
ar
X

iv
:1

70
7.

07
47

8v
1

 [
cs

.D
C

]
 2

4
Ju

l 2
01

7

A Wait-free Multi-word Atomic (1,N) Register

for Large-scale Data Sharing on Multi-core

Machines

Mauro Ianni (mianni@dis.uniroma1.it)
DIAG - Sapienza University of Rome

Alessandro Pellegrini (pellegrini@dis.uniroma1.it)
DIAG - Sapienza University of Rome

Francesco Quaglia (francesco.quaglia@uniroma2.it)
DICII - University of Rome Tor Vergata

June 30, 2021

Abstract

We present a multi-word atomic (1,N) register for multi-core ma-
chines exploiting Read-Modify-Write (RMW) instructions to coordinate
the writer and the readers in a wait-free manner. Our proposal, called
Anonymous Readers Counting (ARC), enables large-scale data sharing
by admitting up to 232− 2 concurrent readers on off-the-shelf 64-bits ma-
chines, as opposed to the most advanced RMW-based approach which is
limited to 58 readers. Further, ARC avoids multiple copies of the regis-
ter content when accessing it—this affects classical register’s algorithms
based on atomic read/write operations on single words. Thus it allows
for higher scalability with respect to the register size. Moreover, ARC
explicitly reduces improves performance via a proper limitation of RMW
instructions in case of read operations, and by supporting constant time
for read operations and amortized constant time for write operations. A
proof of correctness of our register algorithm is also provided, together
with experimental data for a comparison with literature proposals. Be-
yond assessing ARC on physical platforms, we carry out as well an ex-
perimentation on virtualized infrastructures, which shows the resilience of
wait-free synchronization as provided by ARC with respect to CPU-steal
times, proper of more modern paradigms such as cloud computing.

1 Introduction

Hardware-based atomicity facilities offered by multi-core computing platforms
to manage single-word shared-objects are not sufficient to automatically guar-

1

http://arxiv.org/abs/1707.07478v1

antee atomicity when concurrent threads manipulate multi-word objects. Syn-
chronization algorithms are therefore needed to enable atomic read/write op-
erations on this type of objects. Also, the extreme level of scale-up of modern
computing platforms, with projection towards exascale computing, demands for
shared-object management algorithms that are capable of efficiently supporting
huge levels of concurrency.

In this article we face such an issue by providing a pragmatic design and im-
plementation of a shared-object algorithm in multi-processor/multi-core shared-
memory machines. Specifically, we present Anonymous Readers Counting (ARC),
which is an atomic (1,N)—one writer, N readers—register of arbitrary length
(i.e., made up by an arbitrary number of words, which can change over time,
possibly upon each update of the register) exhibiting the following features:

• it is devised for a huge scale-up of the number of concurrent threads to be
managed;

• it targets the optimization of the actual execution path of the threads
along multiple dimensions: locality, time complexity and actual cost of
machine instructions to be executed.

We emphasize that providing optimized (1,N) registers is a relevant objective
since they constitute building blocks to realize more general (M,N) registers, as
already shown by several works (see, e.g., [1]).

As the core property enabling scalability, ARC guarantees wait-freedom of
both write and read operations. In fact, it uses no locking scheme, and guar-
antees that no operation (either a read or a write) fails and no retry-cycles are
ever needed. This is achieved by relying on Read-Modify-Write (RMW) atomic
instructions offered by conventional Instruction Set Architectures (ISAs), which
are exploited to manipulate meta-data that are used by concurrent threads to
coordinate themselves when performing register operations.

A close literature proposal based on RMW instructions, which still guaran-
tees wait-freedom of read/write operations on (1,N) registers, is the one in [2].
However, this proposal allows up to 58 readers only on conventional 64-bit ma-
chines, while ARC can manage up to 232 − 2 readers, thus enabling a huge
scale-up in the level of concurrency, as already hinted. Also, the approach in [2]
is based on deterministically forcing synchronization (via RMW instructions)
upon any read operation, even in scenarios where the register’s content has not
been modified by the writer since the last read by the reader. ARC avoids ex-
ecuting RMW instructions in such situations, since it detects whether the last
accessed snapshot of the register is still consistent (it is the most up to date
one within the linearizable history of read/write accesses) by only relying on
conventional memory-read machine instructions.

The effect of this optimization on the overall performance is non-minimal,
as we also show experimentally, given that RMW instructions pay anyhow a
cost due to the effects on the interconnection among CPU-cores. For example,
modern Intel-based architectures relying the QuickPath Interconnect [3] require
(and pay the cost of) message passing among CPU-cores when executing RMW
instructions. There are corner cases, like in the case of a split lock, where all

2

cores might be required to enter a spin phase (via a message passing protocol)
to ensure data coherency. Furthermore, these effects can be amplified when a
memory location updated by a RMW instruction is split across different cache
lines, as shown in [4].

As opposed to more historical solutions for wait-free atomic (1,N) registers in
shared-memory platforms [5], which only exploit atomic read/write operations
(not RMW instructions) of individual memory words, we avoid multiple copies
of the register content when performing either read or write operations. This
allows for better scalability of ARC with respect to the size of the register
content.

Still related to buffer management, ARC adheres to the classical lower bound
of N +2 buffers [6] keeping the different snapshots of the (1,N) register content,
to be accessed in wait-free manner in some linearizable execution of read/write
operations by the concurrent threads. Overall, compared to literature proposals,
we enable definitely scaled up amounts of concurrent readers with no increased
memory footprint and by not imposing extra memory-copy operations, which
leads ARC to favor locality.

