xtuple(R) denotes a tuple of attributes that the index is
indexed upon (s.t. Xtuple(R) ⊂ X(R)). The key of an index is a
union of attributes in tuples Xtuple(R) and PK(R), in that order.
Since a relation can have multiple indexes, let I(R) denotes the
set of indexes on R.

Schema– Using the previous definitions of a relation and
an index, a database schema S is modeled as a set of relations
and the corresponding index sets, S = {R1, I(R1), R2, I(R2),...,
Rn, I(Rn)}, where n represents the number of relations in the
schema. We use an example Company database for the purpose
of exposition. Figure 2 depicts the relations in the Company
database schema.

B. Modeling Workload

A database workload W = {w1,..., wm} is modeled as a set
of SQL statements, where m is the number of statements.

C. HBase Overview

We use HBase [6] for the purpose of exposition and
experimentation in this work. It is a column family-oriented
distributed database modeled after Google’s Bigtable [11].
HBase organizes data into tables. A table consists of rows
that are sorted alphabetically by the row key. HBase groups
columns in a table into column families such that each column
family data are stored in its own file. A column is identified by
a column qualifier. Also, a column can have multiple versions
of a data sorted by the timestamp.

The HBase data manipulation API comprises of five primi-
tive operations: Get, Put, Scan, Delete and Increment. The Get,
Put, Delete and Increment operations operate on a single row
specified by the row key. HBase provides ACID transaction
semantics with read-committed isolation level.
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D. Phoenix Overview

Apache Phoenix [13] is a SQL skin on top of HBase.
The client embedded JDBC driver in Phoenix transforms the
SQL query into a series of HBase scans and coordinates
the execution of scans to generate a standard JDBC result
set. The default transaction semantics in Phoenix with base
tables only is same as HBase; however, recent integration with
Tephra [14] enables multi-statement transactions in Phoenix
through MVCC. Note, the MVCC transaction support in
Phoenix can be turned on/off by starting/stopping Phoenix-
Tephra transaction server. Next, we describe the mechanism
to perform a baseline transformation from a relational to a
NoSQL database.

Baseline Schema Transformation – A relation R becomes
a relation R′ in NoSQL schema with the same set of attributes
as R. The row key of R′ is a delimited concatenation of the
value of attributes in PK(R). Similarly, an index X(R) on a
relation R becomes a relation X(R′) in NoSQL schema with
the same set of attributes as X(R). The row key of X(R′) is a
delimited concatenation of the value of attributes in the key of
X(R). Note that in NoSQL, both for a relation and an index,
we assign all attributes to a single column family.

Baseline Workload Transformation – Each read state-
ment from the relational workload is added to the NoSQL
workload. Each write statement for a relation R that specifies
each key attribute in the WHERE clause is added to the
NoSQL workload.

III. CHALLENGES AND DESIGN CHOICES

Joins are expensive in a NoSQL database due to the
distribution of data items across different cluster nodes. It is
well understood that MVs improve join performance by pre-
computing and storing results in the database [9], [10], [15].
This observation is verified with TPC-W micro-benchmark
which shows that scanning a MV is significantly faster than the
join performance (see Section IX-B for experiment details).
Thus, we consider how to incorporate MVs into a NoSQL
store, while ensuring consistency.

1) Implication of Materialized Views: NoSQL databases are
generally limited to key-based single row operations [6], [11],
[12]. Hence, to ensure the ACID semantics in the presence of
MVs, view maintenance and concurrency controls are required
to ensure consistency between the MVs and base tables.
The design choices for concurrency control mechanisms in-
clude multi-versioning, locking and timestamp ordering. While
multi-versioning may seem like a nature fit given HBase and
other NoSQL system’s temporal key component (i.e., cell
values are composed of a row-key, column family, column
and time stamp) [11], [12], experimental results show that
getting and checking additional rows’ timestamps decreases
performance. Therefore, this result motivates a lock-based
concurrency control mechanism to attain the read committed
isolation level.

2) Lock Number and Granularity: Row level locks and
database locks represent the two ends of the locking mech-
anism spectrum. Database locks degrade system throughput

since only a single transaction can access the database at a
time. Similarly, acquiring row level locks on individual base
tables can be expensive in the presence of MVs in a NoSQL
database, since the system may need to acquire a large number
of locks for complex queries. Experimental results show that
for a modest number of 100 locks, the time to acquire and
release locks is 1.3x the response time of the most expensive
write transaction in the proposed system (see Section IX-C
and Section IX-D4). This observation motivates minimizing
the number of locks required per transaction.

3) View Selection Challenges: The types of MVs that
are allowed impact the data store performance in varying
ways. Purely workload based MVs selection mechanisms [16]
(schema relationships are oblivious) can result in optimal read
performance by allowing for the materialization of a maximum
number of joins in the workload (i.e., views constructed with
many-to-many joins or non-foreign key joins). While this
approach is well suited for OLAP workloads, it can degrade
write performance and increase disk utilization and transaction
management costs for the OLTP workloads, especially in a
distributed database. In contrast a schema aware–workload
driven MVs selection mechanism limits the type of views
allowed, resulting in sub-optimal read performance. However,
this approach prevents high storage costs and shifts of the
bottleneck from read to the write performance. Given the
design goal to hold a single lock per transaction across base
tables and MVs, this observation motivates us to not allow
views with many-to-many joins or joins that do not have key
relationships.

