arXiv:1711.00705v1 [cs.DC] 2 Nov 2017

Efficient Training of Convolutional Neural Nets on Large Distributed Systems

Sameer Kumar, Dheeraj Sreedhar
IBM Research - India
Bangalore, KA, India, 560045
sameerk@us.ibm.com
dhsreedh@in.ibm.com

Abstract—Deep Neural Networks (DNNs) have achieved im-
pressive accuracy in many application domains including im-
age classification. Training of DNNs is an extremely compute-
intensive process and is solved using variants of the stochastic
gradient descent (SGD) algorithm. A lot of recent research has
focussed on improving the performance of DNN training. In
this paper, we present optimization techniques to improve the
performance of the data parallel synchronous SGD algorithm
using the Torch framework: (i) we maintain data in-memory
to avoid file I/O overheads, (ii) we present a multi-color
based MPI Allreduce algorithm to minimize communication
overheads, and (iii) we propose optimizations to the Torch
data parallel table framework that handles multi-threading.
We evaluate the performance of our optimizations on a Power
8 Minsky cluster with 32 nodes and 128 NVidia Pascal P100
GPUs. With our optimizations, we are able to train 90 epochs
of the ResNet-50 model on the Imagenet-1k dataset using 256
GPUs in just 48 minutes. This significantly improves on the
previously best known performance of training 90 epochs of
the ResNet-50 model on the same dataset using 256 GPUs in
65 minutes. To the best of our knowledge, this is the best
known training performance demonstrated for the Imagenet-
1k dataset.

1. Introduction

Deep Neural Networks (DNNs) have achieved impres-
sive accuracy in many application domains such as im-
age classification and localization, object detection, speech
recognition and video classification [1f], [2], [3[]. In par-
ticular, the image classification challenge has resulted in
the development of several deep neural networks such as
AlexNet [1], GoogleNet [4], VGG [5[], Resnet [6] and
network in network (NiN) [7]. The imagenet dataset is a
large scale dataset for image ontology that is frequently
used in the research community. The Imagenet-1k dataset
contains 1.2 million images and 1,000 categories and the
Imagenet-22k dataset contains 7 million images and 22,000
categories.

The objective of DNNs is to learn the weight vector
that minimizes some measure of difference between the

Vaibhav Saxena, Yogish Sabharwal
and Ashish Verma
IBM Research - India
New Delhi, India, 110070
vaibhavsaxena@in.ibm.com
ysabharwal @in.ibm.com
vashish@in.ibm.com

actual output and the predicted output. Thus, a DNN essen-
tially solves a non-convex optimization problem, the most
commonly used technique being the mini-batch Stochastic
Gradient Descent (SGD). In this approach, the input samples
are split into small batches (mini-batches). Each batch is
then processed to calculate the gradients and update the
model weights. A pass through all the input images is
typically referred to as an epoch. The algorithm executes
multiple epochs (typically tens to hundreds) iteratively until
the desired accuracy is achieved.

Training of DNNs is an extremely compute-intensive
process involving convolutions and matrix multiplications.
Accelerators such as Graphic Processing Units (GPUs) are
quite efficient in handling such compute-intensive opera-
tions and are thus widely used to accelerate the training
process [2], [8]. Even with a GPU it can take several days
to train with certain models and datasets. This has motivated
researchers to explore efficient parallel and distributed SGD
techniques in order to bring down the training time [9], [10],
[L1]. The most common approach to parallelizing SGD is
the synchronous data-parallel SGD, wherein multiple work-
ers orchestrate to process a mini-batch collectively. Each
worker maintains a copy of the latest model. One mini-batch
is processed in every iteration by partitioning it amongst the
parallel workers. Each worker computes the gradients for its
partition and then the gradients across all the workers are
accumulated to update the model weights. At the end of
each iteration, every worker acquires the latest model with
the updated weights.

The performance of synchronous data-parallel SGD al-
gorithm depends on several factors. One of the factors is
the secondary storage I/O performance of the system. As
the images are stored on secondary storage and a random
set of images constituting the mini-batch have to be fetched
in every iteration, there is significant file I/O overhead due
to random disk accesses. One way to handle this issue is to
augment the system with flash storage or other high perfor-
mance storage solutions; these are typically costly. Another
important factor that affects the training performance is the
communication algorithm for accumulating the weights and
updating the models on the workers. Note that as we scale to
larger nodes, we would like to increase the mini-batch size

as well so that the compute to communication ratio remains
high and the compute resources are effectively utilized.
However, from an accuracy perspective, there is a limit to the
size of the mini-batch; increasing the mini-batch size beyond
a certain limit results in a drop in the accuracy. Therefore,
on very large nodes we have to work with smaller batch size
per worker. This leads to a lower compute to communication
ratio resulting in the communication algorithm becoming an
important factor in determining the training performance.
The Message Passing Interface (MPI) programming model
is used to parallelize various parallel computing applica-
tions. It provides a rich set of point-to-point and collective
operations. In this framework, the gradients are accumulated
using the MPI Allreduce collective. Many different algo-
rithms have been proposed for optimizing this collective in
research literature [12]], [[13]], [[14].

