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ABSTRACT

Octo-Tiger is a code for modeling three-dimensional self-gravitating astrophysical fluids. It was
particularly designed for the study of dynamical mass transfer between interacting binary stars.
Octo-Tiger is parallelized for distributed systems using the asynchronous many-task runtime sys-
tem, the C++ standard library for parallelism and concurrency (HPX) and utilizes CUDA for its
gravity solver. Recently, we have remodeled Octo-Tiger’s hydro solver to use a three-dimensional
reconstruction scheme. In addition, we have ported the hydro solver to GPU using CUDA kernels.
We present scaling results for the new hydro kernels on ORNL’s Summit machine using a Sedov-
Taylor blast wave problem. We also compare Octo-Tiger’s new hydro scheme with its old hydro
scheme, using a rotating star as a test problem.

Keywords Octo-Tiger · High Performance Computing · HPX · Asynchronous Manytask System · CUDA
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1 Introduction

Octo-Tiger is an astrophysics finite volume hydrodynamic
code for simulating the evolution of stellar systems [1].
Octo-Tiger consists of several modules, e.g. hydro, grav-
ity, and radiation. The gravity is solved based on the fast
multipole method using adaptive octrees. The hydro mod-
ule solves the mass, momentum and energy equations of
an inviscid fluid in a rotating frame of reference, which re-
duces numerical viscosity effects. Recently, we improved
the accuracy of the hydro module by including a full three-
dimensional reconstruction technique (see a thorough in-
troduction of this technique in [1]). With the fully three-
dimensional reconstruction, the hydro module became the
hotspot of the application. Here, we present and test its
initial GPU implementation. Our radiation module, still in
the testing phase, uses an explicit transport scheme with
the reduced speed of light approximation, coupled to an
implicit scheme for the radiation-hydro coupling terms,
in a manner similar to Skinner et al. [2].

To validate the theoretical claim that the full three-
dimensional reconstruction technique results in more ac-
curacy, a rotating star simulation using the old and new
hydro modules with the same gravity module were ex-
ecuted. The error and convergence of both methods is
compared to validate the theoretical claim with numeri-
cal results, see Section 6. However, this paper focuses on
the task-based execution using adaptive mesh refinement,
resulting in some irregular parallelism. The task-based
approach helps us with properly parallelizing the tree-
traversals. As we strive for the lowest time per timestep
possible, this in turn means we have to process millions of
cells in sub-second runtimes. This means we have a task-
graph of extremely short running compute kernels mixed
with the communication and data transfers.

We are revisiting the performance of the gravity module
and studying the performance of the new hydro module on
ORNL’s Summit. Octo-Tiger’s scaling capabilities have
been previously shown: NERSC’s Cori [3] and on CSCS
Piz Daint [4], however, in these measurements an older
version of the hydro module was used. We have experi-
ence running Octo-Tiger and the C++ standard library for
parallelism and concurrency (HPX) [5] on x86 systems
and CRAY based systems, but not much previous experi-
ence with distributed runs on IBM® Power9™ systems.

First, the hydro module for the Sedov-Taylor blast wave
is studied. Second, a rotating star for the combination
of the hydro and gravity module is simulated. For both
problems, we show the node level scaling for CPU and
CPU+GPU runs on a single node. Note that due to the
different implementations of the hydro kernels, especially
the more computationally intense reconstruction of the
fluxes in the new implementation, we can not directly
compare the scaling results.

In addition, analyzing such large task graphs can be rather
challenging, see Figure 1. This is the first time we employ
APEX with CUDA support to get combined profiling of

the CPU and GPU tasks. CPU-only profiling with APEX
has been shown in [6].

The paper is structured as follows: Section 2 covers the
related work. Section 3 sketches the software framework.
Section 4 introduces Octo-Tiger’s new hydro module and
its GPU acceleration. Section 5 shows the node level and
distributed scaling of Octo-Tiger on Summit. Section 6
compares the accuracy of the new three-dimensional full
reconstruct of the hydro kernel with the previous kernel.
Finally, Section 7 concludes the paper.

2 Related work

There are many astrophysics codes which combine hy-
drodynamic and gravity solvers for the simulation of as-
trophysical fluids. Here, however, we are focusing on
those which have two additional properties that Octo-
Tiger has: 1) They are accelerated by an asynchronous
many-task system (AMT) and 2) They use adaptive grid
refinement. ChaNGa (Charm N-body Gravity solver) [7]
performs collisionless N-body simulations for cosmolog-
ical simulations or simulations of isolated stellar sys-
tems. A moving-mesh hydrodynamic solver was added
to ChaNGa [8] together with the implementation of mul-
tiple time-steps techniques to form the code MANGA [9],
suitable for simulating interacting binary stars. Enzo-E
/ Cello (formerly Enzo-P) [10], which is currently under
active development, is designed for astrophysics simula-
tions, including star formation and cosmology applica-
tions. Cello provides the AMR feature within Enzo-E.
Both of these codes use the AMT Charm++ [11]. An-
other AMR-based code is Castro [12], part of the AMReX
Astrophysics suite utilizing the more traditional MPI+X
approach. The Athena++ code, a C++ rewrite of the
magneto-hydrodynamic code Athena C, implements an
adaptive mesh refinement and uses MPI+OpenMP for
its parallelization [13]. A GPU-accelerated version of
Athena++, K-Athena, was refactored using Kokkos to
achieve better performance and portability [14]. All these
codes attempt to exploit high abstraction programming for
the parallelization of their code to display scaling on ex-
ascale supercomputers. For example, Charm++ and the
AMT used by Octo-Tiger, HPX, have very similar pro-
gramming models. From an application developer per-
spective, HPX can be seen as an abstraction to C++ and
Charm++ more as a standalone library [15]. According to
this survey [16] HPX has the highest technical readiness.
Two of the codes, K-Athena and Castro, have recently
reported their scaling and performance on OLCF’s Sum-
mit [14, 17]. We aim to report Octo-Tiger’s performance
on Summit as well, in particular after upgrading the hydro
solver and porting it to GPU CUDA kernels. Since two of
the main functionalities of the code, the gravity and hy-
dro solvers, can be executed on GPUs, it is interesting
to study the scaling on numerous GPUs. Although a di-
rect comparison between the performance of codes is not
trivial, a simple basic measurement of interest is the num-
ber of cells (zones) updated per second (or per microsec-
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onds). Castro reported a value of 130 zones/µseconds on
one Summit node [17], while K-Athena reported a peak
value of > 100 zones/µseconds [14].

3 Software framework

3.1 C++ standard library for parallelism and
concurrency

HPX is the C++ standard library for parallelism and con-
currency. It exposes an API that fully conforms to the
recent C++ standards [18–21] on top of an asynchronous
many-task runtime system (AMT). It has been described
in detail in other publications, such as [5, 22–25]. In the
context of this paper, HPX has been used for two pur-
poses. a) to coordinate the asynchronous execution of
a multitude of heterogeneous tasks (both on CPUs and
GPUs), thus managing local and distributed parallelism
while observing all necessary data dependencies, and b)
as the parallelization infrastructure for executing CUDA-
kernels on the CPUs via the asynchronous HPX backend.

3.2 APEX

APEX [26] is a performance measurement library for dis-
tributed, asynchronous multitasking systems. It provides
lightweight measurements without perturbing high con-
currency through synchronous and asynchronous inter-
faces. To support performance measurement in systems
that employ user-level threading, APEX uses a depen-
dency chain in addition to the call stack to produce traces
and task dependency graphs. The synchronous APEX
instrumentation application programming interface (API)
can be used to add instrumentation to a given run time and
includes support for timers and counters. The NVIDIA
CUDA Profiling Tools Interface [27] provides CUDA host
callback and device activity measurements. Additionally,
the hardware and operating system are monitored through
an asynchronous measurement that involves the periodic
or on-demand interrogation of the operating system, hard-
ware states, or runtime states (e.g., CPU use, resident set
size, memory “high water mark”). The NVIDIA Manage-
ment Library interface [28] provides periodic CUDA de-
vice monitoring to APEX. In previous work [29], APEX
was extended to capture additional timers and counters
related to CUDA device-to-device memory transfers, as
well as tracking memory consumption on both device and
host when requested with the cudaMalloc* API calls.