A. Design Decisions

For the Synergy system, we make the following design
decisions based off of our analysis of the TPC-W benchmark,
which contains many key/foreign-key equi-joins. First, we
develop a concurrency control mechanism that leverages the
schema’s relational hierarchy, grabs one lock per transaction
and provides the read committed isolation level. Second, in
cooperation with our concurrency control mechanism, the
system only materializes key/foreign-key equi-joins, does not
materialize joins across many-many relationships, and each
base relation may only be assigned to a single relational
hierarchy for materialization (so that a single lock must be
acquired per transaction). We believe the synergistic design
decisions between the concurrency control and view selection
mechanism provides for a novel architecture and substantially
differentiates this work from previous works on materialized
view selection.

IV. SYSTEM OVERVIEW

In this section we provide an overview of the Synergy
system, as depicted in Figure 3. The objective of our system
is to design a scalable and high performance NoSQL database
while ensuring the ACID semantics.

We first perform a baseline transformation of the input
relational database to a NoSQL database using the mechanism
described in Section II-D. Due to the slow join performance
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TABLE I. Qualitative comparison of NoSQL, NewSQL and Synergy systems.
Scalability Query Expressiveness Transaction Support Disk Utilization

NoSQL
(HBase) Linear scale out SQL ACID with Snapshot Transaction Isolation Higher than NewSQL

NewSQL
(VoltDB) Linear scale out SQL with joins limited to

partition keys ACID with Serializable Transaction Isolation Lowest

Synergy Linear scale out SQL with MVs limited to
Key/Foreign-Key joins

ACID with Read Committed
Transaction Isolation Highest

Baseline 

Transformation

INPUT :
Baseline NoSQL

Schema and 

Workload

Candidate Views 

Generation Mechanism

Candidate 

Views

OUTPUT :

Synergy Schema with views and view-indexes,

Synergy Workload using views

Views Selection Mechanism

View-Indexes 

Addition

Relational 

Schema and 

Workload

Views Selection

Query Re-writing

Fig. 3. Synergy system overview.

in the baseline transformed database system, we decide to use
MVs. We use the candidate views generation mechanism
to create a list of potential views to materialize based on the
database’s hierarchical structure. Next, we use a workload
driven view selection mechanism to select views from the
candidate set. Then, we re-write the workload using selected
views as needed. To ensure high read performance, we sup-
plement the schema with additional view-indexes. To ensure
ACID semantics in the presence of views, we implement
a concurrency control layer on top of HBase (as described
in Section VIII), which is able to grab a single lock per
transaction, while providing the read committed transaction
isolation level.

System Limitations – The Synergy system only material-
izes key/foreign-key equi-joins. In addition, Synergy system is
restricted to single SQL statement transactions. In agreement
with our design decision of single lock per transaction, write
statements that do not specify all key attributes and affect
multiple base table rows are not supported. The Synergy
system does not enforce foreign key constraints. The trans-
action isolation level in the Synergy system is limited to
read committed. In addition, the Synergy system can only be
used with NoSQL data stores that trade availability for strong
consistency in presence of network partition (CP model from
the CAP theorem [17]).

V. GENERATING CANDIDATE VIEWS

In this section we present a mechanism to create candidate
views for the materialization of equi joins in the workload.
We observe that the joins are slow in a NoSQL database (see
Section III). Hence, materializing the joins in the workload
as views can improve the query performance. We harness the
schema’s structure to identify the candidate views, in particular
the key/foreign-key relationships. We begin by presenting
formal definitions for schema relationships and views.

We assume that the input schema S is normalized and free
from both simple and transitive circular references, to limit
the scope of this work. We model the relationships in S as a

directed graph G=(H,E). The vertices in G represent the rela-
tions in S and edges encode the key/foreign-key relationship
between relations. An edge exists between relations Ri and
R j, if they are related as described by:

Definition 1 (Schema Relationships): The relationship be-
tween relations Ri and R j, denoted as Ri ← R j, exists iff
FKk(Ri) references PK(R j), where FKk(Ri) ∈ F(Ri)
Figure 4(a) depicts the schema graph corresponding to the
relations in the Company database schema in Figure 2. Next,
we define an edge and a path in the schema graph.

Definition 2 (Edge in Schema Graph): A directed edge ei
in a schema graph from a relation Ri to a relation R j is
represented as a (PK,FK) tuple where PK is the primary key
of Ri and FK is the foreign key of R j.

Definition 3 (Path in Schema Graph): A path between rela-
tions Ri and R j in a schema graph is modeled as an alternating
sequence of relations and directed edges between the relations,
[Ri,ei,...,e j−1,R j]. The alternating sequence begins and ends in
a relation.
Database schemas have a hierarchical structure; hence, we can
choose a set of relations in the schema graph as roots to create
rooted trees. Next, we define a rooted tree.

Definition 4 (Rooted Tree): A rooted tree T is a directed
graph composed of a subset of nodes and edges from the
schema graph in which there exists a root node, and unique
paths from the root node to each non-root node.
We use rooted trees to identify the candidate views. Next, we
define a candidate view.

Definition 5 (Candidate View): A candidate view V is a path
in a rooted tree. A view is stored physically as a relation. The
attributes of V is a set union of attributes of relations in V and
the key of V denoted as PK(V) is the key of the last relation
in the view. Also, a view-index has the same definition and
semantic as a table index.

A. Roots Selection

Each view has a single root. The set of roots Q for a schema
S is a subset of relations in S. Q can either be provided by
the database designer or it can be learned in an automated
manner. In this work, we assume that the database designer
provides Q. Note that the automated selection of roots is a
separate problem and can be addressed independently.