Many frameworks have been developed to enable train-
ing and inferencing of deep learning models. The most
notable ones are Caffe [15], Tensorflow from Google [16],
Torch [17]], MXNet [18]], Chainer [19] and Theano [20].
Each framework has its own advantages. Many of these
frameworks support distributed training as well.

In this paper we present techniques to optimize the
performance of the parallel synchronous SGD. We have
used the Torch framework since it is known to give a good
balance between a high level scripting language and a low
level compute efficient language. While the overall control
can be programmed in the scripting language LUA, all
the heavy-lifting tasks can be implemented in C and inter-
faced to LUA through an efficient foreign function interface
(FFI) in Torch. We evaluate the performance improvements
obtained using our optimizations on a POWERS8 minsky
cluster interconnected using the Mellanox Infiniband [21]],
[22]] network. The main contributions of this paper are as
follows:

e We present an in-memory data distribution strategy
to overcome the file I/O bottleneck. This optimiza-
tion is particularly useful on systems exhibiting low
file I/O performance. The strategy involves loading
the entire data into the (distributed) memory of
the system. An important aspect of this strategy is
periodic shuffle operations that ensure randomness
in the selection of the mini-batches. In our experi-
mental results, we demonstrate that this optimization
results in 33% improvement in the performance of
GooglenetBN and 25% improvement in performance
of Resnet-50 models using the Imagenet-1k dataset.

e We present an optimized multi-color algorithm for
the MPI Allreduce collective that is used for accu-
mulating the gradients from the workers. We show
that this algorithm takes 50-60% lesser time in com-
parison to the MPI Allreduce implementation of the
OpenMPI library.

e We present optimizations to the Torch data par-
allel table implementation for application multi-
threading. In our experimental results, we demon-
strate that these optimizations lead to a performance

improvement of 15-18% for the GooglenetBN and
Resnet-50 models.

o Combining all these optimizations we are able to
train 90 epochs of the ResNet-50 model on the
Imagenet-1k dataset using 256 GPUs in just 48 min-
utes. This significantly improves on the previously
best known performance of training 90 epochs of
the ResNet-50 model on the same dataset using 256
GPUs in 65 minutes. To the best of our knowledge,
this is the best known training performance demon-
strated for the Imagenet-1k dataset.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss work related to parallel SGD approaches
for deep learning. In Section 3, we briefly present the data
parallel distributed SGD framework; our optimizations are
developed on this framework. In Section 4, we present our
algorithmic optimizations, namely in-memory data strategy,
MPI optimizations and improvements to the Torch data
parallel table infrastructure. Next, in Section 5, we present
results from our experimental evaluation of the proposed op-
timizations. We finally present our conclusions in Section 6.

2. Related Work

There has been significant amount of work to speed-up
the training of deep neural networks on large distributed
compute infrastructure. Specifically, it corresponds to train-
ing Stochastic Gradient Descent (SGD) algorithm in a data
parallel way on a large number of nodes. There are multiple
challenges involved towards this goal, such as, large commu-
nication overhead during synchronizing the gradients across
different nodes, using a large batch size which often results
in lower accuracy, file I/O time, etc.

The Message Passing Interface (MPI) [23]], [24], a pro-
gramming model to parallelize various computing applica-
tions, is often used for efficient communication of gradients
across nodes. It provides a rich set of point-to-point and
collective operations. Acceleration of distributed SGD with
MPI calls has been presented before [15]], [25]. An approach
for distributed SGD with MPI is to designate one of the MPI
processes as a parameter server that collects gradients from
the peer processes and then sends updated gradients back to
the peers [25]]. Other approaches take advantage of reduction
trees via the peer-to-peer collective calls in MPI [[15]. More
details on the MPI usage and proposed improvements are
discussed later in Sections 3] and

As the number of nodes increase, the effective batch
size for SGD algorithm increases linearly which hampers
the final accuracy which can be achieved. In [26], authors
investigated the cause of poor performance of large batch
sizes as compared to small batch sizes. They concluded
that large batch size schemes results in sharp minimizers
and so their generalization performance is not as good
as the broad minimizers provided by small batch sizes.
They experimentally validated this hypothesis by conducting
several experiments with large and small batch sizes and
report accuracy numbers along with the sharpness of the

minimizers. In [27]], authors proposed a new learning rate
method in order to handle large batch-sizes (upto 8§192)
without affecting the accuracy. They also pipelined the
computation and communication of gradient of different
layers of the model to other nodes to minimize the impact of
communication overhead. They were able to complete the
training of Resnet50 model on Imagenetlk dataset in almost
1 hour, which was the best reported training time on 256
GPUs thus far.

Another way to alleviate the problem of large batch size
is to use asynchronous SGD. In the synchronous SGD case,
the gradients from all the workers are aggregated across all
the workers before the model parameters are updated. On
the other hand, in the asynchronous case, model parameters
are updated with a subset of workers without waiting for
all the workers to finish. The main challenges to address
is staleness of the gradients from workers and it’s impact
on convergence of the model parameters. A number of
different approaches have been proposed in the literature to
address these challenges [9]], [[10], [L1], [25], [28]]. However,
synchronous SGD still seems to outperform various asyn-
chronous approaches on large parallel systems and hence
continue to be used for large model/dataset training of deep
neural networks.