Tracing measurement is typically used by application de-
velopers to understand timing and dependency relation-
ships between different tasks within an application. When
tracing to the Open Trace Format (OTF2) or Google Trace
Events Format, each concurrent CUDA Stream is as-
signed three virtual “threads” to track kernel, memory and
synchronization activity. This is necessary because these
three classes of events are not perfectly nested timers –
there is a potential for asynchronous overlap – which are
a requirement for the OTF2 tracing library (Google Trace

Events are more forgiving). However, each operation
class within a Stream does have a guaranteed ordering,
so this segregation of event types is sufficient to meet the
requirements of the tracing libraries and formats. How-
ever, because the Octo-Tiger CUDA implementation uses
up to 128 concurrent streams per process (along with the
actual HPX worker and helper threads on the CPU), even
a relatively small run with 6 ranks per node can result in
over 2400 unique “threads” of execution, and a collection
of trace files over 27GB in size from just 25 iterations.
To work around this issue of scale, APEX was extended
to support task dependency trees to complement the ex-
isting task dependency graph support. The tree is a sum-
mary representation of the task dependency relationships
(task types, not individual tasks), revealing the full depen-
dency chain and not just immediate parent/child relation-
ships. While this can result in tree representations that
are larger than the graph representation – due to expanded
recursions and continuations, see Figure 1b for an exam-
ple – the trees are still quite manageable and helpful in
diagnosing problems in programming models like HPX
that do not have a meaningful callstack context but do
have a task dependency context, including tasks and other
activity offloaded to GPU devices. To complement the
taskgraph and tasktree data in the absence of a full trace,
APEX also captures task and counter scatterplot data, in-
dicating on the x axis when the task started or the counter
was captured, and the y axis contains the duration of the
task or the value of the counter. The tasks are sampled
using a user-specified fraction (default 1%) whereas the
counters are sampled at every value capture. This data
collection allows the application developer to capture a
time sequence of data without the filesystem overhead of
a full event trace. Examples are shown in Section 5.

4 Octo-Tiger

In this section, we briefly introduce the modules of Octo-
Tiger studied in this paper, followed by details on how
we integrate their GPU implementation with HPX. For a
more general overview of the modules themselves, we re-
fer to Octo-Tiger’s method paper [1].

4.1 Octo-Tiger’s Gravity Solver

Octo-Tiger uses a fast multipole method (FMM) for solv-
ing the gravity [30]. This particular implementation of
the FMM globally conserves both linear and angular mo-
menta to machine precision, and, when coupled to the
hydro-dynamics solver, also globally conserves energy to
machine precision. The solver uses a third order multi-
pole expansion. Its accuracy can be varied by adjusting
the opening criterion, θ. Lower values of the opening
criterion lead to stricter multipole acceptance criteria, re-
quiring that multipoles be further away to interact. This
increases the solver’s accuracy at the cost of more com-
putation time.
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Elapsed Time: 337.257 seconds
Cores detected: 176
Worker threads observed: 7
Available CPU time: 2360.8 seconds

APEX MAIN:
total calls: 1
total time: 337.257

dijkstra_termination_action:
total calls: 2

total time: 0.000131448

cleanup_buffers_action:
total calls: 1

total time: 1.82647

timestep_driver_ascend_action_type:
total calls: 1

total time: 0

step_action_type:
total calls: 54
total time: 0.00935498

output_stage3_action:
total calls: 3
total time: 0.000551028

output_stage2_action:
total calls: 3
total time: 0.252347

output_stage1_action:
total calls: 3
total time: 0.363389

diagnostics_action_type:
total calls: 54

total time: 0.112916

primary_namespace_decrement_credit_action:
total calls: 2019

total time: 0.0187507

get_child_client_action_type:
total calls: 1

total time: 0

cudaEventQuery:
total calls: 3.01804e+06

total time: 15.824

cudaEventCreateWithFlags:
total calls: 128

total time: 1.05334

force_nodes_to_exist_action_type:
total calls: 5932

total time: 0.168987

N3hpx10components6server23create_component_actionI11node_serverJ13node_location11node_clientddxmmmEEE:
total calls: 24

total time: 0.0228777

initialize_action:
total calls: 1
total time: 3.31727

schedule_parcel:
total calls: 629774
total time: 26.1953

run_helper:
total calls: 1
total time: 0.00168603

primary_namespace_increment_credit_action:
total calls: 128

total time: 0.00426194

notify_worker_action:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 76012
total time: 0.751823

set_value_action_boolmanaged_component_tag:
total calls: 1

total time: 0

primary_namespace_route_action:
total calls: 95

total time: 0.00487213

update_agas_cache_action:
total calls: 78

total time: 0.000578047

regrid_scatter_action_type:
total calls: 111

total time: 0.0173313

base_set_event_action:
total calls: 1

total time: 0

call_shutdown_functions_action:
total calls: 1

total time: 0

primary_namespace_colocate_action:
total calls: 2

total time: 0.000101449

set_child_aunt_action_type:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 118

total time: 0.175892

N3hpx4lcos19base_lco_with_valueIxxNS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 18

total time: 0.173986

copy_to_locality_action_type:
total calls: 6

total time: 0.00100927

set_value_action_naming_id_typemanaged_component_tag:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 100