B. Candidate Views Generation Mechanism

The goals of the candidate views generation mechanism are
as follows:
• Assign each non-root relation in the schema graph

to at most one root. This enables us to hold a single
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Fig. 4. Input and output of the candidate views generation
mechanism for the Company database with roots set Qcompany
= {Address, Department}.

lock on the root relation’s row key while ensuring ACID
semantics.

• Select a single path between the root and each non-
root relation assigned to it. If there are multiple paths
between any pair of relations, then the relationship can
be one-many or many-many. However, recall that we
define many-many relationship as a join materialization
boundary. Therefore, to ensure a one-many relationship,
we should select a single path.

1) Mechanism Overview: In this section, we present the
overview of the mechanism to generate the candidate views.
We first transform the input schema graph into a directed
acyclic graph (DAG) to ensure at most one direct path
between any pair of relations in the graph. Thereafter, we
identify a topological ordering of the relations in the schema
DAG. Next, we use the topological order to iteratively examine
and assign each non-root relation to a root by selecting
a path from the root to the non-root relation. Following the
assignment of schema relations to roots, a rooted graph is
created for each root relation. Finally, we transform each
rooted graph into a rooted tree to ensure a single path
between the root and each non-root relation. The output of
the mechanism is a set of rooted trees and each unique path
in a rooted tree represents a candidate view.

2) Mechanism Description: In this section, we describe
the candidate views generation mechanism in detail using
our continuing example of the Company database. We use
Qcompany = {Address,Department} as the roots set. In addition,
we use a synthetic workload for the purpose of exposition with
WCompany = {w1,w2,w3},

W1: Get address details of an employee
SELECT * FROM Employee as e, Address as a
WHERE a.AID = e.EHome AID and e.EID = ?

W2: Get all the employees and their hours who work in a
department.

SELECT *
FROM Department as d, Employee as e, Works On as wo
WHERE d.DNo = e.E DNo and e.EID = wo.WO EID

and d.DNo = ?

W3: Get all the employees who work a certain number of
hours.

SELECT * FROM Employee as e, Works On as wo
WHERE e.EID = wo.WO EID and wo.Hours = ?

Heuristic– During the different steps of the mechanism, we
use a heuristic based approach to select a candidate from a
set. We choose the number of overlapping joins as a simple
workload aware heuristic to assign a weight to each candidate.
Note that other heuristics can be used seamlessly with the
mechanism.

Input: Schema graph G, workload W and the roots set Q.
Output: Set of rooted trees.
Steps:

1) Transform input graph to DAG: In the first step we
transform the input schema graph G into a DAG. We
achieve this by selecting and keeping at most one edge
between any pair of nodes in the schema graph.
We use our heuristic to assign a weight to each candidate
edge. Then, we select the edge with maximum weight
and remove the rest. For example, we remove the (AID,
EOffice AID) edge from the schema graph in Figure
4(a) to generate the schema DAG depicted in Figure
5(a).

2) Topologically order relations in the DAG: Next, we
identify a linear ordering of the relations in DAG such
that for every directed edge from relation Ri to R j, Ri
comes before R j in the ordering. Figure 5(b) represents
a topological ordering of the schema DAG presented in
Figure 5(a).

3) Assign relations to roots: Next, in the topological order,
we examine each non-root relation in the schema DAG
and decide upon its assignment to a root by executing
the following steps:

a) Identify paths: We identify paths in the DAG from
each root relation to the non-root relation.

b) Select a path: Next, we utilize our heuristic to
assign a weight to each path. Then, we iterate over
the paths in the sorted order by weight until we
find a path that includes a single root relation and
none of the relations on the path are assigned to a
root other than the root present in the path.

c) Add path: Then, we add the selected path to the
rooted graph created for the root in the path.

Figure 5(c) depicts the rooted graphs generated for the
Company database.

4) Transform rooted graphs to rooted trees: Next, we
transform the rooted graphs created in step 3 into rooted
trees. We first identify a topological ordering of the non-
root relations in the rooted graph. We repeat the next step
while we have relations left in the topological ordering.

a) Select a Path: Using the rooted graph we identify
paths between the root relation and the last relation
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Fig. 5. Intermediate results of the candidate views generation mechanism for the Company database with roots set Qcompany =
{Address, Department}.

in the topological ordering. Next, we assign a
weight to each path using our heuristic. Then, we
select the path with maximum weight and add it to
the rooted tree. Thereafter, we remove all non-root
relations in the path from the topological ordering
and continue.

Note that in step 3, we examine non-root relations of a schema
DAG in the forward topological order to give each non-root
relation a chance to be assigned to any root that has a path to
it. Conversely, in step 4, we examine non-root relations of a
rooted graph in the reverse topological order to keep the paths
that will allow materialization of maximum number of joins
in the workload. Following the candidate views generation
mechanism, a rooted tree is generated for each root in Q.
Figure 4(b) depicts the set of rooted trees generated for the
Company database.

3) Discussion: The proposed candidate views generation
mechanism is a heuristic based approach; hence, does not
guarantee materialization of optimal number of joins in the
workload. In addition, the usability of generated candidate
views for join materialization is dependent on roots selection.

VI. VIEWS SELECTION MECHANISM

In this section we describe our procedures for views se-
lection from the candidate set and re-writing queries using
selected views. Similar to [16], we use a workload driven
views selection mechanism. We also illustrate our method for
supplementing the schema with additional indexes to ensure
query performance.

A. Views Selection

The high resource requirement and the expensive nature of
joins in a NoSQL database (see Section III) provides us with
the motivation to materialize as many joins in the workload
as possible to ensure low request response times and high
system throughput. We use a workload driven approach to
select views. We iteratively examine each equi join query in
the workload and select views for it. Next, we describe our
procedure to select views for a given query.