3. Data Parallel Distributed SGD

In this section we briefly describe the data-parallel dis-
tributed SGD algorithm; our optimizations are based on this
algorithm, outlined in Algorithm[I] We use the MPI+threads
based programming model to parallelize synchronous SGD.
We set up one MPI process per learner (compute node)
where each learner further comprises of multiple GPU.
Each GPU is driven by a separate thread within the MPI
process. We used Torch7 [29] and modified the Torch-MPI
package [30] to implement this data parallel distributed SGD
algorithm.

The model weights (W) are initialized on each GPU
with identical random weights. In each training iteration,
an effective batch of size B is selected for training in a
distributed manner. Let ¢ be the number of learners (nodes).
Each learner randomly samples a set of Bj,4e = B/N
images from the training data using a different random
number seed. These B,,,q4. images are then equally divided
across m GPUs within a node such that each GPU works
on a sample of Bgpy = Bpode/m images. Each GPU then
performs a forward and backward computation to compute
the gradients. The gradients from all the GPUs within a node
are accumulated by performing a local intra-node summa-
tion. In the next step, a global inter-node summation and
update of gradients across all the learners is performed using
MPI Allreduce collective routine. These updated gradients
on a node are broadcast to all the GPUs within the learner.
Finally, each GPU performs SGD to update its copy of the
model weights using the received updated gradients.

Algorithm 1 Data-parallel Distributed SGD

X: Training data

W: Model Weights

T': Number of training iterations

N: Number of learners (compute nodes)
m: Number of GPUs on each node

Initialize W with identical random values on all GPUs
fort=1to T do

Randomly sample Bj.q. images from X on each learner
(node i

Divide B4 images equally amongst m GPUs on a node

Compute gradient AWZ;) on GPU j of node i

Local intra-node summation on node i:

) _ ()
AW =3 AW
J
Global inter-node summation using MPI Allreduce:

N
AW® =3 " AW

3

Broadcast AW to all the GPUs within a node
Perform SGD on each GPU to compute W (¢+1)
end for

4. Parallelization and Optimizations

In this section, we describe our optimizations for the data
parallel distributed SGD algorithm based on the in-memory
distribution of the training data and an optimized algorithm
for MPI Allreduce.

4.1. In Memory Data Distribution

We analyzed the performance of our Torch based data
parallel distributed SGD implementation. We observed that
with 4x NVIDIA PASCAL GPUs on a single node, a criti-
cal scaling bottleneck was insufficient I/O throughput from
the file system. The Torch donkeys (work-stealing worker
threads) were unable to load the next samples of the mini-
batch before the GPUs finished executing the SGD com-
putation on the previous mini-batch samples. This severely
limited the image processing throughput on 4x P100 GPUs
on a single node.

In order to overcome this bottleneck, we developed a
novel Distributed In-Memory Data (DIMD) strategy for the
storing training and validation images. First we resized the
images such that shorter dimension is of size 256 and the
larger size is chosen preserving the aspect ration. Such
resizing is commonly used in deep learning experiments and
known to have negligible impact on recognition accuracy.
The resized images are compressed and concatenated into
two large files for the training and validation data sets,
respectively. In order to allow for efficient random access to
any image, we also maintain an index file which contains
the start location of each image along with its label id for
both these data sets. The cumulative size of both these sets is

about 74GB for Imagenet-1k [31]] and 300 GB for Imagenet-
22k.

If there is sufficient memory on each node, then the
entire dataset can be stored in its memory, otherwise the
data needs to be partitioned and only a subset of the data
is loaded on each node. If the data is partitioned then each
learner on a node does not have the view of the entire data
set. So we also designed a novel in-memory shuffle opera-
tion that randomly shuffles the images across the partitions.
This can be invoked after every fixed number of training
steps to ensure that the batch selection is fairly random.
The API’s developed for the DIMD can be summarized as
follows.

i) Partitioned Load. With this API each learner on a node
loads a sub-set of the dataset into memory. The size of the
sub-set is based on the available memory at each node. We
can divide the learners into groups such that each group of
learners collectively own the entire dataset. In one extreme,
if there is enough memory available on the learners, each
learner can hold the entire data set; thus each learner would
define a group. On the other extreme, if there is limited
memory on the learners, each learner would hold 1/¢ of the
data (where ¢ is the number of learners) and all the learners
would collectively form a group.

ii) Random in-memory batch load. With this API, each
learner can fetch a random batch (a set of images along with
its label) from memory.

iii) Shuffle data across learners (nodes). This API is
used to shuffle the partitions across the nodes. This is
implemented using the MPI AlIToAllV collective call. For
group based partitions, the shuffle could be restricted to
that particular group. This could be efficiently implemented
using the communicator group in MPL

The processing of an epoch with the DIMD strategy is
illustrated in Figure [T} The in-memory shuffle algorithm is
described in Algorithm |2} When the entire data set can fit in
the main memory of each node, then the data partitioning
can be achieved by each node having a partitioned set of
indices. The shuffle in this case just generation of random
permutation of the indices. During the SGD execution, an
in-memory JPEG decompresser is also used to decompress
images to generate image tensor objects that are used in the
CUDA enabled Torch compute kernels.