total time: 0.222998

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 2566

total time: 1.95519

send_hydro_boundary_action_type:
total calls: 1

total time: 0

background_work:
total calls: 2566
total time: 0.0596008

regrid_gather_action_type:
total calls: 100

total time: 0.0163684

hpx_destroy_component_action:
total calls: 2

total time: 0.000155195

set_value_action_id_typemanaged_component_tag:
total calls: 1

total time: 0

cudaStreamDestroy:
total calls: 128
total time: 0.000449228

cudaFree:
total calls: 7085
total time: 1.63121

cudaFreeHost:
total calls: 3745
total time: 0.149475

async:
total calls: 54
total time: 0.26976

step_action_type:
total calls: 240
total time: 0.0553567

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 4603
total time: 0.431692

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 216
total time: 0.00547841

cudaSetDevice:
total calls: 576
total time: 0.00249988

cudaEventRecord:
total calls: 24
total time: 0.000329337

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 120
total time: 0.001945

async:
total calls: 3443
total time: 0.404983

GPU: Memcpy DtoH:
total calls: 96
total time: 0.000416256

GPU: Memcpy HtoD:
total calls: 120
total time: 0.000466687

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24

total time: 0.00274377

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24

total time: 0.00635685

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24

total time: 6.1024e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24

total time: 3.5264e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24

total time: 0.000210623

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 360
total time: 0.00794509

cudaSetDevice:
total calls: 960
total time: 0.00384556

cudaEventRecord:
total calls: 40
total time: 0.000493279

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 200
total time: 0.00212514

async:
total calls: 3868
total time: 0.429391

GPU: Memcpy DtoH:
total calls: 160
total time: 0.000677952

GPU: Memcpy HtoD:
total calls: 200
total time: 0.000752864

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 40

total time: 0.00419126

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 40

total time: 0.0101239

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 40

total time: 9.2224e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 40

total time: 4.7488e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 40

total time: 0.000346784

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 504
total time: 0.00899381

cudaSetDevice:
total calls: 1344
total time: 0.00503336

cudaEventRecord:
total calls: 56
total time: 0.000586883

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 280
total time: 0.00219811

async:
total calls: 4148
total time: 0.419154

GPU: Memcpy DtoH:
total calls: 224
total time: 0.000958204

GPU: Memcpy HtoD:
total calls: 280
total time: 0.00107779

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 56

total time: 0.00555868

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 56

total time: 0.0137661

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 56

total time: 0.000123199

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 56

total time: 7.0336e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 56

total time: 0.00048707

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 432
total time: 0.00896514

cudaSetDevice:
total calls: 1152
total time: 0.00439468

cudaEventRecord:
total calls: 48
total time: 0.000592349

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 240
total time: 0.0025927

async:
total calls: 3972
total time: 0.237201

GPU: Memcpy DtoH:
total calls: 192
total time: 0.00084406

GPU: Memcpy HtoD:
total calls: 240
total time: 0.000924223

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 48

total time: 0.00512399

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 48

total time: 0.0121625

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 48

total time: 0.000110912

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 48

total time: 6.1184e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 48

total time: 0.000416352

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 432
total time: 0.00910806

cudaSetDevice:
total calls: 1152
total time: 0.00442512

cudaEventRecord:
total calls: 48
total time: 0.000576509

cudaLaunchKernel:
total calls: 240
total time: 0.00251753

async:
total calls: 984
total time: 0.071069

GPU: Memcpy DtoH:
total calls: 192
total time: 0.000826464

GPU: Memcpy HtoD:
total calls: 240
total time: 0.000927455

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 48

total time: 0.00501699

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 48

total time: 0.0120924

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 48

total time: 0.000107936

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 48

total time: 6.3168e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 48

total time: 0.000413694

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 288
total time: 0.00505939

cudaSetDevice:
total calls: 768
total time: 0.00290062

cudaEventRecord:
total calls: 32
total time: 0.000333483

cudaLaunchKernel:
total calls: 160
total time: 0.0012702

async:
total calls: 630
total time: 0.0315966

GPU: Memcpy DtoH:
total calls: 128
total time: 0.000544224

GPU: Memcpy HtoD:
total calls: 160
total time: 0.000618112

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 32

total time: 0.00323865

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 32

total time: 0.00795691

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 32

total time: 6.5568e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 32

total time: 3.7792e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 32

total time: 0.000277407

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 144
total time: 0.00319848

cudaSetDevice:
total calls: 384
total time: 0.00158958

cudaEventRecord:
total calls: 16
total time: 0.000260952

cudaLaunchKernel:
total calls: 80
total time: 0.000976168

async:
total calls: 282
total time: 0.00168206

GPU: Memcpy DtoH:
total calls: 64
total time: 0.000280992

GPU: Memcpy HtoD:
total calls: 80
total time: 0.000314304

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 16

total time: 0.00170704

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 16

total time: 0.00411164

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 16

total time: 3.856e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 16

total time: 2.2176e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 16

total time: 0.00013776

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 1536
total time: 0.218715

async:
total calls: 240
total time: 1.42584

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 4608
total time: 0.611103

async:
total calls: 1536
total time: 6.01834

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 12288
total time: 0.741962

async:
total calls: 4608
total time: 16.6284

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

async:
total calls: 12288
total time: 23.5504

async:
total calls: 302041
total time: 61.5114

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 511791
total time: 74.6187

cudaEventRecord:
total calls: 12160
total time: 0.204782

cudaMemcpy:
total calls: 1
total time: 2.3356e-05

cudaMalloc:
total calls: 5295
total time: 0.812819

cudaSetDevice:
total calls: 291840
total time: 1.17562

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 2747
total time: 0.241805

cudaMemcpyAsync:
total calls: 109440
total time: 2.89861

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 60800
total time: 0.958017

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 184320
total time: 3.63265

cudaSetDevice:
total calls: 491520
total time: 1.97649

cudaEventRecord:
total calls: 20480
total time: 0.247086

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 102400
total time: 1.00017

async:
total calls: 718044
total time: 86.5496

GPU: Memcpy DtoH:
total calls: 81920
total time: 0.356692

GPU: Memcpy HtoD:
total calls: 102400
total time: 0.388852

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 20480

total time: 2.11415

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 20480

total time: 5.11141

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 20480

total time: 0.0456257

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 20480

total time: 0.0261891

GPU: discs_phase2(double*, double const*, double, int):
total calls: 20480

total time: 0.178687

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 258048
total time: 4.96809

cudaSetDevice:
total calls: 688128
total time: 3.11663

cudaEventRecord:
total calls: 28672
total time: 0.32939

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 143360
total time: 1.3433

async:
total calls: 912645
total time: 81.9043

GPU: Memcpy DtoH:
total calls: 114688
total time: 0.498638

GPU: Memcpy HtoD:
total calls: 143360
total time: 0.544993

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 28672

total time: 2.94897

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 28672

total time: 7.14188

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 28672

total time: 0.0625054

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 28672

total time: 0.0367265

GPU: discs_phase2(double*, double const*, double, int):
total calls: 28672

total time: 0.250653

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 221184
total time: 4.30108

cudaSetDevice:
total calls: 589824
total time: 3.55833

cudaEventRecord:
total calls: 24576
total time: 0.369251

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 122880
total time: 1.17709

async:
total calls: 805485
total time: 65.2401

GPU: Memcpy DtoH:
total calls: 98304
total time: 0.428127

GPU: Memcpy HtoD:
total calls: 122880
total time: 0.468125

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24576

total time: 2.52794

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24576

total time: 6.11538

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24576

total time: 0.0536437

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24576

total time: 0.0312097

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24576

total time: 0.214232

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 221184
total time: 4.24405

cudaSetDevice:
total calls: 589824
total time: 2.26907

cudaEventRecord:
total calls: 24576
total time: 0.284078

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 122880
total time: 1.15387

async:
total calls: 607338
total time: 40.3983

GPU: Memcpy DtoH:
total calls: 98304

total time: 0.42754

GPU: Memcpy HtoD:
total calls: 122880
total time: 0.467915

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24576

total time: 2.52248

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24576

total time: 6.10726

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24576

total time: 0.0535634

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24576

total time: 0.0312165

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24576

total time: 0.21415

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 147456
total time: 2.79212

cudaSetDevice:
total calls: 393216
total time: 1.51917

cudaEventRecord:
total calls: 16384
total time: 0.184151

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 81920
total time: 0.736694

async:
total calls: 403891
total time: 16.9573

GPU: Memcpy DtoH:
total calls: 65536
total time: 0.285247

GPU: Memcpy HtoD:
total calls: 81920
total time: 0.312084

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 16384

total time: 1.67499

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 16384

total time: 4.05978

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 16384

total time: 0.0351571

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 16384

total time: 0.0204418

GPU: discs_phase2(double*, double const*, double, int):
total calls: 16384

total time: 0.142593

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 73728
total time: 1.40668

cudaSetDevice:
total calls: 196608
total time: 0.77668

cudaEventRecord:
total calls: 8192
total time: 0.0925446

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 40960
total time: 0.377821

async:
total calls: 199208
total time: 1.23643

GPU: Memcpy DtoH:
total calls: 32768
total time: 0.142284

GPU: Memcpy HtoD:
total calls: 40960
total time: 0.155667

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 8192

total time: 0.837182

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 8192

total time: 2.0305

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 8192

total time: 0.0177074

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 8192

total time: 0.0103966

GPU: discs_phase2(double*, double const*, double, int):
total calls: 8192

total time: 0.0713272

GPU: Memcpy HtoD:
total calls: 1
total time: 1.376e-06

GPU: Memcpy DtoH:
total calls: 48640
total time: 0.216829

GPU: Memcpy HtoD:
total calls: 60800
total time: 0.234619

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 12160

total time: 1.32373

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 12160

total time: 3.17469

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 12160

total time: 0.0314939

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 12160

total time: 0.0177236

GPU: discs_phase2(double*, double const*, double, int):
total calls: 12160

total time: 0.109861

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 278513
total time: 29.2544

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 783
total time: 0.0591533

set_local_timestep_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 27252
total time: 0.731393

cudaMalloc:
total calls: 1413
total time: 0.231754

cudaSetDevice:
total calls: 72672
total time: 0.295683

cudaEventRecord:
total calls: 3028
total time: 0.0497097

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 15140
total time: 0.237248

async:
total calls: 271502
total time: 30.0605

GPU: Memcpy DtoH:
total calls: 12112
total time: 0.0534293

GPU: Memcpy HtoD:
total calls: 15140
total time: 0.058442

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 3028

total time: 0.327592

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 3028

total time: 0.783381

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 3028

total time: 0.00768215

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 3028

total time: 0.00432689

GPU: discs_phase2(double*, double const*, double, int):
total calls: 3028

total time: 0.0269072

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 46080
total time: 0.909388

cudaSetDevice:
total calls: 122880
total time: 0.488316

cudaEventRecord:
total calls: 5120
total time: 0.0635641

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 25600
total time: 0.2566

async:
total calls: 317712
total time: 32.9808

GPU: Memcpy DtoH:
total calls: 20480
total time: 0.0893641

GPU: Memcpy HtoD:
total calls: 25600
total time: 0.0978854

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 5120

total time: 0.529816

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 5120

total time: 1.28122

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 5120

total time: 0.0113511

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 5120

total time: 0.00664709

GPU: discs_phase2(double*, double const*, double, int):
total calls: 5120

total time: 0.0446672

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 64512
total time: 1.26079

cudaSetDevice:
total calls: 172032
total time: 0.737727

cudaEventRecord:
total calls: 7168
total time: 0.0835492

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 35840
total time: 0.34385

async:
total calls: 365677
total time: 31.3978

GPU: Memcpy DtoH:
total calls: 28672
total time: 0.124588

GPU: Memcpy HtoD:
total calls: 35840
total time: 0.136671

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 7168

total time: 0.738668

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 7168

total time: 1.78597

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 7168

total time: 0.0156091

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 7168

total time: 0.00918455

GPU: discs_phase2(double*, double const*, double, int):
total calls: 7168

total time: 0.0624094

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 55296
total time: 1.06874

cudaSetDevice:
total calls: 147456
total time: 0.57022

cudaEventRecord:
total calls: 6144
total time: 0.0723248

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 30720
total time: 0.294283

async:
total calls: 338569
total time: 20.5209

GPU: Memcpy DtoH:
total calls: 24576

total time: 0.10696

GPU: Memcpy HtoD:
total calls: 30720
total time: 0.117605

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 6144

total time: 0.633845

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 6144

total time: 1.53395

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 6144

total time: 0.013639

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 6144

total time: 0.00794315

GPU: discs_phase2(double*, double const*, double, int):
total calls: 6144

total time: 0.0536074

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 55296
total time: 1.06083

cudaSetDevice:
total calls: 147456
total time: 0.644506

cudaEventRecord:
total calls: 6144
total time: 0.0719661

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 30720
total time: 0.286573

async:
total calls: 153194
total time: 9.89449

GPU: Memcpy DtoH:
total calls: 24576
total time: 0.106981

GPU: Memcpy HtoD:
total calls: 30720
total time: 0.117443

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 6144

total time: 0.632715

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 6144

total time: 1.52977

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 6144

total time: 0.0134915

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 6144

total time: 0.00795716

GPU: discs_phase2(double*, double const*, double, int):
total calls: 6144

total time: 0.0535354

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 36864
total time: 0.679932

cudaSetDevice:
total calls: 98304
total time: 0.380006

cudaEventRecord:
total calls: 4096
total time: 0.0453896

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 20480
total time: 0.179855

async:
total calls: 97431
total time: 4.10546

GPU: Memcpy DtoH:
total calls: 16384
total time: 0.0709742

GPU: Memcpy HtoD:
total calls: 20480
total time: 0.0784648

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 4096

total time: 0.418105

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 4096

total time: 1.01352

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 4096

total time: 0.0087428

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 4096

total time: 0.00521033

GPU: discs_phase2(double*, double const*, double, int):
total calls: 4096

total time: 0.0356713

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 18432
total time: 0.340897

cudaSetDevice:
total calls: 49152
total time: 0.195684

cudaEventRecord:
total calls: 2048
total time: 0.0223772

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 10240
total time: 0.0885094