Furthermore, ARC allows constant time for read operations, jointly guar-
anteing amortized constant-time for write operations. This is not guaranteed
by the RMW-based approach in [2], since it requires O(N) time for write
operations—an aspect that is clearly related to the reduced amount of read-
ers admitted by this register algorithm.

Beyond presenting ARC, we also provide a proof of its correctness. Further,
we report experimental data showing the benefits from our proposal compared
to a few existing literature solutions. Performance data have been collected on
a physical 32 CPU-cores machine and on a virtual platform hosted by Ama-
zon equipped with 40 vCPUs. This allows us to asses as well the resilience of
our wait-free register algorithm on top of architectures which could suffer much
more by lock-based or non-efficient non-blocking synchronization strategies, due
to the fact that a delay imposed on a certain processor by physical unavailability
of processing resources could in its turn affect the speed of all other processors,
independently of the assigned computing power. As a last note, our experi-
mental evaluation has been based on user-space code implementing ARC, but
nothing prevents ARC to be integrated within lower-level software layers (such
as an operating system kernel).

The remainder of this article is organized as follows. In Section 2 we discuss
related work. ARC is presented in Section 3. Its correctness proof is provided
in Section 4. Experimental results are reported in Section 5.

2 Related Work

Our target are single-writer/multiple-readers shared-objects in multi-processor/multi-
core machines, to be managed in a wait-free manner. According to [7], wait-
freedom allows any concurrent operation on the shared-object to execute in a
finite number of steps, regardless of any action carried out by other concur-

3

rent operations. This is not guaranteed neither by classical lock-based synchro-
nization schemes [8] nor by lock-free ones [9, 10]. Wait-freedom appears as a
mandatory means to efficiently handle concurrent operations on shared-objects
in systems with large/huge amounts of concurrent threads. In fact, it enables
performance to be resilient to degradation with respect to the level of concur-
rency in the operations on the shared-object.

A (1,N) register algorithm for multi-processors has been provided by Lam-
port in [5]. This solution enables wait-free writes, but only guarantees lock-
free read operations, since the writer can force slow-running readers to retry
their read operations indefinitely. A fully wait-free solution has been presented
by Peterson [11], which marked the begin of a long running research path to-
wards the construction of wait-free solutions to the readers/writers problem.
Along this path we find proposals dealing with (1,1) [6, 12], (1,N) [13, 11], and
(M,N) registers [11, 14]. A common aspect that characterizes these proposals
is that they build wait-free multi-word registers by relying only on single-word
read/write registers, just based on atomic single-word read/write instructions.
Thus they do not exploit synchronization facilities offered by conventional multi-
processor/multi-core machines, such as RMW instructions like Compare-and-
Swap (CAS). The disadvantage lies in that, in order to assess the validity of a
multi-word atomic read/write operation, it must be carried out multiple times
(e.g., 2 times in [11]), which may impair performance especially when scaling up
the size of the register. In our approach we avoid this drawback by avoiding at
all multiple copies of the register content upon both read and write operations.
In particular, we support write operations with a single copy of the new register
content into the target buffer. Also, read operations do not need any intermedi-
ate data copy, since the reading process can directly read data from the buffer
originally targeted by the write operation that is serialized before the read itself.
Hence, in ARC, accessing the register in read mode only entails retrieving the
correct buffer address.

Several proposals [15, 16, 17, 18] allow to realize a wait-free register by
relying on a wait-free universal construct [19]. This is a design choice that
we have explicitly avoided, making our proposal mostly orthogonal. In fact,
the employment of a universal construct does not allow capturing the intrinsic
properties of the different register operations (read vs write). In turn, this might
reduce performance since the number of synchronization steps might be much
larger than what strictly required (just depending on the different nature of
the operations). As an example, the work in [18] realizes a read operation as
a generic one, making it at least as heavyweight as a write operation, while in
ARC we have explicitly differentiated the implementations of read and write
operations, so as to jointly optimize their execution path. Moreover, a number
of synchronization steps not adhering to the minimum required might have a
negative impact on scalability of the overall algorithm also because of the effects
on the underlying memory hierarchy, which might be further amplified by cache-
unaligned data structures.

An additional difference between ARC and the work in [18] lies in the fact
that the space requirement of the latter for the wait-free implementation is

4

O(N2) buffers, while we stick to the traditional lower bound of N+2 buffers. A
quadratic memory cost is also paid by the proposal in [17], which additionally
has an O(N) time due to the reliance on hazard pointers. We pay such a
linear cost only in some corner cases of a write operation, since ARC provides
constant-time for reads and amortize constant-time for writes.

Among the aforementioned works exploiting the concept of universal con-
structor, [16] is the only one using RMW instructions. Nevertheless, wait-
freedom is guaranteed by having all threads register the operation that they
want to do—either a read or a write operation—in a shared buffer. Then, all
the threads attempt at the same time to complete all the registered operations,
ensuring that only one of them actually succeeds. This implies a total of O(N2)
attempts to carry out N operations concurrently executed by the threads. On
the other hand, we keep the wait-free nature of the algorithm, while avoiding
to have multiple threads carry out same operations.