4.2. Multi Color MPI Collective Algorithms

We customized the MPI library to get optimal perfor-
mance on our platform. In this section we describe our
optimizations to the MPI Allreduce collective based on the
multicolor collective algorithm.

Multi-color collective algorithms [13]], [14] are tree-
based algorithms that execute the MPI collective operation
along several different paths of the network. In the k-
color Allreduce algorithm, the application payload is split
into k chunks. Each of the k chunks is summed along a
different spanning tree that contains all the nodes. The k-
color Allreduce algorithm executes k pipelined reductions
to k different roots and then broadcasts the result from

Compute Node Compute Node Compute Node

Learners Learners Learners

Random | Batch Fgtch

e

Data Shuffle

Random | Batch Fgtch Random | Batch Fi

Data Shuffle

@ Partioned Load to each Node

Concatenated Database on
Network File system

Figure 1. Distributed in-memory database and the 3 API’s for managing it

Algorithm 2 Distributed in memory shuffle

X: Training data as a tensor of size N x 3 x W x H
N, W, H : no. of images, width and height
r: Rank of the current node
S Size of the group in which current node belongs
X = loadPartition(r,S) // loads from network file server
m : no. of partitions, Partition X into m segments. // this is
to overcome the deficiency of MPI to handle more than 32 bit
offsets
for t =1 to m do
X = the tth sub-tensor from X
Partition X; into S segments
Calculate the lengths and offsets of each segment
Exchange lenghts and offsets with every node
Perform AllToAllv on X}
end for
let X be the collected AlltoAll output of all segments and let
N’ be the number of images at current node after exchange
Shuffle X" within the node : ,
perm = randor/n permutation(l, .., N)
for t =”1 to N ldo
X (i) = X (perm(t))
end for

those roots to the peer nodes. For each color, the nodes
are arranged in a k-ary BFS tree. While the tree paths
can share network links, the non-leaf nodes in the tree are
disjoint among the colors. Figure [2| shows four spanning
trees in a 4-color Allreduce performed on 8 nodes. The
root and the non-leaf nodes perform summing operations
for the color, while the leaf nodes only send chunks to
the parent nodes. In Figure [2] chunk-0 is summed on the
tree color-0 rooted at node O with node 1 as the only non-
leaf node. Similarly, chunk-1 is summed on the tree color-1
rooted at node 2 with node 3 as the only non-leaf node. The
network packets for each color are transferred concurrently
without any synchronization with other colors, resulting in
high throughput.

On a fat-tree network, the multiple colors enable each
color to use different links from the root to the non-
leaf nodes enabling concurrent progress on the network. If
mapped to consecutive nodes on the fat-tree network each
non-leaf nodes of color will also push the reductions and

tch

Figure 2. 4-color 4-ary trees on 8 Nodes. Note non leaf nodes are distinct
across colors

broadcasts to near neighbors resulting in minimization of
network contention. However, we have also observed good
link utilization with nodes arbitrarily mapped on to the fat-
tree.

Our implementation of the multi-color algorithm makes
calls to Infiniband verbs to initiate remote direct memory
(RDMA) read operations to enable nodes to pull data from
the downstream nodes on the tree. Direct calls to Infiniband
verbs enable low latency and higher level of pipelining on
the reduction trees. We also use the PowerPC altivec instruc-
tion set to sum network buffers with the local contributions
from the GPUs.

4.3. Data-Parallel Table Optimizations

The Data-Parallel module [32] in the Torch framework
is responsible for the parallelization of work amongst the
different GPU’s attached to the same SMP node. This
module schedules the various cuDNN kernels involved in
the forward and backward computation of every training
step. The scheduling of multiple GPUs is done using the
threading framework within Torch. Threads are created only
once during the initialization and jobs are submitted to the
threading system by specifying a job function and an ending
callback function. The job is subsequently executed on the
first free thread. The ending callback function is executed in
the main thread, when the job finishes - it is fully serialized.
While this technique is very elegant and easy to use, the
ending callback serialization does have overheads and it
is best to minimize its use. The current data-parallel table
implementation in Torch is shown in Figure [3]

The main advantage of this implementation is that the
same forward() implementation can be used for training
as well as inferencing. However, we have identified the
following drawbacks with this design:

1) the entire input batch is first moved to the first GPU
(GPU1) and then partitioned on to the other GPUs.
This results in more data movement as well as more
memory usage for the first GPU.

2) criterion evaluation is not parallelized.

3) the torch thread implementation results in more
serialization.

To overcome, these shortcomings we re-designed the
data-parallel table as shown in Figure 4| The input batch is

partitioned at the starting itself and is separately transfered
to each GPU. Criterion evaluation is part of the data-parallel
table and gets executed on every GPU. The number of
serialization steps have been reduced.