Views selection for a Query–We harness the rooted trees
and the query syntax to select views for a query. To illustrate
the procedure, we use the example rooted tree and the example

query depicted in Figures 6(a) and 6(b) respectively. We begin
the procedure with un-marked rooted trees. Then, we use the
join conditions in the query to mark the relevant edges and
participating relations in the rooted trees. Figure 6(c) depicts
the marked edges and relations in the example rooted tree.
Next, we examine each rooted tree to identify the views to be
selected for the query.

For a given rooted tree, we iteratively choose a path until no
new path can be chosen. During each iteration, path selection
is done using two rules: 1) all the nodes and edges in the path
are marked, and 2) the path starts in a marked node that has
no incoming marked edge and ends in either a leaf node or
a node that has no outgoing marked edge. Then, we select
the chosen path as a view. Next, we un-mark the participating
relations of the path and outgoing edges of the participating
relations, in the rooted tree. Thereafter, we continue with the
next iteration. Figure 6(c) depicts the views selected for the
example query.

Final View Set– After processing the entire workload, we
add the set of all selected views to the schema.

Limitations– 1) We select views only for the equi join
queries in the workload. 2) Searching the space of all syntac-
tically relevant views is not feasible in practice [16]; hence,
similar to [16], our views selection procedure is heuristic based
and does not necessarily select the optimal set of views. 3)
A views selection procedure that can take advantage of view
sharing opportunities across different queries is part of our
future work. 4) Currently we do not pass a storage constraint
to our views selection algorithm; however, it can be easily
adapted to use storage constraint in presence of a cost based
query optimizer.

B. Query Re-writing

Following views selection, we re-write queries using se-
lected views. We iteratively examine each equi join query in
the workload and re-write it using the views selected for it.
To re-write a query, we replace the constituent relations of a
view with the view. In addition, we remove the join conditions
for which both participating relations belong to a single view.
Figure 6(d) depicts the example query re-written using selected
views.
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(a) Example rooted tree (b) Example equi join query 
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Fig. 6. Illustration of view selection and query re-writing procedure for an example equi join query using an example rooted tree.

C. Additional View Indexes

Unfortunately, in certain scenarios query execution times
can be high despite the use of views. Consider a case in which
the query using the view has a filter on an attribute other than
the attribute that the view is indexed upon. Then, to prepare
the query response, we have to scan the entire view. This can
be expensive, depending on the size of the view. Hence, to
improve the performance of workload queries that use views,
we supplement the schema with additional indexes.

For each view, we examine each conjunctive query that uses
this view and decide whether to add a view-index or not. If
the query only has filters on one or more view attributes that
neither the view nor any of its indexes are indexed upon, then
we add a view-index indexed upon a filter attribute to the
schema. Note that in this work we do not recommend indexes
on base tables and assume that the input schema has necessary
base table indexes.

VII. VIEW MAINTENANCE MECHANISM

In this section, we describe the mechanism for view main-
tenance as the underlying base tables are updated. For each
type of write statement we present: 1) an applicability test
to determine if a base table update applies to a view and 2)
a tuple construction procedure to prepare tuples for the view
update upon a base table update.

A. Insert Statement

1) Applicability Test: A base table insert for a relation Ri
applies to a view Vi iff Ri is the last relation in Vi’s sequence
of relations.

2) Tuple Construction: Insertion into a view upon a base
table insert may require reading tuples from the base tables to
construct the view tuple. For a base table insert that applies
to a view with k relations, we need to read related tuples
from k−1 base tables to construct the view tuple. We utilize
the key/foreign-key relationships between view relations to
sequentially read the base table tuples, starting with relation
Rk−1 and ending in relation R1. Then, we construct the view
tuple using previously read tuples and the insert statement.
Notice that the time to create a view tuple increases linearly
with the number of relations in the view and is independent
of the cardinality ratios between the relations.
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Fig. 7. Synergy System Architecture Overview.

B. Delete Statement

1) Applicability Test: A base table delete for a relation Ri
applies to a view Vi iff Ri is the last relation in Vi. Note that
we do not perform cascading deletes.

2) Key Construction: To delete a view tuple upon a base
table delete, we use the base table key provided with the delete
statement. However, to delete the view index tuple, we need
to first construct the index key to issue a delete upon. Hence,
we first read the tuple from the view using the base table key
in the delete statement. Then, we use the attributes in the read
tuple to construct the index key and issue the delete. Notice
that the time to construct a view index key is constant.

C. Update Statement

1) Applicability Test: A base table update for a relation Ri
applies to a view Vi iff Ri is in Vi’s sequence of relations.

2) Tuple Construction: Unfortunately, updating the view
upon a base table update can be expensive if the view is not
indexed on the key of the update statement, since we need
to either join the base tables or scan the entire view for the
tuple construction. To efficiently prepare view updates, we
supplement the schema with additional indexes based on the
workload. Due to space concerns, we omit the details.

VIII. SYSTEM ARCHITECTURE

In this section we describe the Synergy system architecture.
The Synergy system comprises of HBase layer, clients and
the Transaction layer as depicted in Figure 7.
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HBase layer– The Synergy system harnesses HBase layer
as the distributed data storage substrate. The HBase layer
comprises of HBase, HDFS and ZooKeeper components. We
refer the reader to [6] for the role and description of each
component shown in Figure 7.

Clients– The clients utilize Phoenix API to execute read and
write statements in the workload. A client sends a read request
directly to the HBase layer. On the contrary, a write request is
sent to the Transaction layer, followed by a synchronous wait
for a response.