To the best of our knowledge, the only other proposal based on RMW in-
structions offered by the underlying computing platform to support an atomic
wait-free (1,N) register is the one in [2]. Here the authors use 64-bit atomic mem-
ory operations to update/retrieve a bit-mask indicating what is the buffer in-
stance containing the updated version of the register content and which threads
are reading this content version. The overall number of slots to be managed is
N+2, as a classical minimum requirement for a wait-free (1,N) register. Hence,
by partitioning the 64-bit mask into the two aforementioned portions (one for
the buffer instance and the other for standing reads identification), the maxi-
mum number of admitted concurrent readers is 58. Compared to this approach,
we use RMW instructions on 64-bit words in a completely different manner,
since we do not associate individual bits with threads (to indicate whether a
given thread has a standing read on a given buffer instance). Rather, we adopt
an anonymous scheme where registering a thread as a reader of a given buffer in-
stance only entails incrementing a per-instance counter of standing reads (hence
the name ARC for our proposal). As a consequence, we can host up to 232 − 2
concurrent readers, which is done by still relying on N + 2 buffers to keep
the register content. Overall, compared to the work in [2], our proposal han-
dles scenarios with a large/huge increase of the amount of threads allowed to
concurrently perform read operations. Hence, we enable scaled-up wait-free
concurrency on the atomic (1,N) register up to a level fitting the requirements
of massively parallel applications hosted by huge (virtualized) hardware parallel
platforms. Also, as hinted in the introduction section, the actual number of
RMW instructions executed in our register algorithm under diverse workloads
is typically lower than the one of [2]. As we will show via experimental data,
this leads to a reduced impact of platform-level synchronization on performance
by our proposal.

5

3 Anonymous Readers Counting

3.1 Basics

A multi-word shared register is an abstract data structure that is shared by a
number of concurrent processes1 [5, 11]. Each process is allowed to perform two
operations on the register: a read, which retrieves the most up-to-date value kept
by the register, and a write, which stores a new register’s value. We consider
asynchronous processes, meaning that no assumption is made on their relative
speed or on the interleave of their operations. The operations by a same process
are assumed to execute sequentially. The weakest class to which a register can
belong is that of safe registers [6]. A register is safe if its correct value can
be always retrieved only in case no concurrency is allowed among reads and
writes. Considering that we target concurrent objects, we consider a stronger
class, namely regular registers.

Regular registers are defined in terms of possible execution histories of con-
current read/write operations. In particular, each operation O on the register
has a wall-clock time duration, which can be denoted as [Os, Oe] where Os and
Oe are the starting and ending instants, respectively. A regular register is one
that is safe, and in which a read operation that overlaps (in time) a series of
write operations obtains either the register value before the first of these writes
or one of the values being written [6]. Introducing a reading function π to assign
a write w on the register to each read r such that the value returned by r is the
value written by w, and defining a precedence relation on the operations leading
to a strict partial order ‘→’ [6], a regular register always respects the following
property:

• No-past. There exists no read r and write w such that π(r) → w → r.

Anyhow, a regular register does not ensure that multiple reads executed
concurrently to a write must “agree” to the same value. By the linearizability
property [20, 10], we can always find a linearization point which provides the
illusion that each operation O takes effect instantaneously at some point between
Os and Oe. Consequently, a stronger class of registers is that of atomic registers,
defined according to the following criterion [2]:

Criterion 1. A shared register is atomic iff it is regular and the following
condition holds for all possible executions:

• No New-Old inversion. There exist no reads r1 and r2 such that r1 →

r2 and π(r2) → π(r1).

With an atomic register, reads can be separated among those “happening”
before and after the linearization point of some write. This categorization marks
the difference among the concurrent reads that can return the old value and

1From now on we use the term ‘process’ and ‘thread’ interchangeably since the classical
literature on register algorithms uses the term ‘process’ to indicate the active entity that can
operate on the register.

6

those which need to return the new value. In particular, if two reads from the
same process overlap a write then the later read cannot return the old value if
the earlier read returns the new one. Atomic registers have been shown to be
linearizable [21].

3.2 Memory consistency model

Multi-processor/multi-core shared memory systems, which we target in this arti-
cle, offer memory consistency models [22] as kind of “contracts” among software
developers and hardware manufacturers. They discriminate what software can
expect to be guaranteed by the underlying hardware. A variety of consistency
models exist, which are often presented as a set of rules. The simplest memory
consistency model is sequential consistency. In this model “the results of any
execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program” [23]. This model ensures
that all read and write instructions executed by any processor are observed in
the same order by all the processors in the system. Peterson’s algorithm [11]
and several lock-based algorithms [9, 10] require sequential consistency to prove
correct.

We assume a weaker consistency model, namely Total Store Order (TSO) [22],
which is used by most off-the-shelf platforms, such as SPARC and x86, thus
making our solution of general practical applicability. With TSO, CPU-cores
usually use store buffers to hold the stores committed by the overlying pipeline
until the underlying memory hierarchy is able to process them. In particular, a
store leaves the buffer whenever the cache line to be written is in a coherence
state such that the update can be safely performed. TSO allows what is called
a store bypass : even if a CPU-core outputs a write before a read, their order on
memory (as seen by other CPU-cores) can be reversed.

While TSO produces no damage in many applications (rather, it can pro-
vide a significant speedup due to a reduced latency on the memory hierarchy),
synchronization based on shared memory data must explicitly cope with this
scenario. In fact, store bypasses can affect the correctness of synchronization
algorithms (e.g. register algorithms) for concurrent processes only relying on
individual read/write operations (just like [11]). On the other hand, TSO-based
architectures offer particular instructions, referred to as memory fences, which
enable recovering sequential consistency by explicitly flushing store buffers be-
fore executing any other memory operation, thus allowing to preserve the or-
dering across subsequent read/write operations.