5. Experimental Evaluation

We ran our distributed Torch application on a POWERS
Minsky cluster interconnected by Infiniband two ConnectX-
5 adapters each capable of a raw bi-directional throughput
of 100Gbps. Each POWERS Minsky node has 20 processor
cores, 256GB of host memory and four NVIDIA Pascal
P100 GPUs. We ran the batch-normalized Googlenet [33]
(GoogleNetBN) and ResNet-50 network models available in
the open-source Torch packages [[17]], [34]]. For all the ex-
periments we used scale and aspect ratio data augmentation
as in [34]. The input image is a 224 x 224 pixel random crop
from a scaled image or its horizontal flip. The input image
is normalized by the per-color mean and standard deviation.

We followed the warm start learning-rate schedule in
[27]. The starting learning rate was fixed at 0.1. This is
linearly ramped to 0.12]“5—%, where £ is the batch size per
GPU and n is the the total number of workers (number of
nodes times number of GPUs per node). We use a 90 epoch
training regime with the learning rate dropped by a factor
of 10 after every 30 epochs. We use a batch size of 64 per
GPU for all the experiments unless otherwise specified.

We first independently study the performance improve-
ments with each of our optimizations. We first evaluate the
MPI optimizations followed by our novel DIMD approach
and finally the data-parallel table optimizations in the Torch
framework. We then study the total improvement we get by
combining all these optimizations and compare this with the
state of the art training performance.

5.1. Effect of MPI Optimizations

First we evaluate our MPI algorithm described in Section
and compare it with ring-based and default Open-
MPI algorithms. Figure [5] shows the throughput of a 4-
color MPI_Allreduce on 16 POWERS8 Minsky nodes with
64 GPUs. These nodes were connected by 2 Mellanox
ConnectX-5 adapters each with a bi-directional raw link
throughput of 100 Gbps. We also implemented a pipelined
ring algorithm where packets are reduced to a singe root
node along the ring then broadcast from the root to all peers
in the opposite direction. The throughput achieved with the
ring algorithm is also presented in Figure [5} The perfor-
mance of the default OpenMPI algorithm is also presented.
Note the multi-color algorithm outperforms both the default
OpenMPI algorithm and the ring algorithm.

In the next experiment, we evaluate the overall training
performance when using different MPI algorithms. We use
GoogleNetBN with a reduction payload of 93MB for this
experiment. The time to process one epoch is plotted for
8,16 and 32 learners in Figure [We observe that the
multi-color algorithm takes 50-60% lesser time than the
default OpenMPI. It can also be observed that all the three

Input Batch

DataParallelTable:forward()

Multi-Threaded Forward Compuation

DataParallelTable:backward()

Multi-Threaded Backward Compuation

—»

Transfer from
CPU to GPU1

|_r,|

GPU1 transfers
to all other GPUs

GPU 1 Forward
Computation

Qutputs

GPU 1 Concatenate|

Criterion
Forward GPU 1

]

Criterion
Backward GPU 1|

GPUL transfers |
to all other GPUs

GPU 1 Backwartl l. GPU 1 Reduce
C i /

Figure 3. Data-Parallel-Table Implementation in the current Torch framework which parallelizes the backward-forward computation on multiple GPUs
attached to the same node

Input as a
list of Batchs

Allreduce Throughut (MB/s)

Figure 5. MPI_Allreduce throughout of various collective algorithms from

CPU buffers

MultiThreaded Scheuduling

DataParallelTable:trainStep()

Ly

]

Transfer from » GPU 1 Forward w.| Criterion > Criterion GPU 1 Backwarg GPU 1 Reduce
CPU to GPU1 Computation Forward GPU1 Backward GPU1 Computation |I

Transfer from | GPU 2 Forward | Criterion > Criterion GPU 2 Backwar(

CPU to GPUZ Computation Forward GPUZ2 Backward GPU2 Computation |

Transfer from p| GPUN Forward a| Criterion Criterion GPU N Backwar !

CPU to GPUN Computation Forward GPUN Backward GPUN| Computation |

Figure 4. Optimized Data-Parallel-Table Implementation

—e—OpenMP| MxM

—+—Multi Color Allreduce

= Ring Algorithm

IS
8
3

MPI Algorithm Performance - Imagenet-1k

7 Multi-Color
350 / @7 Ring
273 Open-MPI
300
(7

B 250}
@
E
; 200
3 77
a
I
T 150 -
&

10} w7 %

50

0
8 16 32
No. of Nodes

Figure 6. Epoch time in seconds at various node counts with different MPI
Allreduce schemes in our distributed Torch application

algorithms scale with the number of learners but the multi-
color algorithm gives the best scaling efficiency of 90.5%.

5.2. Effect of DIMD Strategy

Next, we evaluate the performance advantages of our
novel DIMD I/O technique. First we study the efficiency of
our data set shuffle operation. We evaluate the performance

Shuffle time Imagenet-22K

25| 50

N
S
=
8

-
&
w
8

Shuffle Time (s)
Memory Per Node (GB)

—
S

No. of Nodes

Figure 7. Time required for shuffle along with average memory utilization
for each node for Imagenet-22k dataset

Shuffle time Imagenet-1K

o

Group Shuffle with 32 Nodes- Imagenet-22K

w
[

60

w
3

50

N
&

=

]

N
3
Memory Per Node (GB)

Shuffle Time (s)
.
=]

-
S

«

I u

1 2 4 8
No. of Groups

Figure 9. Time required for the group based shuffle along with average
memory utilization for each node for Imagenet-22k dataset on 32 nodes.