Transaction Layer– The Synergy system employs the
Transaction layer for implementing ACID transaction support
on top of the HBase layer. The Transaction layer is a dis-
tributed, scalable and fault tolerant layer that comprises of a
Master node and one or more Slave nodes. The Slave nodes
receive and process write requests from clients. Each slave
node has a transaction manager that implements a write ahead
log (WAL) for recovery and durability. The WAL is stored
in HDFS. Upon receiving a request, the transaction manager
first assigns a transaction id to the statement and then appends
the statement in WAL along with the assigned id. Then,
a transaction procedure utilizes Phoenix API to execute the
transaction. Finally, a response is sent back to the client. The
Master node is responsible for detecting slave node failures
and starting a new slave node to take over and replay the WAL
of a failed slave node.

A. Lock Implementation

Logical Locking– Recall that we restrict the write workload
to statements that specify all key attributes (see Section IV)
and decide to employ hierarchical locking as the concurrency
control mechanism (see Section III). Hence, to update a row
for a relation in a rooted tree, we acquire the lock on the key
of the associated row in the root relation. In addition, since
each relation is part of at most one rooted tree, we hold a
single lock per write operation.

Physical Locking– We implement our locking mechanism
through lock tables stored in HBase. We create one lock table
per root relation. The lock table key has same set of attributes
as the root relation’s key and it includes a single boolean
column that identifies if lock is in use or not. A lock table
entry is created when a tuple is inserted into the root table.

Discussion– We implement light weight hierarchical lock-
ing mechanism in Synergy by holding a single lock per write
operation. As a downside of hierarchical locking, all rows
associated with the root key along all the paths are locked
which can affect throughput with concurrent requests trying to
grab the lock on the same root key. Note that lock management
is not the primary contribution of our work. Other transaction
management systems like Themis [18], Tephra [14], Omid [19]
etc. could also be used.

B. Write Transaction Procedures

Synergy utilizes transaction procedures to atomically update
the base table, views and corresponding indexes upon a base
table update. For insert and delete statements, the transaction

Order
(o_id, ol_o_id)

Customer Order_line
(c_id, o_c_id)

Fig. 8. Micro benchmark schema graph.

procedure first acquires the lock on the root key. Then, the
base table, applicable views and corresponding indexes are
updated using the tuple/key construction procedures described
in Section VII. Finally, the lock is released. Note that each
transaction inserts/deletes a single row in/from the base table,
applicable views and corresponding indexes.

A base table update may require multi-row updates on the
materialized view. Now, while a view is being updated upon
a base table update, conflict with the concurrent writes is
prevented by the locking mechanism; however, a concurrent
read may read dirty data. Hence, to facilitate the detection
of a dirty read, we mark the data in views and view-indexes
before update and un-mark after update. If dirty data is read in
a transaction, then the read is restarted. The update transaction
is a 6-step procedure: 1) We first acquire a lock on the root
key. 2) Then, we read all the rows that need to be updated. 3)
Next, we mark all the rows that need to be updated. 4) Then,
we issue a sequence of updates. 5) Next, we un-mark all the
updated rows. 6) Finally, we release the lock.

The plan generator component (see Figure 7) in the Synergy
transaction layer auto generates the execution plan for each
write transaction.

C. Transaction Isolation Level

The Synergy system is restricted to single statement transac-
tions. In addition, Synergy does not support queries in which
a relation is used more than once due to potential dirty reads.
The Synergy system provides ACID semantics with read
committed transaction isolation level, which is also the default
transaction isolation level for PostgreSQL [20].

A single row is inserted/deleted into/from the base table,
applicable views and corresponding indexes upon a base table
insert/delete. In addition, to answer a query either a table is
used directly or a view involving the table is used but not
both. Hence, a reader either reads the entire row or the row is
absent from the read result set. This enables read committed
behavior for insert and delete statements.

Recall that the system marks the rows to be updated in a
view as dirty before issuing updates, and if a concurrent scan
reads a dirty row, the scan is restarted. Hence we modify the
scan behavior to check for marked rows in the scanned result-
set and re-scan if a marked row is present. This ensures that
update statement preserves the read committed semantics.

Note that the read committed semantics are preserved
during a failure scenario, since the base table lock is held
until the system recovers from the failure.

IX. EXPERIMENTAL EVALUATION

In this section we first describe our experiment environment.
Next, we use a TPC-W micro-benchmark to evaluate the join
performance in HBase. Thereafter, we profile the performance
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Q1: Get all the customers and their orders

Using base tables,

SELECT * 

FROM Customer as c, Order as o

WHERE c.c_id = o.o_c_id

Using view,

SELECT * FROM Customer-Order

Q2: Get all the customers, their orders and the 

constituting order lines.

Using base tables,

SELECT *

FROM Customer as c, Order as o, Order line as ol

WHERE c.c_id = o.o_c_id and o.o_id = ol.ol_o_id

Using view,

SELECT * FROM Customer-Order-Order line

Fig. 9. Micro-Benchmark Workload.

overhead of two phase row locking in HBase. Finally, we
evaluate the performance of Synergy system and compare it
with four other systems using the full TPC-W benchmark.

A. Experiment Environment

1) Testbed: Amazon EC2 represents our experiment envi-
ronment. We create an eight node cluster using m4.4xlarge
virtual machine (VM) instances. Each instance is configured
with 16 vCPU’s, 64GB RAM and 120 GB SSD elastic block
storage (EBS), running Ubuntu 14.04.