Still, for scenarios where synchronization among processes requires to atomi-
cally perform pairs (or more) operations, memory fences do not suffice. To cope
with this issue, TSO-based conventional architectures offer Read-Modify-Write
(RMW) instructions, whose execution directly interacts with cache controllers so
as to ensure that cache lines keeping synchronization variables are held in an ex-
clusive state until a couple of read/write operations are executed atomically [22].
This means that no other cache can keep the same line in read mode until the

7

couple of operations completes. Classical RMW instructions supported by off-
the-shelf processors are: load-link/store-conditional or compare and swap, which
(although in a different manner) update a memory location only if its content
was not changed since the last read access; atomic exchange, which atomically
reads the content of a memory location and updates its value; add and fetch,
which increments a memory location and reads the updated value.

3.3 The Register Algorithm

Similarly to most wait-free (1,N) registers, in our algorithm we use N+2 buffers
to keep different snapshots of the register value, as produced along time by
write operations. This allows each reader to keep a buffer for reading (possibly
different across the N readers), while at least 2 buffers are still available to
keep some up-to-date register value (the one written while the readers were
concurrently reading the register) and the work-in-progress copy being produced
by the writer, if any.

The core data structure we exploit is a single-word shared synchronization
variable called current. It is a 64-bit shared variable divided into two fields:
index, keeping the index of the slot containing the most up-to-date register value,
and counter, namely the readers’ presence counter (the number of standing
concurrent reads on the slot targeted by index). index is 32 bits wide, so up to
232 − 2 concurrent readers are allowed2.

Additionally, our register data structure is made up by N + 2 slots forming
an array which we refer to as register[]. Each slot of this array is an instance
of a data structure containing the following fields:

r_start The number of read operations started on the slot since its last up-
date.

r_end The number of read operations completed on the slot since its last
update.

size The size of the register value stored in the slot.

content A pointer to the memory location (the buffer) where the register
content is stored.

The size field is introduced since we support writes (hence reads) of different
sizes, meaning that each register value can have a different size (clearly up to
some admissible maximum). Also, with no loss of generality, while presenting
the register pseudo-code we assume that the buffer pointed by the content field
of the register slot is already allocated, and that it can host the maximum sized
register content (depending on the usage scenario). In any real implementation

2We have selected 32 as a meaningful value for common off-the-shelf architectures which use
64-bit words and RMW instructions targeting 64-bit memory locations. In different architec-
tures, this could be set to an even larger value, by simply having the current variable enlarged
in size, depending on the actual size of memory locations targeted by RMW instructions.

8

Algorithm 1 Register initialization.

1: procedure INIT(content, size)
2: for all slot ∈ [0, N + 1] do

3: register[slot].size← 0
4: register[slot].r_start← 0
5: register[slot].r_end← 0

6: MemCopy(register[0].content, content, size)
7: register[0].size← size

8: current← N ⊲ I1

Algorithm 2 The atomic register read operation.

1: procedure Read()
2: index← current≫ 32 ⊲ R1

3: if last_index = index then

4: entry ← register[last_index]
5: return 〈entry.content, entry.size〉 ⊲ R2

6: AtomicInc(register[last_index].r_end) ⊲ R3

7: tmp_curr ← AtomicAddAndFetch(current, 1) ⊲ R4

8: last_index← tmp_curr ≫ 32 ⊲ R5

9: entry ← register[last_index]
10: return 〈entry.content, entry.size〉

of our register algorithm, dynamic buffer allocation/release, with each buffer
made up by the amount of bytes fitting the size of the register value to be
stored upon write operations could be employed.

The initial setup of the register data structure is shown in Algorithm 1. With
no loss of generality, we assume that the register is initialized to keep its initial
value into register[0], and that all the other N + 1 entries are all available
for posting some new register value.

Algorithm 2 shows the pseudo-code for the read operation. By exploiting the
AtomicAddAndFetch instruction targeting current, a reader process is able to
atomically retrieve the index of the slot containing the most up-to-date register
value and increment the corresponding presence counter (R4). This allows us
to enforce visible reads [24], although we do this in an anonymous way. In fact,
the presence counter is not used to indicate who has started reading the up-
to-date register value, rather how many processes did it. The index of the slot
from which the up-to-date value is to be found is extracted by executing bitwise
instructions on the value returned by AtomicAddAndFetch.

We consider a read operation from a slot as concluded as soon as the reader
tries to read again from the register. When, this happens, the r_end counter
of the slot from which the reader took the register value upon its last read is
incremented atomically. A special case occurs when the already-read slot still
keeps the most up-to-date register value (R2). In this case, r_end is not incre-
mented to indicate that the reader did not conclude its operations on the slot
yet—a new read is just starting, bound to that same slot. Incrementing r_end

9

Algorithm 3 The atomic register write operation.

1: procedure Write(content, size)
2: pick slot such that slot 6= last_slot ∧ register[slot].r_start =

register[slot].r_end ⊲ W1

3: MemCopy(register[slot].content, content, size)
4: register[slot].size← size

5: register[slot].r_start← 0
6: register[slot].r_end← 0
7: old_curr ← AtomicExchnge(current, slot≪ 32) ⊲ W2

8: old_slot← old_curr ≫ 32
9: register[old_slot].r_start← old_curr & (232 − 1) ⊲ W3

10: last_slot← slot

only when moving to another slot (upon a subsequent read that finds a newer
register value) allows us to avoid overflows of counter variables (R3). Thus we
enable an infinite number of reads (by any reader) to occur on a slot that still
keeps the up-to-date register value. In order to remember from which slot the
reader took the register value upon its last read we use the last_index variable
(which is local to a reader), where we load the index of the target slot for the
read operation each time the reader accesses a newer register value (R5). The
check on whether the last accessed register value is still the most up-to-date is
executed by loading the index kept by current (R1) as soon as the read oper-
ation starts, and then comparing it with last_index. Given that the value of
current is manipulated by any process (including the writer, as we will show)
via RMW instructions only, then the index value returned by reading current

(R1) is guaranteed to represent a correct snapshot of the shared synchroniza-
tion variable we use in our register algorithm under the assumed TSO memory
consistency model.