1/0 optimisation scaling - Imagenet-1k

w
G
S

[0 Googlenet

Shuffle Time (s)

IS

w
<3
S

N
&
S

N
S
S

[0 Resnet-50
78 Googlenet 1/0 Opt
772 Resnet-50 I/0 Opt

NN\

Memory Per Node (GB)

4 8 16
No. of Nodes

Figure 8. Time required for the shuffle along with average memory utiliza-
tion for each node for Imagenet-1k dataset

using two datasets, Imagenet-1k and Imagenet-22k. The
training dataset of Imagenet-1k has 1000 classes and has
1.2 million images in total. Imagenet-22k has 22,000 classes
and has 7 million images. Using the concatenation technique
described in Section [4.1] the training data set along with the
map indices of Imagenet-1k form a single file of size 70 GB
and for Imagenet-22k they form a single file of size 220 GB.
First, we consider the situation where the dataset is equally
partitioned among all the workers. The results are shown in
Figures [7] and [8] The shuffle-time along with the average
memory utilization is plotted for 8, 16 and 32 learners. We
observe that the time required to shuffle the data amongst
the learners decrease with increasing number of learners.
Note that as the number of learners is doubled, the data
held by each learner is halved but now the data needs to
be exchanged amongst double the number of learners. For
Imagenet-22k the time to shuffle the entire data among 32
learners is just 4.2 seconds.

We now evaluate the performance of group-based shuffle
when the data set is partitioned among a subset (group)
of learners, i.e., a subset of learners collectively own the
entire dataset. We consider the Imagenet-22k dataset with

,_.
&
S

Per Epoch Time (s)

=
S
S

o
3

o

No. of Nodes

Figure 10. Epoch time in seconds at various node counts with and without
DIMD optimization for Imagenet-1k in our distributed Torch application.

32 learners split into 1, 4, 8 and 16 groups. The time
to shuffle is plotted in Figure 0] It can be observed that
there is not much improvement with the group based shuffle
(compared to single group). This is explained by the fact that
all the connections are symmetrical in the cluster that we did
our experiments on. Group based shuffles are expected to
give performance gains over non-group based shuffle when
locality can be exploited to create groups that are better
connected amongst themselves.

Next, we study the performance gains of DIMD on the
overall training throughput. We use the optimal multi-color
ring algorithm for reduction in these experiments. The time
to process one epoch for 8,16 and 32 learners with and
without DIMD optimizations are plotted in Figures [T0] and
[[T}We present results for both GooglenetBN and Resnet-50.
For Imagenet-1k dataset, the proposed DIMD optimizations
improve the per-epoch time for GooglenetBN by 33% and
Resnet-50 by 25%.

12000 1/0 optimisation scaling - Imagenet-22k

[Googlenet
[Resnet-50
10000 |- 7 Googlenet 1/0 Opt
T 77 Resnet-50 I/0 Opt

8000 |- [N

6000

Per Epoch Time (s)

4000 |-

2000 |

N
|
\

/%

16 32
No. of Nodes

3

Figure 11. Epoch time in seconds at various node counts with and without
DIMD optimization for Imagenet-22k in our distributed Torch application.

300 Data Parallel Table optimisation scaling - Imagenet-1k

[Googlenet
[0 Resnet-50
250 7 Googlenet DP Opt
2 Resnet-50 DP Opt

200

150 | f S

Per Epoch Time (s)

100} [

No. of Nodes

Figure 12. Epoch time in seconds at various node counts with and without
data-parallel optimizations in our distributed Torch application.

5.3. Effect of Data Parallel Table Optimizations

We next evaluate the performance improvements with
our Data parallel table optimizations. For these experiments,
we use the multi-color ring algorithm for reduction along
with the DIMD optimizations. The time to process one
epoch for 8, 16 and 32 learners with and without the data
parallel table optimizations are plotted in Figure [I2] We
present results for both GooglenetBN and Resnet-50. We
see that the proposed optimizations improve the per-epoch
time by 15% for GooglenetBN and by 18% for Resnet-50.
The improvement in scaling is marginal.

5.4. Accuracy Evaluation

In this section, we finally evaluate the accuracy results of
our distributed classifier. We evaluate the Top-1 validation
accuracy for 8, 16 and 32 node runs; this is the percentage
of the number of times the topmost predicted output is
correct for Imagenet-1k. The accuracy results are plotted as
a function of training time. Resnet-50 results are presented
in Figure [13] and GooglenetBN results in Figure [4] In

@
S

Resnet-50 Top-1 Accuracy

PRI,

Topl Accuracy %
w - w (=] ~
S S S S S

N
oS

+—+ 8 Nodes
~|*— 16 Nodes [{
=—a 32 Nodes

0 i i i i n
0 1 2 3 4 5 6 ok

Training Hours

10

Figure 13. Validation top-1 accuracy achieved over time in hours on
different node counts for Resnet-50

80 Googlenet Top-1 Accuracy

e pvveey

=3 ~
=] =]

w
=]

w
o

Topl Accuracy %
5

N
=

+—+ 8 Nodes
~|{*— 16 Nodes [{
=—a 32 Nodes

—
15}

0 i i i i i i N N
0.0 05 10 15 2.0 25 3.0 35 4.0 45

Training Hours

Figure 14. Validation top-1 accuracy achieved over time in hours on
different node counts for GooglenetBN

Figures [T5] and [T we present the objective function error as
a function of training time for Resnet-50 and GooglenetBN
respectively. We note that none of the optimizations we
presented have any impact on the final accuracy of the
classier. These results are presented to ensure correctness
and completeness.