HBase, HDFS and Zookeeper: The HDFS NameNode, the
HBase HMaster, and the ZooKeeper server processes run on
one instance. We designate five instances as slaves, each
running the HDFS DataNode and the HBase RegionServer
processes. We use Hadoop v2.6.5, HBase v1.2.4.

Synergy and Phoenix: We dedicate one instance to host a
Synergy transaction layer slave and the Phoenix-Tephra server.
Synergy transaction layer master is hosted on the same node
that hosts HBase and HDFS masters. We use Phoenix v4.8.2.

VoltDB: We create a five instance VoltDB (v6.8) cluster by
hosting a VoltDB daemon on each instance that is also hosting
the HDFS DataNode and the HBase RegionServer processes.

Client: We reserve one node as client to drive the workload
for each system.

2) Performance Metric: The request response time repre-
sents our performance metric, denoted as τ . We measure τ in
the client.

B. Micro Benchmark Evaluation

We use a TPC-W micro-benchmark to evaluate the join
performance in HBase.

1) Schema and Workload: The micro benchmark schema
comprises of three relations from the TPC-W benchmark:
Customer, Order and Order line. Customers can have one or
more orders and each order can have one or more order lines.
Figure 8 depicts the schema graph for the benchmark schema.
Next, to evaluate the join performance, we create a synthetic
workload comprising of two foreign key equi-join queries: Q1
(Customer,Order) and Q2 (Customer,Order,Order line).
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Fig. 10. Micro benchmark results to show that performance
of join algorithms is slow in HBase. Y axis is drawn at log
scale.

Number of Locks

10 100 1000

Overhead (in ms) 342 571 2182

Fig. 11. Experiment to show overhead associated with two
phase row locking in HBase.

A join query can be evaluated using two different ap-
proaches: 1) using a join algorithm that combines the matching
tuples from the specified tables and 2) scanning pre-computed
and stored results from a materialized view. Hence, to compare
the join algorithm performance with the view scan perfor-
mance, we materialize the joins in the workload as views.
Customer-Order and Customer-Order-Order line represent the
MVs corresponding to the join queries Q1 and Q2 respectively.
Figure 9 presents the workload queries written using base
tables and MVs.

2) Experiment Setup and Results: Each experiment is char-
acterized by the database scale and the join query. We set
the cardinality ratio between relations as 1:10. We scale the
database by increasing the number of customers in multiples of
10, starting at 500. For each database scale, we major compact
both base tables and views after database population. Section
IX-B1 presents the join queries in the workload. We repeat
each experiment 10 times and report the mean and the standard
error of response time. Figure 10 depicts the experiment results
with Y axis drawn at log scale.

For the database populated with 50K customers, view scan
is 6x and 11.7x faster than the join algorithm for queries Q1
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and Q2 respectively. In conclusion, micro-benchmark results
show that the join algorithm performance is slow in HBase,
providing the motivation for join materialization.

C. Locking Overhead Evaluation

In this experiment, our goal is to evaluate the performance
overhead of acquiring and releasing row locks in HBase.
We create a single lock table in the HBase layer with two
attributes: id and lock status. The lock status is a boolean
column that identifies whether lock is in use or not. We use
checkAndPut HBase operation in the client node to acquire and
release locks. We increase the number of locks in multiples of
10 starting at 10 and measure the overhead in client. We repeat
each experiment 10 times and present the mean overhead time.
Figure 11 shows the experiment results.

Locking overhead with 100 locks is 1.3x the response
time of statement W13 in the Synergy system (see Section
IX-D4 and Figure 14); W13 represents the most expensive
write transaction in the Synergy system. Also note that 100
represents a modest number of locks for a write transaction,
since multiple tables with varying cardinalities may be joined
together as a view. In conclusion, overhead associated with
the acquisition and release of row locks represents a major
transaction performance bottleneck in HBase, motivating the
use of a single lock per transaction.

D. TPC-W Benchmark Evaluation

1) Benchmark: TPC-W [21] is a transactional web bench-
mark. It has a two tier architecture including a web tier and a
database tier. TPC-W workload includes 14 different types of
web requests where each request is modeled as a servlet. Each
servlet is in turn composed of one or more SQL statements. We
analyze the TPC-W servlets to extract all the SQL statements
that can be invoked at the database tier. Extracted set of SQL
statements represents our workload.

We exclude a DELETE statement (DELETE FROM shop-
ping cart line WHERE scl sc id = ?) from the workload
that may affect multiple base table rows. Phoenix currently
does not provide an implementation of the soundex algorithm;
hence, we exclude two join queries from the workload that
use soundex algorithm.

The database size (DBsize) can be modulated by varying two
parameters: the number of customers (NUM CUST) and the
number of items (NUM ITEMS). We set NUM ITEMS to 10
* NUM CUST. In addition, we change the cardinality between
the Customer and the Orders table from .9 to 10. We populate
the database with 1 million customers. For each system that
utilizes HBase as the storage layer, we major compact base
tables, indexes and MVs after the database population.

2) Systems Evaluated: Synergy: We use QT PC−W =
{Author, Customer, Country} as the roots set to generate views
in the Synergy system. We create base tables, selected views
and corresponding indexes in HBase. In addition, we create
lock tables for each root in QT PC−W . We disable the Phoenix-
Tephra transaction support.

MVCC-UA: To compare our views generation and selection
mechanism with [16], we deploy SQL Server 2012 on a single
EC2 VM instance. Next, we populate the TPC-W database
with 1 million customers and run the TPC-W benchmark
queries. Then, we use the SQL Server’s database engine tuning
advisor to analyze the profiled workload and generate views.
We create the generated views along with base tables and
indexes in HBase and run the workload with Phoenix-Tephra
transaction support (MVCC) enabled.