As startup current is initialized to N (I1). This sets its most-significant
32 bits (the index sub-field) to zero and initializes the counter sub-field as if
all the readers had already started reading from the 0-th (initially-valid) slot.
Therefore, if no update is ever made on the register’s content, readers will
indefinitely read this value (R1).

The pseudo-code for the write operation is shown in Algorithm 3. Upon
writing, the writer process selects a free slot, namely a slot which is not currently
bound to any not yet finalized read operation by whichever process, and which
is different from the slot that was used for the last write operation (say the
one kept by current). In compliance with the initialization of the register, we
assume that the last_slot local variable kept by the writer, indicating the
last slot used for a write, is initialized to the value 0. In fact, at init-time the
initial register content is posted onto the 0-th slot. The writer detects if no
more processes are currently reading from a slot by checking whether the two
counters r_start and r_end associated with the slot keep the same value. The
writer then performs a copy operation of the new value to the selected slot,
and updates all the fields of the slot entry. In particular, it sets both r_start

10

and r_end to zero, and size to the actual size of the new register value that is
being stored. Then, by using an AtomicExchange instruction (W2), the writer
changes the content of the current shared synchronization variable so as to
“publish” the index of the new slot from which readers can start performing
read operations. Given that the update of current is based on the execution of
an RMW instruction, the content of the slot selected for the new write operation
is guaranteed to be coherent when the current variable is updated under the
assumed TSO memory consistency model. In other words, if a reader gets the
updated current value (R4) and accesses the target slot, the accessed data are
guaranteed to be coherent with the corresponding updates performed by the
writer.

The new value of current which is atomically written by the writer (W2)
has a counter field set to zero, telling that the new version has not been read
by any process yet. The AtomicExchange allows to retrieve as well the old
value of current, which is loaded into the old_current variable local to the
writer. This is used by the writer to extract the old counter field, and store its
value in the r_start field of the old (the last written) slot (W3). In this way,
the number (not the identity) of readers which started an operation on the old
slot is “freezed” into the slot management meta-data. We note that, after such
freezing takes place for some slot, the corresponding values r_start and r_end

are such that r_start ≥ r_end. But eventually these two values will be the
same, which is the condition telling the writer that the slot has been released
by all the readers since they moved to some fresher slot. In fact, the condition
r_start = r_end indicates to the writer that the slot is free again (W1). On
the other hand, any written slot that is never accessed by any reader up to the
point in time where some newer register value is atomically published by the
writer, will have its r_start and r_end fields both set to zero, which implies it
is a free slot.

3.4 Speeding up free-slot searches

By the pseudo-code of ARC read operations can be trivially shown to take
constant-time. On the other hand, write operations require searching for a free
slot among N +2 (W1), which would imply linear time complexity. To provide
amortized constant time for write operations (in particular for the slot search
operation), readers that complete their read from a slot by incrementing the
corresponding r_end counter (i.e. they release the slot), can check whether
this counter is equal to the r_start counter associated with the same slot. If
this is true, then by the register algorithm structure it means that the slot can
be reused for subsequent writes. Hence, a reader detecting such an equality
can post into another shared variable the index of the just-released slot. This
can be used by the writer as a proposal to start searching for a free slot. This
proposal will always correspond to an actually free slot (hence enabling constant
time retrieval of the free slot upon write operations) except for the corner case
where the writer already took the same slot for some already issued write having
observed its release before the reader posted its proposal.

11

4 Correctness Proof

By code construction, all invocations to Read() are guaranteed to complete
in a finite number of steps. Hence reads are by construction guaranteed to be
wait-free. As for the Write() operation, completion within a finite number of
steps is guaranteed if the free-slot search operation carried out at the beginning
of the write operation completes in a finite number of steps. This is true if it is
guaranteed that at least one slot different from the last one used for a register
write is in a state such that its r_start and r_end fields are equal. This is
proven in the following Lemma:

Lemma 4.1. Upon starting a write operation at least one of the N +2 register
slots, which is different from last_slot, is such that r_start and r_end keep
the same value.

Proof. This proof is based on two disjoint cases analysis:
Case 1. The writer performs its first write on the register. In this case, all

the r_start and r_end fields are still found to be set to the value 0. This is
because no reader could have updated any r_end field in any slot since this can
only happen if a newer register value is found upon a read operation, which is
not the case since the writer did not yet post any new value, say current has
never been updated. Also, the writer did not yet update any r_start field in
any slot, since this takes place just while performing a write operation, while we
are at the beginning of the first write. Given that last_slot is set to 0 upon
register initialization, all the N + 1 slots that are different from the 0-th one
are such that that their r_start and r_end fields are both set to zero. Hence
at least one slot different from last_slot is such that its r_start and r_end

fields keep the same value, and the claim follows.
Case 2. The writer performs the i-th write on the register. In this case, all

writes up to the (i − 1)-th one have updated current, and the readers might
have fetched the various values of current, also releasing a presence count unit
each time this happened. By the Read() operation pseudo-code, a reader leaves
a presence count unit on some slot (updating the counter field of the variable
current) only after having released a count unit on the r_end field of some
other slot. Hence, for all the r_start units freezed by the writer into the slots
upon performing writes up to the (i− 1)-th we have that:

N+1∑

j=0

(register[j].r_start− register[j].r_end) ≤ N

Hence, given that r_start and r_end fields are non-negative values, for at
least 2 different slots of the N + 2 slots of the register, these same fields must
have the same value. Hence at least one slot which is different from last_slot

is such that its r_start and r_end fields keep the same value, and the claim
follows.