async:
total calls: 48140
total time: 0.291439

GPU: Memcpy DtoH:
total calls: 8192
total time: 0.0353887

GPU: Memcpy HtoD:
total calls: 10240
total time: 0.0390358

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 2048

total time: 0.209135

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 2048

total time: 0.507708

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 2048

total time: 0.00440319

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 2048

total time: 0.00258771

GPU: discs_phase2(double*, double const*, double, int):
total calls: 2048

total time: 0.0178317

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 105659
total time: 10.2655

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 179
total time: 0.0125069

set_local_timestep_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 8568
total time: 0.207527

cudaMalloc:
total calls: 316
total time: 0.035285

cudaSetDevice:
total calls: 22848
total time: 0.0934612

cudaEventRecord:
total calls: 952
total time: 0.0140128

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 4760
total time: 0.0632353

async:
total calls: 98007
total time: 10.5085

GPU: Memcpy DtoH:
total calls: 3808
total time: 0.0166831

GPU: Memcpy HtoD:
total calls: 4760
total time: 0.0184059

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 952

total time: 0.101891

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 952

total time: 0.245185

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 952

total time: 0.00241762

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 952

total time: 0.00132432

GPU: discs_phase2(double*, double const*, double, int):
total calls: 952

total time: 0.00839806

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 14400
total time: 0.293173

cudaSetDevice:
total calls: 38400
total time: 0.152786

cudaEventRecord:
total calls: 1600
total time: 0.0211119

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 8000
total time: 0.0849457

async:
total calls: 110956
total time: 11.4157

GPU: Memcpy DtoH:
total calls: 6400
total time: 0.0276748

GPU: Memcpy HtoD:
total calls: 8000
total time: 0.0305939

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1600

total time: 0.166177

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1600

total time: 0.401877

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1600

total time: 0.00362492

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1600

total time: 0.00206899

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1600

total time: 0.0139248

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 20160
total time: 0.399935

cudaSetDevice:
total calls: 53760
total time: 0.208966

cudaEventRecord:
total calls: 2240
total time: 0.0261405

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 11200
total time: 0.109506

async:
total calls: 126217
total time: 10.9209

GPU: Memcpy DtoH:
total calls: 8960
total time: 0.0386657

GPU: Memcpy HtoD:
total calls: 11200
total time: 0.0429256

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 2240

total time: 0.231636

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 2240

total time: 0.558988

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 2240

total time: 0.00492771

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 2240

total time: 0.00285625

GPU: discs_phase2(double*, double const*, double, int):
total calls: 2240

total time: 0.0194239

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 17280
total time: 0.336449

cudaSetDevice:
total calls: 46080
total time: 0.178744

cudaEventRecord:
total calls: 1920
total time: 0.0242582

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 9600
total time: 0.092653

async:
total calls: 118036
total time: 6.96477

GPU: Memcpy DtoH:
total calls: 7680
total time: 0.0331888

GPU: Memcpy HtoD:
total calls: 9600
total time: 0.0368994

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1920

total time: 0.198802

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1920

total time: 0.479173

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1920

total time: 0.00424604

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1920

total time: 0.00245712

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1920

total time: 0.0167089

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 17280
total time: 0.346913

cudaSetDevice:
total calls: 46080
total time: 0.177812

cudaEventRecord:
total calls: 1920
total time: 0.0234104

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 9600
total time: 0.101221

async:
total calls: 47115
total time: 3.04429

GPU: Memcpy DtoH:
total calls: 7680
total time: 0.0333777

GPU: Memcpy HtoD:
total calls: 9600
total time: 0.0369356

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1920

total time: 0.200465

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1920

total time: 0.482415

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1920

total time: 0.0042861

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1920

total time: 0.00242524

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1920

total time: 0.0166941

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 11520
total time: 0.218368

cudaSetDevice:
total calls: 30720
total time: 0.120005

cudaEventRecord:
total calls: 1280
total time: 0.0145664

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 6400
total time: 0.0575834

async:
total calls: 29697
total time: 1.27629

GPU: Memcpy DtoH:
total calls: 5120
total time: 0.0221022

GPU: Memcpy HtoD:
total calls: 6400
total time: 0.0246224

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1280

total time: 0.130466

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1280

total time: 0.316737

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1280

total time: 0.00269933

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1280

total time: 0.00159776

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1280

total time: 0.0111268

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 5760
total time: 0.111697

cudaSetDevice:
total calls: 15360
total time: 0.061574

cudaEventRecord:
total calls: 640
total time: 0.00760992

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 3200
total time: 0.0318558

async:
total calls: 14790
total time: 0.0887484

GPU: Memcpy DtoH:
total calls: 2560
total time: 0.0109625

GPU: Memcpy HtoD:
total calls: 3200
total time: 0.0123233

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 640

total time: 0.0661392

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 640

total time: 0.159776

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 640

total time: 0.00139094

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 640

total time: 0.00081936

GPU: discs_phase2(double*, double const*, double, int):
total calls: 640

total time: 0.00556347

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 24251
total time: 1.93045

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 17760
total time: 1.68561

cudaEventRecord:
total calls: 47
total time: 0.000737452

cudaMalloc:
total calls: 61
total time: 0.00539532

cudaSetDevice:
total calls: 1128
total time: 0.00471136

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 36
total time: 0.00185063

cudaMemcpyAsync:
total calls: 423
total time: 0.01408

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 235
total time: 0.00399273

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 720
total time: 0.0145762

cudaSetDevice:
total calls: 1920
total time: 0.00765918

cudaEventRecord:
total calls: 80
total time: 0.00106491

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 400
total time: 0.00406245

async:
total calls: 18562
total time: 1.74219

GPU: Memcpy DtoH:
total calls: 320
total time: 0.00138442

GPU: Memcpy HtoD:
total calls: 400
total time: 0.00152336

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 80

total time: 0.00829444

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 80

total time: 0.0201109

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 80

total time: 0.000181312

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 80

total time: 9.8943e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 80

total time: 0.000694941

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 1008
total time: 0.0195762

cudaSetDevice:
total calls: 2688
total time: 0.0103747

cudaEventRecord:
total calls: 112
total time: 0.00126714

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 560
total time: 0.0054149

async:
total calls: 19204
total time: 1.7095

GPU: Memcpy DtoH:
total calls: 448
total time: 0.00193283

GPU: Memcpy HtoD:
total calls: 560
total time: 0.00214038

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 112

total time: 0.0113842

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 112

total time: 0.0280068

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 112

total time: 0.000246112

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 112

total time: 0.000144256

GPU: discs_phase2(double*, double const*, double, int):
total calls: 112

total time: 0.000974398

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 864
total time: 0.0167871

cudaSetDevice:
total calls: 2304
total time: 0.00860607

cudaEventRecord:
total calls: 96
total time: 0.00101017

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 480
total time: 0.00461884

async:
total calls: 18770
total time: 0.753926

GPU: Memcpy DtoH:
total calls: 384
total time: 0.00166822

GPU: Memcpy HtoD:
total calls: 480
total time: 0.00185549

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 96

total time: 0.00985589

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 96

total time: 0.0241882

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 96

total time: 0.000213792

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 96

total time: 0.00012288

GPU: discs_phase2(double*, double const*, double, int):
total calls: 96

total time: 0.000835805

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 864
total time: 0.0174096

cudaSetDevice:
total calls: 2304
total time: 0.0089953

cudaEventRecord:
total calls: 96
total time: 0.0014449

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 480
total time: 0.00504433

async:
total calls: 2096
total time: 0.145775

GPU: Memcpy DtoH:
total calls: 384
total time: 0.00166956

GPU: Memcpy HtoD:
total calls: 480
total time: 0.00184112

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 96

total time: 0.0100306

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 96

total time: 0.0239487

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 96

total time: 0.000207839

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 96

total time: 0.00011888

GPU: discs_phase2(double*, double const*, double, int):
total calls: 96

total time: 0.000831388

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 576
total time: 0.00992851

cudaSetDevice:
total calls: 1536
total time: 0.00589084

cudaEventRecord:
total calls: 64
total time: 0.000627225

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 320
total time: 0.00284194

async:
total calls: 1503
total time: 0.0613075

GPU: Memcpy DtoH:
total calls: 256
total time: 0.0010926

GPU: Memcpy HtoD:
total calls: 320
total time: 0.00121987

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 64

total time: 0.00649286

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 64

total time: 0.015745

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 64

total time: 0.000130304

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 64

total time: 7.8784e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 64

total time: 0.000563646

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 288
total time: 0.00501779

cudaSetDevice:
total calls: 768
total time: 0.00311086

cudaEventRecord:
total calls: 32
total time: 0.000242721

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 160
total time: 0.00134173

async:
total calls: 702
total time: 0.00414636

GPU: Memcpy DtoH:
total calls: 128
total time: 0.000552863

GPU: Memcpy HtoD:
total calls: 160
total time: 0.000624029

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 32

total time: 0.00324877

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 32

total time: 0.00790897

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 32

total time: 6.6144e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 32

total time: 4.1408e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 32

total time: 0.000280768

GPU: Memcpy DtoH:
total calls: 188
total time: 0.000820607

GPU: Memcpy HtoD:
total calls: 235
total time: 0.000903518

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 47

total time: 0.00504831

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 47

total time: 0.0119086

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 47

total time: 0.000111076

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 47

total time: 6.1444e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 47

total time: 0.00041626

async:
total calls: 18726
total time: 0.138783

async_launch_policy_dispatch::call:
total calls: 16392

total time: 1.81552

async:
total calls: 18729
total time: 0.143952

async:
total calls: 16392
total time: 0.140044

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 1391
total time: 0.0617751

async_launch_policy_dispatch:
total calls: 30

total time: 0.00671252

send_hydro_boundary_action_type:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 240