5.5. Total Improvement and Comparison with
state-of-the-art

In Table [T, we summarize the total improvement ob-
tained with our contributions. We take the open source code
of [17] as the base. It should be be noted that there is no
distributed Torch code available in open source. We created
a distributed version with publicly available openMPI. This
is the base version for our comparisons. We show improve-
ments in the range of 58-72% for GooglenetBN and in the

Resnet-50 Error

+—+ 8 Nodes
+—+ 16 Nodes | |
=—a 32 Nodes

Error

Training Hours

Figure 15. Error as function of training time in hours on different node
counts for Resnet-50

Googlenet Error

+—+ 8 Nodes
+— 16 Nodes | |
=—u 32 Nodes

Error

i i i
0.0 0.5 10 15 20 25 3.0 35 4.0 4.5

Training Hours

Figure 16. Error as function of training time in hours on different node
counts for Googlenet

range 110-130% for Resnet-50. The peak accuracy obtained
is also shown for reference.

In Table 2] we compare our results with some of the
state-of-the-art results, [27] and [35]], on the same data sets.
In [27]], the authors use the same hardware as the one used in
this paper, Nvidia P100 GPUs. With 256 P100 GPUs, they
were able to run 90 epochs of Resnet-50 in 65 minutes. The
peak accuracy obtained was 76.2%. With 256 P100 GPUs
we could completed 90 epochs in just 48 minutes and reach
a peak accuracy 75.4%. We used a batch size of 32 per GPU
for this experiment. We note that the difference between
the two implementations are only in hyper-parameters; from
a computation perspective, both are identical. In [35]], the
authors present a distributed implementation using Intels
Knights Landing (KNL) processor. With 512 KNL proces-
sors they were able to complete 90 epochs in 60 mins and
reach a peak accuracy of 74.7%.

6. Conclusions and Future work

We described our optimization techniques to improve the
performance of data-parallel synchronous SGD algorithm
used in distributed DNN training. Our techniques included
an in-memory data distribution strategy to overcome the
file I/O bottleneck, an optimized multi-color algorithm for
the MPI Allreduce collective, and optimization to the Data
Parallel Table module in Torch.

Some of our optimization techniques, such as in-memory
data distribution, are generic enough to be used in other
Deep Learning frameworks for improving the training time
on systems that exhibit slow file I/O performance.

In future, we would like to explore the use and impact
of our optimizations for the case of asynchronous SGD. For
example, in-memory data distribution technique should also
improve the data loading performance in the asynchronous
case and yield an overall gain in the training performance.
However, being an asynchronous setting, different methods
have to be designed to handle data shuffle, etc.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” in Proceedings of
2012 Neural Information Processing System, 12 2012.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A.r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury,
and T. Sainath, “Deep neural networks for acoustic
modeling in speech recognition,” [EEE Signal Processing
Magazine, vol. 29, pp. 82-97, November 2012. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
deep-neural-networks-for-acoustic-modeling-1in-speech-recognition/

[3] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Go-
ing deeper with convolutions,” CoRR, vol. abs/1409.4842, 2014,
http://arxiv.org/abs/1409.4842.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014,
http://arxiv.org/abs/1409.1556.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” CoRR, vol. abs/1512.03385, 2015,
http://arxiv.org/abs/1512.03385.

[71 M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol.
abs/1312.4400, 2013, http://arxiv.org/abs/1312.4400.

[8] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep big simple neural nets excel on handwritten digit recognition,”
CoRR, vol. abs/1003.0358, 2010. [Online]. Available: http://arxiv.
org/abs/1003.0358

[91 J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems,
ser. NIPS’12, 2012, pp. 1223-1231.

[10] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd
for distributed deep learning,” 11 2015.