We now prove consistency of concurrent read/write operations in our regis-
ter:

12

Lemma 4.2. While the writer is executing a write operation on a slot, no reader
will read the same slot until the write completes.

Proof. Read operations bound to the initial snapshot of the register trivially
satisfy the claim, since that snapshot is not written by the writer. Let us
therefore focus on reads of the register snapshots that are different from the
initialization one. By the Read() operation pseudo-code, a read operation
is always bound to the slot index that is returned at some point in time by
atomically executing AtomicAddAndFetch on the current variable. This is true
also when subsequent reads by a reader process take an unchanged register
content from a same slot, since the first of these reads must have necessarily
executed the AtomicAddAndFetch instruction on current to retrieve the index
of that slot. On the other hand, the r_end field of some slot is incremented by
the reader only after moving to some new slot upon the read operations.

Given that (i) the writer selects a slot x for writing only when it finds its
r_start and r_end fields set to the same value, (ii) r_start is freezed into the
slot x only after it is no longer the current one, (iii) whichever slot x becomes
again readable after its index is published into the current shared variable,
(iv) TSO memory consistency guarantees that when the update of current is
performed by the writer, so as to point to the x-th slot, all the data associated
with the slot have already been flushed to memory, we have that any read will
always observe a stable snapshot of the register when reading from the generic
x-th slot. Hence the claim follows.

We now prove regularity and atomicity of our register:

Theorem 4.3 (Regular Register). Any read operation returns either the last
written value, or one being concurrently written.

Proof. By the structure of Algorithm 3, the update of current (W2) represents
the atomic memory operation that defines the linearization point for any write.
If the write is linearized before the execution of statement R1 by some reader, a
read always returns the last written value, say the one posted by the last write
serialized before the read, since the serialization point of the read is determined
by R4, which targets the same shared synchronization variable current whose
atomic updates represent the serialization points of writes. Otherwise, if R1 is
executed before the update of the current shared synchronization variable by
the write operation, the read is correctly allowed to return the register value that
was already stored before any concurrent write. Hence the claim follows.

Theorem 4.4. Given two read operations r1 and r2 such that r1 → r2, r2 never
returns a value older than the one returned by r1.

Proof. (By contradiction) By the proof of Theorem 4.3, a read executed before
the linearization point of a write returns the old value (with respect to the
execution of the write). Let us assume by contradiction that, given two reads
r1 and r2 such that r1 → r2, r2 returns a value older than the one returned by
r1. Yet, the current synchronization variable is updated whenever the index of

13

the most up-to-date slot changes. Therefore, for r2 to read a value older than
r1, it has to read current before r1. But this violates the precedence r1 → r2.
Hence the assumption is contradicted and the claim follows.

Atomicity of our register algorithm trivially follows from Theorem 4.3 and
Theorem 4.4 in combination.

5 Experimental Results

In this section we present a comparative performance study of our ARC algo-
rithm with some literature proposal. In particular, we selected the Readers-Field
(RF) wait-free algorithm presented in [2], still based on RMW instructions of-
fered by the underlying architecture, and Peterson’s wait-free algorithm [11].
For completeness of the analysis we also include a classical lock-based approach
(using read/write spin-locks still implemented using RMW instructions) not en-
suring wait-freedom. All these algorithms have been implemented according to
their original specification by relying on the C programming language and UNIX
API, plus the nesting of either RMW machine instructions used to manipulate
synchronization variables (like in ARC and RF) or memory-fence instructions
to guarantee correctness under TSO (like for Peterson’s algorithm). Also, in
all the implementations we relied on mmap() pre-allocation of all the buffers re-
quested by each algorithm. The source code for all the tested implementations
is available for free download3. In all the implementations, the “process entity”,
encapsulating the sequence of read or write operations accessing the register, is
instantiated via an individual thread, scheduled for execution under the control
of the operating system.

We tested the different algorithms deploying their implementations on two
different computing platforms, a physical one and a virtualized one. The former
is an HP ProLiant sever equipped with four 2GHz AMD Opteron 6128 processors
and 64 GB of RAM. Each processor has 8 cores, for a total of 32 CPU-cores,
which share a 12MB L3 cache (6 MB per each 4-cores set), and each core has a
512KB private L2 cache. The operating system is 64-bit Debian 6, with Linux
Kernel 2.6.32.5. The virtualized platform is an Amazon m4.10xlarge instance
equipped with 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processors offering
a total capacity of 40 vCPUs, equipped with 160 GB of RAM. This virtual
machine runs Ubuntu Server 14.04 LTS as the operating system, with Linux
Kernel 4.2.

We have conducted two different sets of experimental tests. In the first
set, we have generated a workload on the register which is similar in spirit to
the well-known Hold Model [25]. In particular, all concurrent threads execute
operations repeatedly on the register data structure. This means that read
and write operations are actually “dummy” operations which only execute the
ARC algorithms discussed in the previous section (or those of the competitors
of ARC)—each write operation simply copies a same content to the register,

3Code available at https://github.com/HPDCS/ARC .