total time: 0.484792

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 192

total time: 0.0457005

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 6878
total time: 0.25282

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 1536

total time: 3.05374

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 576

total time: 0.135769

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 44641
total time: 1.14649

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 4608

total time: 9.10394

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 1536

total time: 0.36641

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 122354
total time: 2.56512

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 12288

total time: 24.0747

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

async:
total calls: 280080
total time: 2.29018

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

GPU: Event Synchronize:
total calls: 180131

total time: 1.28955

cudaMemcpyToSymbol:
total calls: 4
total time: 0.00319158

cudaStreamCreateWithFlags:
total calls: 128

total time: 1.06695

cudaGetDeviceProperties:
total calls: 128

total time: 1.34933

cudaSetDevice:
total calls: 130
total time: 0.000545791

GPU: Memcpy HtoD:
total calls: 4
total time: 9.408e-06

timestep_driver_ascend_action_type:
total calls: 1

total time: 0

set_child_aunt_action_type:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 5296

total time: 2.93587

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

get_child_client_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

N3hpx4lcos19base_lco_with_valueIxxNS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 458231
total time: 3.73318

set_value_action_naming_id_typemanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 3597

total time: 1.02477

async:
total calls: 21393
total time: 0.129143

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2568

total time: 0.35099

async:
total calls: 19312
total time: 0.110925

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 15008
total time: 0.0805935

async_launch_policy_dispatch:
total calls: 2

total time: 0.000145735

load_components_action:
total calls: 1

total time: 0.0053803

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 20
total time: 0.000199739

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_child_aunt_action_type:
total calls: 1

total time: 0

set_value_action_id_typemanaged_component_tag:
total calls: 1

total time: 0

regrid_scatter_action_type:
total calls: 7

total time: 0.000269303

regrid_scatter_action_type:
total calls: 416

total time: 0.0882187

async_launch_policy_dispatch:
total calls: 80

total time: 0.0691302

primary_namespace_decrement_credit_action:
total calls: 1

total time: 7.243e-06

async_launch_policy_dispatch:
total calls: 512

total time: 0.438625

regrid_scatter_action_type:
total calls: 2304

total time: 0.291813

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 513
total time: 0.0108534

regrid_scatter_action_type:
total calls: 1

total time: 1.5661e-05

async:
total calls: 511
total time: 0.0193882

base_set_event_action:
total calls: 1

total time: 0

regrid_scatter_action_type:
total calls: 511

total time: 0.0144466

base_set_event_action:
total calls: 1

total time: 0

primary_namespace_decrement_credit_action:
total calls: 1

total time: 6.56e-06

async_launch_policy_dispatch:
total calls: 1536

total time: 1.27882

regrid_scatter_action_type:
total calls: 6656

total time: 0.772963

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 1536
total time: 0.0254721

async:
total calls: 1536
total time: 0.0505577

regrid_scatter_action_type:
total calls: 1536

total time: 0.044475

base_set_event_action:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 4096

total time: 3.54022

regrid_scatter_action_type:
total calls: 16384

total time: 0.625204

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 4096
total time: 0.0735828

async:
total calls: 4096
total time: 0.197894 regrid_scatter_action_type:

total calls: 4096
total time: 0.139184

base_set_event_action:
total calls: 1

total time: 0

primary_namespace_decrement_credit_action:
total calls: 2

total time: 1.1128e-05

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 80
total time: 0.00174885

async:
total calls: 80
total time: 0.00366169

regrid_scatter_action_type:
total calls: 80

total time: 0.00279354

base_set_event_action:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 37
total time: 0.0284521

async:
total calls: 230
total time: 0.00151644

form_tree_action_type:
total calls: 141
total time: 0.0637309

async:
total calls: 105
total time: 0.000729265

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 424

total time: 0.427392

async:
total calls: 516
total time: 0.00294435

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2560

total time: 0.222911

async:
total calls: 560
total time: 0.00308388

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 14400
total time: 0.0779212

compare_analytic_action_type:
total calls: 80

total time: 0.33386

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 512

total time: 9.0471

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 1536

total time: 20.1784

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 4096

total time: 84.4468

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 416

total time: 0.925764

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 3214
total time: 0.135595

check_for_refinement_action_type:
total calls: 2304

total time: 4.87163

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 224

total time: 0.0358494

async:
total calls: 11862
total time: 0.451219

base_set_event_action:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 6656

total time: 13.9007

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 704

total time: 0.086759

async:
total calls: 62998
total time: 1.68403

base_set_event_action:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 16384

total time: 34.0654

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 2560

total time: 0.332468

async:
total calls: 169428
total time: 3.59149

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 373467
total time: 3.98838

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 11634

total time: 0.229414

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 396

total time: 0.031671

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 730

total time: 0.0181319

force_nodes_to_exist_action_type:
total calls: 24

total time: 0.00161063

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 2447

total time: 0.0451361

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 76

total time: 0.00543155

force_nodes_to_exist_action_type:
total calls: 52

total time: 0.000883571

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 642

total time: 0.0123805

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 1

total time: 0.000220209

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 4

total time: 5.6932e-05

base_set_event_action:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2908

total time: 1.26278

async:
total calls: 8296
total time: 0.0443142 form_tree_action_type:

total calls: 5741
total time: 1.49431

async:
total calls: 12718
total time: 0.0704818

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 6146

total time: 0.549556

async:
total calls: 28938
total time: 0.156595

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 35659
total time: 0.19273

primary_namespace_decrement_credit_action:
total calls: 8

total time: 0.000214341

regrid_gather_action_type:
total calls: 416

total time: 0.0857143

regrid_gather_action_type:
total calls: 2304

total time: 0.275682

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

regrid_gather_action_type:
total calls: 6656

total time: 0.73614

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

regrid_gather_action_type:
total calls: 16384

total time: 0.530077

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

(a) Task tree example.

Elapsed Time: 332.908 seconds
Cores detected: 176
Worker threads observed: 7
Available CPU time: 2330.36 seconds

cudaEventQuery:
total calls: 3.05614e+06
total time: 16.0611s
time per call: 5.25536e-06s

GPU: Event Synchronize:
total calls: 180092
total time: 1.2914s
time per call: 7.17078e-06s

  count: 180092

cudaMemcpy:
total calls: 1
total time: 2.6216e-05s
time per call: 2.6216e-05s

GPU: Memcpy HtoD:
total calls: 900465
total time: 3.44622s
time per call: 3.82715e-06s

  count: 1

force_nodes_to_exist_action_type:
total calls: 25426
total time: 0.94494s
time per call: 3.71643e-05s

  count: 16006

check_for_refinement_action_type:
total calls: 25860
total time: 53.8009s
time per call: 0.00208047s

  count: 3488
  count: 25760

async:
total calls: 8.95651e+06
total time: 715.573s
time per call: 7.98941e-05s

  count: 622781

  count: 1

  count: 7114640

cudaEventRecord:
total calls: 180090
total time: 2.19723s
time per call: 1.22008e-05s

  count: 180092

cudaMallocHost:
total calls: 3629
total time: 0.319749s
time per call: 8.81093e-05s

  count: 3629

regrid_scatter_action_type:
total calls: 32100
total time: 1.98026s
time per call: 6.16902e-05s

  count: 6224

cudaMalloc:
total calls: 6864
total time: 1.13858s
time per call: 0.000165877s  count: 6864

cudaSetDevice:
total calls: 4.32173e+06
total time: 18.2772s
time per call: 4.22914e-06s

  count: 4322208

cudaMemcpyAsync:
total calls: 1.62082e+06
total time: 32.6699s
time per call: 2.01564e-05s  count: 1620828

cudaLaunchKernel:
total calls: 900460
total time: 9.13268s
time per call: 1.01422e-05s

  count: 900460

output_stage1_action:
total calls: 3
total time: 0.381926s
time per call: 0.127309s

  count: 18729

async_launch_policy_dispatch::call:
total calls: 16392
total time: 1.81031s
time per call: 0.000110439s