[11] J. Chen, R. Monga, S. Bengio, and R. Jézefowicz, “Revisiting
distributed synchronous SGD,” 2016. [Online]. Available: http:
//arxiv.org/abs/1604.00981

https://www.microsoft.com/en-us/research/publication/deep-neural-networks-for-acoustic-modeling-in-speech-recognition/
https://www.microsoft.com/en-us/research/publication/deep-neural-networks-for-acoustic-modeling-in-speech-recognition/
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981

Model Nodes | Time per epoch (s) | Time per epoch (s) | Speedup | Accuracy
open source fully Optimised

GooglenetBN 8 249 155 60% 74.86%
GooglenetBN 16 131 76 72% 74.36%
GooglenetBN 32 65 41 58% 74.19%
Resnet-50 8 498 224 120% 75.99%
Resnet-50 16 251 109 130% 75.78%
Resnet-50 32 128 58 110% 75.56%

TABLE 1. SUMMARY OF TOTAL PERFORMANCE IMPROVEMENT ALONG WITH THE PEAK ACCURACY OBTAINED FOR THE CLASSIFIER. THE BASE
VERSION IS [[17]] ALONG WITH THE PUBLICLY AVAILABLE OPENMPI

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Description Hardware | Epochs | Batchsize | Accuracy Time
Priya et al [27] | 256 P100 90 8k 76.2 % 65 mins
You et al [35] | 512 KNL 90 32k 747 % 60 mins

Our work 256 P100 90 8k 754 % | 48 mins

TABLE 2. COMPARISONS WITH [27]] AND [35]]

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
collective communication operations in mpich,” Int. J. High Perform.
Comput. Appl., vol. 19, no. 1, pp. 49-66, Feb. 2005. [Online].
Available: http://dx.doi.org/10.1177/1094342005051521

S. Kumar, S. Sharkawi, and N. J. K. A., “Optimization and analysis
of MPI Collective Communication on Fat Tree networks,” in In
Proceedings of International Parallel and Distributed Sympossium
IPDPS’16, 5 2016.

S. Kumar and D. Faraj, “Optimization of MPI_Allreduce on the Blue
Gene/Q Supercomputer,” in Proceedings of the 20th European MPI
Users’ Group Meeting, ser. EuroMPI ’13, 2013, pp. 97-103.

F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “Fire-
Caffe: near-linear acceleration of deep neural network training on
compute clusters,” in In Proceedings of Computer Vision Pattern
Recognition, CVPR’16, 6 2016.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. J. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. J6zefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: Large-scale machine learning on heterogeneous distributed
systems,” vol. abs/1603.04467, 2016, http://arxiv.org/abs/1603.04467.

“ImageNet Multi-GPU Torch package,” 2015,

https://github.com/soumith/imagenet-multiGPU.torch.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” in Proceedings
of Workshop on Machine Learning Systems (LearningSys) in The
Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS), 2015.

W. Ding, R. Wang, F. Mao, and G. W. Taylor, “Theano-based large-
scale visual recognition with multiple gpus,” vol. abs/1412.2302,
2014, http://arxiv.org/abs/1412.2302.

Performance Optimization and Tuning Techniques for IBM Proces-
sors, including IBM POWERS, An IBM Redbooks publication.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “ConnectX-2 In-
finiBand Management Queues: First Investigation of the New Support
for Network Offloaded Collective Operations,” in Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, ser. CCGRID "10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 53-62.

Message Passing Interface Forum, “MPI-2.2:A Message-Passing In-
terface Standard Version 2.2,” 2009, http://mpi-forum.org/docs/mpi-
2.2/mpi22-report/mpi22-report.htm.

“MPI: A Message-Passing Interface Standard Version 3.1, 2015,
http://mpi-forum.org/docs/mpi-3.1/mpi31-report/mpi3 1-report.htm.

Y. L. S. Zhang, A. Chromanska, “Deep learning with Elastic Aver-
aging SGD,” in Proceedings of 2015 Neural Information Processing
System, 12 2015.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” CoRR, vol. abs/1609.04836, 2016. [Online].
Available: http://arxiv.org/abs/1609.04836

P. Goyal, P. Dolldr, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677,
2017. [Online]. Available: http://arxiv.org/abs/1706.02677

“Asynchronous decentralized parallel stochastic gradient descent,”
2015.

“Torch PPC64 distribution,” https://github.com/PPC64/torch-distro.
“MPI for Torch,” https://github.com/sixin-zh/mpiT.

“IMAGENET: Large Scale
lenge 2012 (ILSVRC2012),”
net.org/challenges/LSVRC/2012/.

“Torch DataParallelTable,” https://github.com/torch/cunn/blob/master/-
doc/cunnmodules.md.

Visual
2012,

Recognition ~ Chal-
http://www.image-

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015, http://arxiv.org/abs/1502.03167.

“Torch ResNet package,” 2016, https://github.com/facebook/fb.resnet-
.torch.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“100-epoch ImageNet Training with AlexNet in 24 Minutes,” ArXiv
e-prints, Sep. 2017. [Online]. Available: https://arxiv.org/abs/1709.
05011

http://dx.doi.org/10.1177/1094342005051521
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1709.05011
https://arxiv.org/abs/1709.05011

	1 Introduction
	2 Related Work
	3 Data Parallel Distributed SGD
	4 Parallelization and Optimizations
	4.1 In Memory Data Distribution
	4.2 Multi Color MPI Collective Algorithms
	4.3 Data-Parallel Table Optimizations

	5 Experimental Evaluation
	5.1 Effect of MPI Optimizations
	5.2 Effect of DIMD Strategy
	5.3 Effect of Data Parallel Table Optimizations
	5.4 Accuracy Evaluation
	5.5 Total Improvement and Comparison with state-of-the-art

	6 Conclusions and Future work
	References