14

https://github.com/HPDCS/ARC

and a read operation only retrieves the pointer to the valid register buffer. This
is an extreme scenario in which data processing has zero latency, and threads
make no other work than accessing the register data structure. The effect of
this behaviour is that the logical contention on the register data structure and
the physical one on the underlying hardware architecture is maximal. This
part of the experimentation allows us to assess the benefits of ARC’s optimized
synchronization strategy. In a second part, we have associated read and write
operations with actual processing—a write actually generates some data, and a
read scans the whole content of the retrieved buffer. In this second scenario we
can study the effect of different operations’ latencies.

Before discussing performance results, we recall again that ARC and RF
not only differ by the different amounts of readers they can handle—58 in RF
vs 232 − 2 in ARC. Rather, they also differ by the way RMW instructions
are exploited along the execution path of read/write operations accessing the
register. This aspect makes a comparative analysis of these two algorithms
interesting independently of the huge scale up of the readers count admitted by
our ARC proposal.

In Figure 1 we report throughput values (read/write operations per time
unit) while varying the number of threads for deploys of the different regis-
ter implementations on the 32 CPU-core physical machine. In these tests, one
thread continuously executes write operations on the register, while all the oth-
ers continuously execute read operations on the register. Each reported sample
is the average over 10 runs, with each run made up by at least 2×106 read/write
operations. No other workload has been activated on the machine, so we are
in the scenario of maximal concurrency in the access to the register by the ac-
tive threads, up to the maximum count of 32 threads that can be hosted by
the machine while still avoiding time-sharing concurrency (hence interference)
among them on a same CPU-core. Also, the different plots refer to 3 different
sizes of the register, a minimal size of 4KB (a single operating system page), an
intermediate size of 32KB, and a large size of 128KB. By the plots we see how
both ARC and RF outperform the other solutions at any thread count. Also,
ARC outperforms RF as soon as the thread count is increased beyond the value
8 or the register size is non-minimal, providing up to an order of magnitude
better throughput. The reason for this behavior is that RF executes an RMW
instruction (i.e. a FetchAndOr) upon any read, while our proposal ARC exe-
cutes a RMW instruction only if the write operation of a newer register value
is serialized before the execution of the statement R1 of the read operation in
Algorithm 2. Hence, ARC is more efficient (since it avoids the execution of
RMW instructions) upon reading a register content that is still valid (i.e. it did
not change since the last read operation executed by the same thread). This
scenario shows up when increasing the level of concurrency of read operations or
when the write operation takes longer time due to the larger size of the register
content to be posted by the writer—we recall that a memory copy is executed
upon a write. In both cases more threads will likely find a not-yet-updated reg-
ister value upon subsequent reads, a scenario which is captured more efficiently
by ARC, compared to RF, just avoiding the execution of RMW instructions.

15

In Figure 2 we report the throughput values that have been observed when
running on top of the virtualized platform with 40 vCPUs. These data confirm
what we already saw for executions on the physical machine, with the additional
indication that ARC performs better than RF even with minimal thread counts
and minimal register size, which indicates how the avoidance of the execution
of RMW instructions upon read operations in scenarios where newer writes
were not serialized before the reads allows to favor performance even more than
what happens with deploys on the 32 CPU-core physical machine. Moreover,
with respect to the execution on a physical machine, all wait-free algorithms
provide a non-negligible performance speedup over the lock-based implementa-
tion. In particular, in the best case we have a performance gain which is 2x the
one observed on the physical architecture. This is an indication of the bene-
fits which can be obtained when using wait-free synchronization on virtualized
architectures. Indeed, lock-based implementations can introduce an additional
slow down whenever the virtualized architecture reduces the computing power
allocated to the core holding the lock, due to CPU stealing by the underlying
hypervisor’s hardware architecture.

In Figure 3 we report throughput data when running on the 32 CPU-core
physical machine with a definitely scaled up thread count (up to 4000). In this
scenario, RF could not be tested (since, as said, it supports 58 reader threads
only). However, this test settings helped us to assess the performance by ARC
compared to Peterson’s algorithm and to the lock-based one when considering
time-sharing concurrency among the threads, hence interference among them
because of competition on CPU usage. By that data we see that both ARC and
the lock-based algorithm are not sensible to the increase of the threads count
and to the increase of the register size, even though ARC provides orders of
magnitude better throughput. This is not true for Peterson’s algorithm since it
is based on multiple copies when performing access operations. Such multiple
copies are clearly adverse to performance in time-sharing concurrency deploys
due to highly negative effects on locality and caching efficiency, especially for
larger register size.

Overall, ARC delivers better performance than all the tested solutions inde-
pendently of the type of deploy (physical vs virtual) and of the readers’ count
or register size. At the same time, it still allows a huge scale-up in the number
of readers compared to RF, which appeared to be the best performing literature
solution (compared to Peterson’s algorithm and the lock-based one) for deploys
on the used physical machine.

6 Conclusions

In this paper we have presented Anonymous Readers Counting, a multi-word
wait-free atomic (1,N) register algorithm targeting shared-memory TSO-consistent
parallel architectures. Our register enables up to 232 − 2 readers on 64-bit ma-
chines and avoids any intermediate copy of the register content upon any oper-
ation, while still using the classical lower bound of N + 2 buffers for ensuring

16

wait-freedom. It exploits Read-Modify-Write (RMW) instructions commonly
supported by off-the-shelf architectures, by also reducing the impact of actu-
ally running RMW instructions compared to the reference literature proposal
in [2], which also has the disadvantage of handling up to 58 readers only. The
performance benefits from our proposal compared to literature approaches have
been shown via a study based on deploys of the compared register implementa-
tions on both a parallel physical machine and a virtualized one. We have also
provided a proof of correctness of our register algorithm.