  count: 16392

  count: 16392

cleanup_buffers_action:
total calls: 1
total time: 1.97109s
time per call: 1.97109s

cudaStreamDestroy:
total calls: 128
total time: 0.000497492s
time per call: 3.88666e-06s

  count: 128

cudaFree:
total calls: 6864
total time: 1.74927s
time per call: 0.000254847s

  count: 6864

cudaFreeHost:
total calls: 3629
total time: 0.170623s
time per call: 4.70166e-05s

  count: 3629

  count: 25760

async_launch_policy_dispatch:
total calls: 11247
total time: 7.43115s
time per call: 0.000660723s

  count: 6224

primary_namespace_decrement_credit_action:
total calls: 2087
total time: 0.0194042s
time per call: 9.29764e-06s

  count: 4

  count: 900460
GPU: Memcpy DtoH:
total calls: 720368
total time: 3.14191s
time per call: 4.36153e-06s

  count: 720368

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 180092
total time: 18.6762s
time per call: 0.000103704s

  count: 180092
GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 180092
total time: 45.0397s
time per call: 0.000250093s

  count: 180092

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 180092
total time: 0.401528s
time per call: 2.22957e-06s

  count: 180092

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 180092
total time: 0.231959s
time per call: 1.288e-06s

  count: 180092

GPU: discs_phase2(double*, double const*, double, int):
total calls: 180092
total time: 1.57705s
time per call: 8.75689e-06s

  count: 180092

diagnostics_action_type:
total calls: 18726
total time: 36.5667s
time per call: 0.00195272s

  count: 454153

  count: 2334

  count: 15592

  count: 18672

form_tree_action_type:
total calls: 29415
total time: 7.42163s
time per call: 0.000252308s

  count: 2619

background_work:
total calls: 2687
total time: 0.0599506s
time per call: 2.23114e-05s

  count: 6

regrid_gather_action_type:
total calls: 25859
total time: 1.64122s
time per call: 6.34681e-05s

  count: 25760

APEX MAIN:
total calls: 1
total time: 332.908s
time per call: 332.908s

  count: 3056145

  count: 5932

  count: 100

  count: 71647

  count: 3

  count: 1

  count: 111

  count: 54

  count: 2687

  count: 2687

  count: 2077

  count: 100

initialize_action:
total calls: 1
total time: 3.17048s
time per call: 3.17048s

  count: 1

parcelhandler::put_parcel:
total calls: 1
total time: 4.609e-05s
time per call: 4.609e-05s

  count: 1

dijkstra_termination_action:
total calls: 2
total time: 0.000157686s
time per call: 7.8843e-05s

  count: 2

primary_namespace_colocate_action:
total calls: 2
total time: 0.00012857s
time per call: 6.4285e-05s

  count: 2

update_agas_cache_action:
total calls: 38
total time: 0.000472717s
time per call: 1.24399e-05s

  count: 38

run_helper:
total calls: 1
total time: 0.0017776s
time per call: 0.0017776s

  count: 1

schedule_parcel:
total calls: 632929
total time: 25.8529s
time per call: 4.08465e-05s

  count: 632979

N3hpx10components6server23create_component_actionI11node_serverJ13node_location11node_clientddxmmmEEE:
total calls: 24
total time: 0.167722s
time per call: 0.00698842s

  count: 24

  count: 118

copy_to_locality_action_type:
total calls: 6
total time: 0.000948827s
time per call: 0.000158138s

  count: 6

compare_analytic_action_type:
total calls: 6242
total time: 112.441s
time per call: 0.0180136s

  count: 18

primary_namespace_increment_credit_action:
total calls: 127
total time: 0.00443946s
time per call: 3.49564e-05s

  count: 127

step_action_type:
total calls: 18726
total time: 1.59577s
time per call: 8.52168e-05s

  count: 54

output_stage2_action:
total calls: 3
total time: 0.317876s
time per call: 0.105959s  count: 3

primary_namespace_route_action:
total calls: 66
total time: 0.00384434s
time per call: 5.82475e-05s

  count: 66

output_stage3_action:
total calls: 3
total time: 0.000410015s
time per call: 0.000136672s

  count: 3

cudaEventCreateWithFlags:
total calls: 128
total time: 0.819378s
time per call: 0.00640139s

  count: 128

hpx_destroy_component_action:
total calls: 2
total time: 0.000106338s
time per call: 5.3169e-05s

  count: 2

  count: 130

cudaMemcpyToSymbol:
total calls: 4
total time: 0.000796219s
time per call: 0.000199055s

  count: 4

cudaStreamCreateWithFlags:
total calls: 128
total time: 0.836502s
time per call: 0.00653517s

  count: 128

cudaGetDeviceProperties:
total calls: 128
total time: 1.2313s
time per call: 0.0096195s

  count: 128

  count: 2

load_components_action:
total calls: 1
total time: 0.00578007s
time per call: 0.00578007s

  count: 1

  count: 460032

  count: 5179

  count: 147748

  count: 21499

  count: 6224

  count: 18726
  count: 18672

  count: 18726

  count: 2

  count: 7

  count: 4

(b) Task graph example.

Figure 1: Task tree and task graph of Octo-Tiger as captured by APEX. Intensity of red color is correlated with the
node’s contribution to the overall runtime. The recursive structure of the octree is evident in the expanded tree. High
resolution images are available here (https://doi.org/10.6084/m9.figshare.14666184.v1).

4.2 Octo-Tiger’s Hydro Implementation

Octo-Tiger solves the equations of hydrodynamics using
a finite volume method. It evolves the mass density, three
linear momenta, and gas energy on a rotating adaptive
mesh refinement (AMR) mesh. The AMR mesh is based
on an octree structure, with each node of the octree being
either not refined at all or fully refined with eight sub-grids
of twice the resolution as their parent. By default, each of
those sub-grids consists of 83 cells, however, this is ad-
justable at compile-time to allow for more finely refined
sub-grids with more cells (for instance 163). The evolved
variables reside on the leaf sub-grids of the octree. It ad-
ditionally evolves an entropy tracer, using it to implement
the dual energy formalism of Bryan et al. [31]. First, the
evolution variables are reconstructed from cell averages
at 26 quadrature points on the cell face: the centers of
cell faces and cell edges and at cell vertices. This is ac-
complished by applying the piece-wise parabolic method
(PPM) of Colella et al. [32]. This third order, five cell
stencil is applied along the lines between cell centers that
coincide with particular quadrature points, producing left
and right values for each. Octo-Tiger optionally allows for
the contact discontinuity detection available with PPM.
Once the evolution values are reconstructed, the semi-
discrete central-upwind scheme of Kurganov et al. [33]
is applied to the reconstructed left and right variables
at the quadrature points, producing fluxes. These fluxes
are summed at quadrature points on a given cell face us-
ing Newtonian quadrature to obtain the final flux. Octo-
Tiger’s complete hydro scheme is described by Marcello,
Shiber, et al. [1]. In this paper, we compare our new hydro
module to the old hydro module. The old hydro module
used the same reconstruction method, however, flux val-
ues were only computed at the centers of cell faces.

4.3 Octo-Tiger’s CUDA Implementation

To understand Octo-Tiger’s GPU implementation of the
hydro module, it is worth reintroducing the GPU imple-
mentation of the gravity module from prior work. While
the gravity module uses entirely different compute meth-
ods (which we will only briefly mention here), it uses the
same mechanism for combining HPX and CUDA to fa-
cilitate concurrent GPU kernel execution. The following
subsection offers details how (and why) we use this mech-
anism, followed by the details of the hydro GPU imple-
mentation in the subsequent subsections.

4.3.1 Gravity Module GPU Implementation

The gravity solver—more specifically the calculation of
the same-level interactions in the second FMM step—was
the original hot spot within Octo-Tiger [34, 35]. Here, we
have to calculate the cell-to-cell interactions for each of
the cells of a sub-grid. The exact number of interactions
per cell depends on the parameter θ. The actual hot spot
consisted of different methods (henceforth called gravity
kernels) that take care of the various types of cell-to-cell
interactions. All kernels operate on one sub-grid at a time,
calculating all interactions between the cells within that
sub-grid in addition to their interactions with cells in the
ghost layer. The interaction types and the gravity kernels
themselves are detailed in prior work in more detail [34].

As a sub-grid only contains 512 cells by default, a grav-
ity kernel responsible for calculating the interactions of a
single sub-grid does not cause enough work to saturate a
GPU. There are two ways to address this. As mentioned
previously, the number of cells per sub-grid can be in-
creased, which in turn would provide more work for each
GPU kernel. However, this would be an Octo-Tiger spe-
cific solution. Instead, we were previously able to over-

4



A PREPRINT - JULY 27, 2021

come this limitation for the gravity-solver GPU kernels
by using a more general approach: A HPX-CUDA inte-
gration.

This integration allows for the execution of CUDA kernels
to be integrated with the HPX runtime system via HPX
futures. Essentially, after launching a CUDA kernel, HPX
offers the functionality to return a HPX future for it. The
HPX scheduler will then continue to poll a CUDA event
that will be set as soon as said CUDA kernel is done. Once
the event is set, the HPX future will be set to ready, which
in turn triggers all tasks that depend on it. This allows us
to integrate CUDA kernels into the HPX task graph.