MVCC-A: In addition to the base tables and indexes, we
create the views and the view-indexes generated by the Syn-
ergy system in HBase and run the workload with Phoenix-
Tephra transaction support (MVCC) instead of the specialized
transaction support used in Synergy.

Baseline: We only create base tables and corresponding
indexes in HBase and run the workload with Phoenix-Tephra
transaction support (MVCC).

VoltDB: A VoltDB table can either be partitioned or repli-
cated. The partitioning column is specified by the user and
partitioned tables can only be joined on equality of partitioning
column. Now, a table can join with other tables using different
columns in different queries of the workload; however, since
each table can only be partitioned on a single column, only a
subset of workload join queries may work for a partitioning
scheme.

To profile the performance of maximum number of joins in
the TPC-W benchmark we use three different partitioning
schemes in VoltDB. However, note that in practice only one
partitioning scheme could be used for a database. Also, note
that only base tables and corresponding indexes are used in
VoltDB.

Figure 13 summarizes the MVs creation and concurrency
control mechanisms used in each evaluated system.

3) Performance Evaluation of Joins in the TPC-W Bench-
mark: Experiment setup– In this set of experiments, we
evaluate and compare the join performance across different
systems using the join queries in the TPC-W benchmark.
Recall that we used three different partitioning schemes in
VoltDB to support maximum number of TPC-W joins, using
any single partitioning scheme less than 50% of the TPC-W
joins are supported.

We evaluate each query10 times and present the mean
and the standard error of the recorded response times. See
appendix for the specification of join queries in the TPC-W
benchmark. Figure 12 presents the experiment results. Note
that join queries {Q3, Q7, Q9, Q10} are not supported in
VoltDB.

Discussion– On an average the join queries in Synergy
are 19.5x, 6.2x and 28.2x faster as compared to the MVCC-
UA, MVCC-A and Baseline system respectively. The view
selection mechanism in the Synergy system selects more MVs
as compared to MVCC-UA, resulting in significantly larger
join performance benefit. In MVCC-UA, the response time
of Q10 is significantly lower than the Baseline system since
MVCC-UA utilizes a materialized view for query evaluation.
The join performance in Synergy system with specialized con-
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Fig. 12. Evaluation and comparison of join performance across different systems using join queries in the TPC-W benchmark.
Y axis is drawn at log scale. Join queries {Q3, Q7, Q9, Q10} are not supported in VoltDB.
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Fig. 13. Materialized views selection mechanism and concur-
rency control mechanism used in each evaluated system.

currency control is marginally better than MVCC-A that uses
MVCC. The join queries that used views in Synergy are on an
average 11x slower than VoltDB (excluding queries that are
not supported in VoltDB). In conclusion, join response times
in the Synergy system with selected views are significantly
lower as compared to MVCC-UA and Baseline system for
the benchmark queries. In addition, although the Synergy
join performance is slower than VoltDB, Synergy allows for
significantly more expressive joins than VoltDB.

4) Performance Evaluation of Write Statements in the TPC-
W Benchmark: Experiment setup–In this set of experiments,
we aim to evaluate the performance overhead of acquir-
ing/releasing a lock and updating MVs in the Synergy system.
In addition, we compare the write statement performance
across different systems using the write statements in the
TPC-W benchmark. See appendix for the specification of
write statements in the TPC-W benchmark. We evaluate each
statement 10 times and present the mean and the standard
error of the recorded response times. Figure 14 presents our
experiment results.

Discussion–On an average the write statements in Synergy
are 9x, 8.6x and 8.6x less expensive than MVCC-UA, MVCC-
A and Baseline system respectively. In Synergy system, the
execution time of statements W6 and W11 is significantly
lower than the other write statements since the corresponding
relation is not part of any views. Although Baseline system
does not use any MVs and MVCC-UA utilizes only one

materialized view, the statement response times in these sys-
tems are high since MVCC adds an overhead of 800-900
ms to each statement’s execution time. On an average the
write statements in Synergy are 9.4x more expensive than the
VoltDB. In conclusion, experimental results show that the
use of hierarchical locking in Synergy system significantly
reduces the write transaction response times in presence of
MVs.

TABLE II. Sum of RT of all the statements in the TPC-W
benchmark to quantify trade off between read performance
gain and write performance overhead of using MVs in each
evaluated system. VoltDB is excluded since it does not support
all queries in the benchmark.

Evaluated Systems
Synergy MVCC-A MVCC-UA Baseline

Mean Response Time
(in seconds) 33.7 77.4 132.4 173.4

Standard Error .03 .02 .06 .07

5) Performance Comparison of All Evaluated Systems:
Experiment setup–In this set of experiments, we evaluate the
performance gain and the storage overhead of using MVs in
the Synergy system and compare it with the other systems.
Note that we exclude VoltDB since it does not support
all join queries in the TPC-W benchmark. We evaluate the
performance of systems using all the statements in the TPC-
W benchmark.

During an experiment, we run each benchmark SQL state-
ment and record its response time. Next, we compute the sum
of response time of all statements. We run each experiment 10
times and present mean and standard error of the benchmark
response time. Table II presents the experiment results. Table
III summarizes the database sizes across different systems.

TABLE III. Database sizes across different evaluated systems.

No. of Customers Database Size (in GB)
VoltDB Synergy MVCC-A MVCC-UA Baseline

1M 31.8 92 91.8 45.73 43.8
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Fig. 14. Performance Evaluation of the write statements in the TPC-W benchmark to exhibit the overhead of lock management
and updating views in the Synergy system. Comparison of write statement performance across different systems.