References

[1] M. Li, J. Tromp, and P. M. B. Vitányi, “How to share concurrent wait-free
variables,” Journal of the ACM, vol. 43, pp. 723–746, jul 1996.

[2] A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou, and P. Tsigas,
“Multiword atomic read/write registers on multiprocessor systems,” Jour-
nal of Experimental Algorithmics, vol. 13, no. 1, p. 1.7, 2009.

[3] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel QuickPath
Interconnect Architectural Features Supporting Scalable System Architec-
tures,” in Proceedings of the18th IEEE Symposium on High Performance
Interconnects, HOTI, pp. 1–6, IEEE, aug 2010.

[4] R. J. Safranek and M. J. Moravan, “QuickPath Interconnect: Rules of the
Revolution,” Dr. Dobb’s Journal, 2009.

[5] L. Lamport, “Concurrent reading and writing,” Communications of the
ACM, vol. 20, no. 11, pp. 806–811, 1977.

[6] L. Lamport, “On interprocess communication,” Distributed Computing,
vol. 1, pp. 86–101, jun 1986.

[7] M. P. Herlihy, “Wait-free synchronization,” ACM Transactions on Program-
ming Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[8] A. Silberschatz and P. Galvin, Operating System Concepts. Addison-Wesley
Publishing Company, 1994.

[9] G. Barrett, “Model Checking in Practice - The T9000 Virtual Channel
Processor,” in Proceedings of the First International Symposium of Formal
Methods Europe on Industrial-Strength Formal Methods, FME, pp. 129–
147, Springer-Verlag, 1993.

[10] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for
concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[11] G. L. Peterson, “Concurrent Reading While Writing,” ACM Transactions
on Programming Languages and Systems, vol. 5, pp. 46–55, jan 1983.

17

[12] H. Simpson, “Four-slot fully asynchronous communication mechanism,”
IEE Proceedings E (Computers and Digital Techniques), vol. 137, no. 1,
pp. 17–30, 1990.

[13] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables,” Journal of the ACM1,
vol. 42, no. 1, pp. 186–203, 995.

[14] P. M. B. Vitányi, B. Awerbuch, P. Vitanyi, and B. Awerbuch, “Atomic
shared register access by asynchronous hardware,” in 27th Annual Sympo-
sium on Foundations of Computer Science, SFCS, pp. 233–243, 1986.

[15] J. H. Anderson and M. Moir, “Universal constructions for multi-object op-
erations,” in Proceedings of the 14th annual ACM Symposium on Principles
of Distributed Computing, PODC, (New York, New York, USA), pp. 184–
193, ACM Press, 1995.

[16] P. Fatourou and N. D. Kallimanis, “A highly-efficient wait-free universal
construction,” in Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA, (New York, New York, USA),
p. 325, ACM Press, 2011.

[17] Z. Aghazadeh, W. Golab, and P. Woelfel, “Making objects writable,” in
Proceedings of the 2014 ACM symposium on Principles of distributed com-
puting, PODC, (New York, New York, USA), pp. 385–395, ACM Press,
2014.

[18] L. Zhu and F. Ellen, “Atomic snapshots from small registers,” in Proceedings
og the 19th International Conference on Principles of Distributed Systems,
OPODIS, Leibniz International Proceedings in Informatics, 2015.

[19] M. P. Herlihy, “Impossibility and universality results for wait-free syn-
chronization,” in Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing, PODC, (New York, New York, USA),
pp. 276–290, ACM Press, 1988.

[20] M. P. Herlihy and J. M. Wing, “Axioms for concurrent objects,” in Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL ’87, (New York, New York, USA), pp. 13–
26, ACM Press, 1987.

[21] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[22] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer on Memory Consis-
tency and Cache Coherence,” Synthesis Lectures on Computer Architecture,
vol. 6, no. 3, pp. 1–212, 2011.

18

[23] L. Lamport, “How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs,” IEEE Transactions on Computers, vol. C-
28, no. 9, pp. 690–691, 1979.

[24] J. Burns and N. A. Lynch, “Mutual Exclusion Using Invisible Reads and
Writes,” in Proceedings of the 18th Annual Allerton Conference on Com-
munication, Control, and Computing, pp. 833–842, 1980.

[25] J. G. Vaucher and P. Duval, “A comparison of simulation event list algo-
rithms,” Communications of the ACM, vol. 18, pp. 223–230, apr 1975.

19

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 4KB register size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 32KB register size

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 128KB register size

Figure 1: Throughput with different register size values (32 CPU-core physical
machine).

20

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 4KB register size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 32KB register size

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 128KB register size

Figure 2: Throughput with different register size values (40 vCPUs machine).

21

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)
 -

 lo
g

sc
al

e

Threads

ARC Peterson Lock

(a) 4KB register size

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)
 -

 lo
g

sc
al

e

Threads

ARC Peterson Lock

(b) 32KB register size

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)
 -

 lo
g

sc
al

e

Threads

ARC Peterson Lock

(c) 128KB register size

Figure 3: Throughput with largely-increased thread counts (32 CPU-core phys-
ical machine).

22

	1 Introduction
	2 Related Work
	3 Anonymous Readers Counting
	3.1 Basics
	3.2 Memory consistency model
	3.3 The Register Algorithm
	3.4 Speeding up free-slot searches

	4 Correctness Proof
	5 Experimental Results
	6 Conclusions