We can thus handle CUDA kernels (and CPU/GPU data
transfers) the same way as any other HPX task, making
it easily possible to chain them with other tasks, such
as arbitrary CPU compute tasks, inter-node communica-
tion, or I/O. Crucially, this means that the execution of
a CUDA kernel gets automatically overlapped with other
tasks, which includes the execution of other CUDA ker-
nels on separate CUDA streams. This leads to the concur-
rent execution of multiple CUDA kernels on separate sub-
grids, preventing GPU starvation despite the small work-
load with just 512 workitems per kernel invocation.

As we launch each CUDA kernel within a normal HPX
task, we can easily suspend the task until the GPU ker-
nel is done (as indicated by its HPX future) and have an
HPX worker thread pick up the original task afterwards to
process its results. This allows a single worker thread to
easily handle multiple CUDA streams, switching between
HPX tasks. In previous work, we achieved a high GPU
utilization and performance using this approach within the
gravity solver [4]. There, we used 12 worker threads (one
for each CPU core) and 128 CUDA streams for one P100
GPU.

For this approach, however, we need to keep any GPU-
wide synchronization to a minimum. This includes calls
to cudaMalloc() and the creation of CUDA streams. To
avoid creating more CUDA streams than necessary, we
pre-allocate them at the start of the simulation. We usually
use a pool of 128 HPX CUDA executors per device, each
handling one CUDA stream. We further employ a GPU-
buffer manager to avoid on-the-fly allocation of buffers as
much as possible. If available, the manager reuses previ-
ously allocated but currently unused device buffers from
previous kernel invocations. Only if none is available a
new buffer will be created.

Both the HPX-CUDA integration (exposed with HPX fu-
tures) and the buffer manager (exposed by a set of alloca-
tors within the library CPPuddle) can now be used inde-
pendent of Octo-Tiger, to allow a similar scheme of easy,
task-based, concurrent GPU kernel execution in other ap-
plications. This also means we can also easily re-use
this technique to port more of Octo-Tiger’s solvers to the
GPU.

Furthermore, if needed, this CUDA-HPX integration ap-
proach can be combined with the other approach men-

tioned to increase GPU utilization: Increasing the size of
the sub-grids. This allows us to approach the issue both
on the tasking level using the integration and on the data-
structure level by using sub-grids with more cells.

4.3.2 Initial Hydro Module GPU Implementation

Between the GPU implementation of the gravity module
and the changes moving from the old hydro (where flux
values are only computed at the centers of cell faces) to
the new one as outlined in Section 4.2, the hydro module
becomes the new application hot spot. Hence, we have
ported the relevant methods of the hydro solver to CUDA
for this work. The two major hot spots within the solver
are the reconstruct method and the compute fluxes
method (henceforth called hydro kernels). The recon-
struct method reconstructs the evolution variables using
the PPM method as mentioned in Section 4.2. In turn, the
flux method takes care of computing the fluxes and the
Newtonian quadrature to obtain the final flux.

Just as the kernel of the gravity solver, each hydro ker-
nel operates on one sub-grid in each invocation. There-
fore, we are facing the same challenge as for the gravity
solver: One kernel invocation on its own is insufficient
to prevent GPU starvation. We have therefore ported the
hydro solver’s methods into CUDA kernels in two steps:
First, we have optimized the kernels to run efficiently on
a GPU. We have removed any excessive branching within
the method (to avoid warp divergence), we have flattened
all required data structures into one-dimensional arrays of
continuous memory and removed any remaining, unnec-
essary memory in-directions of the initial CPU implemen-
tation. Second, we have integrated the kernels into the
HPX task graph as we did with the gravity kernel to facil-
itate concurrent GPU kernel execution and the overlap of
data transfers.

4.3.3 Next steps for the Hydro GPU Implementation

While porting the hydro solver to CUDA resolves a ma-
jor bottleneck within Octo-Tiger, the kernels themselves
are still an initial implementation and thus not yet tuned
to the maximum extent: We first need to evaluate whether
the concurrent execution of the multiple GPU hydro ker-
nels with several CUDA streams and HPX futures is suf-
ficient for GPU utilization. While we had achieved good
results with this approach within the gravity solver [4], the
hydro kernels are less compute-intensive than the gravity
kernels. Thus, we might reach the limits of this approach.

If we do, there are multiple ways to address the issue: The
easiest way is to simply increase the size of the sub-grids,
providing more work per kernel invocation, increasing the
number of blocks in the CUDA launch configuration. This
makes it both easier to utilize the entire device and to in-
crease the likelihood of having multiple resident blocks
per SM which increases occupancy and thus hides latency.
Of course, a higher sub-grid size comes with the trade-off
of decreased scalability as (given the same overall grid
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Table 1: Toolchain and Octo-Tiger’s dependencies.

gcc 8.1.1/9.1.0 hwloc 1.11.12
spectrum-mpi 10.3.1 boost 1.70.0
cuda 11.2.0 jemalloc 5.1.0
hpx 1.6.0 silo 4.10.2
hdf5 1.8.12 cppuddle d32e50b

size) we have less sub-grids to distribute to the different
compute nodes. A more sustainable method would be to
combine the kernels of multiple sub-grids into one kernel.
However, this kind of work aggregation is more tedious to
implement and comes with several implementation chal-
lenges of its own.

Thus, the current state of the CUDA implementation in
this work provides a good starting point to evaluate the
performance, before moving forward to fine-tuning the
kernels themselves. We have therefore enabled Octo-
Tiger to be configured with larger sub-grid sizes at com-
pilation time, and we will study its performance and scal-
ability impact in the following sections. A significant per-
formance impact of larger sub-grid sizes in the hydro ker-
nels would be a strong indication that we should focus
on further work-aggregation before any fine-tuning of the
compute kernels themselves.

5 Performance measurements

In this section, we examine the scaling of Octo-Tiger on
ORNL’s Summit. Table 1 shows the toolchain that com-
piled Octo-Tiger. Table 2 lists the hardware information
of ORNL’s Summit. Note that we used 128 streams per
V100. Disclaimer: Due to a testbed allocation on Sum-
mit, we had limited node hours, which limited the possi-
ble performance measurements. In addition, for jobs with
more than 128 nodes we experienced some error from the
IBM® Spectrum MPI on Summit that we send too many
messages and a network device crashed, see IBM® ticket
TS005902510. We therefore cannot show scaling results
beyond 128 nodes. Strong scaling was used for all runs.

5.1 Sedov-Taylor Blast Wave (Pure Hydro)

To benchmark the new hydro kernels, the Sedov-Taylor
blast wave is used. Table 3 shows the details of each level
of refinement.

5.1.1 Node level scaling

The scaling on one Summit node is presented in this sec-
tion. Each configuration with an increasing sub-grid size,
see Table 3, is executed on a single node using CPUs and
CPUs + GPUs. We start with one HPX locality, which is
equivalent to one MPI process. Thus, using six HPX lo-
calities, we run six MPI processes on Summit. We chose
this setup to enable easy multi-GPU usage, at the expense
of more inter-process communication. For each HPX lo-

cality, we assigned seven CPU cores and none of the six
GPUs. Figure 2a shows the scaling with the increasing
number of localities.

The CPU-only scaling for the sub-grid sizes of 83 and 163

behaves similarly, and the sub-grid size of 323 performs
better for three and more localities.

For the next run, one locality was assigned to seven CPU
cores and one NVIDIA® V100 GPU. With six localities,
all available CPU cores and GPUs on a single node are
utilized. We assigned 128 CUDA streams to each locality.
Note that for the sub-grid size of 323 we had to decrease
the number of streams for the run with one locality, since
queuing too many large kernels caused the device to hit
its memory limit.

Figure 2b shows the number of processed sub-grids per
second. With increasing sub-grid size, the number of
cells processed per second improves notably, even though
the overall grid size stays the same (albeit consisting of
fewer sub-grids). As mentioned in Section 4.3.2, the hy-
dro GPU kernels might not offer enough work to prevent
GPU starvation, even with running multiple kernels (on
separate sub-grids using separate CUDA streams) con-
currently on the GPU. Increasing the sub-grid size in-
creases the amount of work per kernel accordingly, mak-
ing it easier to scale up to an entire GPU simply by hav-
ing more blocks of work items available. Of course, it
also increases the chance of having multiple blocks res-
ident on one SM (we ensure that register usage is low
enough for multiple blocks to be resident on one SM dur-
ing the compilation time), increasing occupancy and thus
hiding latencies more efficiently. The average runtime per
reconstruct kernel is just 258 microseconds, or 108 mi-
croseconds for the flux kernel when using a sub-grid size
of 83, further highlighting this point. In the short term,
we can offset this problem by using a larger sub-grid size.
However, an explicit work aggregation scheme combin-
ing multiple sub-grids might be preferable as a long-term
solution.

Overall, we get a reasonable speedup for using the GPUs
given the initial state of our hydro implementation. For
all sub-grid sizes, the processed number of sub-grids was
one order of magnitude higher.