Discussion– Synergy system exhibits a performance im-
provement of 74.5%, 56.3% and 80.5% as compared to
the MVCC-UA, MVCC-A and Baseline system respectively.
Conversely, the database size in the Synergy system is 2x,
1x and 2.1x the database size in the MVCC-UA, MVCC-
A and Baseline system respectively. Hence, Synergy system
trades slight write performance degradation and increased disk
utilization for faster join performance. In conclusion, the
specialized concurrency control mechanism and the MVs
generation mechanism in the Synergy system significantly
improve the read performance without shifting the bottleneck
to the write performance.

X. RELATED WORK

Materialized Views. MVs have been studied from multiple
standpoints in the SQL domain: view maintenance, view
matching, automated views selection, dynamic view mainte-
nance etc. In [22], [23], [24], [8] authors explore the problem
of efficient view maintenance in response to the base table
updates. The dynamic views [25] introduce storage efficiency
by automatically adapting the number of rows in the view
in response to the changing workload. The view matching
techniques are utilized in query optimization to determine the
query containment and the query derivability [9], [10], [15].
In [16], authors propose a workload driven mechanism to
automate the task of selecting an optimal number of views and
indexes for decision support system applications. The MVs
selection and maintenance in a transaction processing NoSQL
data store raises novel challenges since most of the existing
views selection approaches are oblivious to the relationship
between schema relations which can lead to heavy view
maintenance costs and can shift the bottleneck from reads
to writes. To this end, Synergy proposes a novel, schema
relationships aware view selection mechanism.

Data Partitioning. Megastore [26], F1 [27] and Elastras
[28] harness hierarchical schema structure to cluster related
data together and minimize the distributed transactions. On the
contrary, Synergy generates MVs utilizing hierarchical schema
structure to reduce query run times. In [29], authors automate
the task of data partitioning by developing a technique for

automated selection of root relations in a schema. Schism [30]
proposes fine grained data partitioning by co-locating related
tuples based on workload logs.

Transactions. Transaction support in the majority of the
first generation NoSQL stores [6], [12] and Big Data systems
[31] is limited to single-keys. G-Store [32] extends HBase
to support multi-key transactions in a layer on top using a
2 phase locking protocol. Similar to G-Store, we implement
write transactions in a layer on top of HBase. CloudTPS [33]
supports multi-key read/write transactions in a highly scalable
DHT based transaction layer using optimistic concurrency
control (OCC). In [34], authors extend CloudTPS to support
consistent foreign-key equi-joins. ecStore [35] provides snap-
shot isolation using MVCC based on the global timestamp
transaction ordering in a decoupled layer on top of an ordered
key-value store BATON. ElasTras [28] proposes a novel key-
value store that implements MVCC based transactions. Per-
colator [36] extends Bigtable to allow cross-row, cross-table
ACID transactions and enables incremental updates to the web
index data stored in BigTable. Megastore [26] introduces entity
groups as a granule of physical data partitioning and supports
ACID transactions with in an entity group. F1 [27] is built
on top of Spanner [37] and supports global ACID transactions
for the Google AdWords business. In contrast with Spanner,
Synergy is limited to single data center use; however, Synergy
enables enhanced SQL query expressiveness and does not
require sophisticated infrastructure including atomic clocks,
GPS etc. The NewSQL databases [3], [7] scale out linearly
while ensuring ACID semantics; however, the join support is
limited to partitioning keys. The first generation of NewSQL
systems required all data to reside in main memory; however,
recent work [38] overcomes this limitation by keeping cold
data on the disk.

XI. CONCLUSIONS

In this paper we present the Synergy system, a data store
that leverages schema based–workload driven materialized
views and a specialized concurrency control system on top of
a NoSQL database that allows for scalable data management
with familiar relational conventions. Synergy trades slight
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write performance degradation and increased disk utilization
for faster join performance (compared to standard NoSQL
databases) and improved query expressiveness (compared to
NewSQL databases). Experiment results on a lab cluster using
the TPC-W benchmark show the efficacy of our system.
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XIII. APPENDIX

Join 

ID

Tables Filters Order By Group By Limit 

Clause

Q1 Item, Order_line ol_o_id None None None

Q2 Customer, Orders c_uname o_date, o_id None 1

Q3 Customer, Address, Country c_name None None None

Q4 Author, Item i_subject i_title None 50

Q5 Author, Item i_subject i_pub_date, i_title None 50

Q6 Author, Item i_id None None None

Q7 Orders, Customer, Address as ship_addr, 

Address as bill_addr, Country as ship_co, 

Country as bill_co

o_id None None None

Q8 Item, Shopping_cart_line scl_sc_id None None None

Q9 Item as I, Item as J i_id None None None

Q10 Author, Item, Order_line, Orders tmp table i_subject ol_qty i_id 50

Q11 Order_line as ol, Order_line as ol2, Orders 

tmp table

ol.ol_i_id, 

ol2.ol_i_id <>

ol_qty ol_i_id 5

Fig. 15. Specification of joins in the TPC-W Benchmark.

ID Statement ID Statement ID Statement

W1 Insert Orders W6 Insert shopping cart W11 Update shopping cart

W2 Insert CC Xacts W7 Insert shopping cart line W12 Update shoppping cart line

W3 Insert Order line W8 Delete shopping cart line W13 Update customer

W4 Insert Customer W9 Update Item1

W5 Insert Address W10 Update Item2

Fig. 16. Specification of write statements in TPC-W Bench-
mark.
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