5.1.2 Distributed scaling

The scaling up to 128 Summit nodes using 768
NVIDIA® V100 GPUS and 5376 CPU cores is studied.
Here, we use 6 localities with one GPU and 7 CPU cores
per node. Figure 3a shows the number of sub-grids pro-
cessed per second. Here, the sub-grid size of 163 per-
forms slightly better than the sub-grid size of 83. For up
to 8 nodes the sub-grid size of 323 performs best, but later
not enough work is available, and the scaling flattens out.
Figure 3b shows the speedup with respect to a single node.
For up to 8 nodes all sub-grid sizes perform similarly and
the largest sub-grid size flattens out again. Up to 16 nodes
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Table 2: ORNL’s Summit hardware information
GPUs 6 NVIDIA® Volta™ V100 CPU 2 IBM® POWER9™
OS RHEL 7.4 Kernel 4.14.0

Interconnect Mellanox® EDR 100G InfiniBand

Table 3: Simulation details of the Sedov-Taylor blast
wave. Note that each configuration has 16, 777, 216 cells
to be processed.

Sub-Grid Size Sub-Grid Count Refinement level
83 32768 5
163 4096 4
323 512 3

the lower two sub-grid sized perform similar and later the
smallest sub-grid size performs best.

We need at least 7 sub-grids per locality (42 per node), as
otherwise the 7 CPU cores are underutilized. While the
majority of the work is done by the GPUs, there are pre-
processing steps and the procedure of sending the data to
the GPU and launching the kernels that are done purely by
the CPU. Ideally, we have more sub-grids per locality, to
truly benefit from the overlapping of computation, inter-
locality communication and CPU/GPU data transfers that
we gain by using the task-based functionality offered by
HPX. Indeed, we can observe good scaling as long as
we have about 21 sub-grids per locality, as we both have
enough work for all cores and the GPU and benefit from
the overlapping. The parallel efficiency degrades visibly
when going below that threshold. First, we start losing
the benefits of overlapping. Later on, we simply cannot
use all CPU cores of a locality to do the pre-processing,
kernel launches and communication tasks (as one core al-
ways works on one sub-grid). Lastly, we hit the point
where we only have one sub-grid per locality. Here, we
naturally do not benefit at all by adding more nodes.

We can see this in the runs with sub-grid size 323. Here
we go below 21 sub-grids per locality in-between 4 and 8
nodes (as we use 6 localities per node), afterwards we go
below 7 sub-grids at 16 nodes. Lastly, we hit 1 sub-grid
per locality at 64 nodes, so further increasing the node
count to 128 makes no difference.

It is worth noting that the largest run with sub-grid size
83 and 128 nodes results in a runtime per timestep of just
286ms, while with a sub-grid size of 163 we get a run-
time per timestep of 211ms. Considering each timestep
consists of three consecutive iterations of the hydro solver
(due to Octo-Tiger’s use of a third-order Runge Kutta time
integration scheme) this highlights that even small ineffi-
ciencies and barriers could cause significant slowdowns,
simply due to the short runtimes involved.

5.2 Rotating star (Hydro and gravity)

For the second example, the rotating star problem is stud-
ied, where the gravity solver is added to the hydro solver.
Table 4 shows the details for each level. Here, we use
the default θ value (0.5) for the rotating star problem,
which leads to fewer cell-to-cell interactions than we en-
counter with production run simulations. This makes the
gravity solver less compute-intensive than it would typ-
ically be. Furthermore, we have redesigned the grav-
ity GPU kernels to allow different (larger) stencil sizes,
making them currently less finely tuned than they previ-
ously were, as the shared-memory implementation in the
monopole-monopole gravity kernel assumed a fixed sten-
cil size. Still, the rotating star scenario presents a good
benchmark as it allows us to test the hydro- and gravity
solver together in a simple scenario.

5.2.1 Node level scaling

The scaling on one Summit node is presented in this sec-
tion. Each configuration with an increasing sub-grid size,
see Table 4, is executed on a single node using CPUs and
CPUs + GPUs. We start with one HPX locality, which is
equivalent to one MPI process. Therefore, using six HPX
localities, we run six MPI processes on Summit. For each
HPX locality, we assigned seven CPU cores and none of
the six GPUs. Figure 4a shows the node level scaling from
one up to 6 localities for CPUs only. The smaller sub-grid
sizes perform better using the CPUs only. We suspect that
this is due to the gravity solver’s handling of the root sub-
grid within the octree: We have to process all same-level
interactions within the sub-grid (as there is no higher level
available that would take care of those interactions within
the FMM algorithm). The runtime of calculating these
interactions is O(N2) with N as the number of cells in
the root sub-grid. In a CPU-only run, the root node is pro-
cessed like any other sub-grid, meaning the same-level in-
teractions are calculated within one HPX task; thus, only
one CPU core is working on it, while all other cores take
care of other tasks. This increases the runtime substan-
tially while increasing the size of the sub-grids in partic-
ular, since the entire next top-down tree-traversals within
the FMM algorithm depend on the results of the root sub-
grid. With an increasing number of CPU cores, more of
them will simply be idle whilst waiting on these results.
When increasing the number of localities, the ratio of the
root sub-grid’s work to the work of the remaining sub-
grids on the root locality increases, resulting in a higher
load imbalance.

Figure 4b shows the node level scaling adding one GPU
to each locality. In that case, the GPU kernels benefit of
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Table 4: Simulation details of the rotating star. Note that each configuration has 16, 777, 216 cells.
Sub-Grid Size Sub-Grid Count AMR boundaries Refinement level

83 44472 3800 8
163 5944 3800 7

the larger sub-grid size and larger sub-grid sizes performs
better. The issue with the root sub-grid is less severe here
as the interactions are not being calculated by one CPU
core alone, but instead by a GPU kernel. Between this
improvement, and the general better runtime behavior of
the hydro kernels when dealing with larger sub-grids, the
performance improves when switching to a sub-grid size
of 163. However, the speedup is less severe than with
the Sedov-Taylor blast wave scenario as the gravity GPU
kernels do not seem to benefit from larger sub-grid sizes
(even with the improved GPU kernel for the root sub-
grid). Again, the processed sub-grids per second are one
order of magnitude higher adding the GPUs.

5.2.2 Distributed scaling

We now study scaling on up to 128 Summit nodes using
768 NVIDIA® V100 GPUS and 5376 CPU cores. Here,
we use 6 localities with one GPU and 7 CPU cores per
node. Figure 5a shows the processed sub-grids per second
for increasing number of nodes. Again, for the combined
hydro and gravity simulation, the larger sub-grid sizes re-
sults in slightly better performance. Larger sub-grid sizes
have less effect on the gravity solver and predominantly
accelerate the hydro solver. Therefore, we observe a sim-
ilar picture as for the hydro-only scenario. It is worth not-
ing that the runtime per time step on 128 nodes for the
sub-grid size 83 is ≈ 0.48 seconds, and for sub-grid size
163 it is 0.45 seconds. Note that for each time step, Octo-
Tiger solves 3 hydro steps and 6 FMM steps (the gravi-
tational potential as well as its time derivative appear in
the source equations for the hydrodynamics). Here, the
same argument is valid that we have good scaling as long
as we have 21 sub-grids per locality. This indicates that
approximately 16 million cells are not enough work for
768 GPUs.

5.3 APEX + CUDA

The introduced overhead for the APEX CUDA mea-
surements was about 30 seconds for the run on a full
single node which is ≈ 8.5% of the total execution
time. This is slightly more than using APEX without
the CUDA counters where the overhead was around one
percent [6]. This overhead is likely caused by excessive
callback processing for some frequently called but short-
lived CUDA functions. In fact, because the algorithms
support the ability for each locality to schedule work on
more than one GPU, the profiling showed that the function
cudaSetDevice is called over 4, 322, 208 times during a
332 second run. In addition, HPX uses polling to detect
GPU activity completion instead of callbacks — polling

provides faster throughput — and performing the polling
requires 3, 056, 145 calls to cudaEventQuery. These fre-
quent, short calls are fine on their own, but there is an
observed overhead in measuring them.

Figure 6 shows the time spent in the sampled tasks
during a short execution of the rotating star prob-
lem. The gravity (monopole/multipole interactions) and
hydro (flux cuda kernel, reconstruct cuda kernel) ker-
nels execute on the GPU, whereas other actions are
executed on the CPU. The validation routine (com-
pare analytic action type) is executed on the CPU only.
As this routine is only used for validating the results, it is
unlikely to be ported to the GPU.

Figure 7 shows three counters captured during the rotating
star run that indicate utilization of the allocated hardware.
The CPU user-space utilization in Figure 7a is captured by
monitoring the /proc/stat virtual file. Although HPX
has launched 1 worker thread per physical core, the oper-
ating system detects 4 hardware threads per core. There-
fore, the maximum utilization possible in this configura-
tion is 25%. During the CPU-intensive validation at the
end of execution, these threads are fully utilized, and dur-
ing most of the execution the threads are well utilized.
Time spent processing system calls (not shown) peaks at
3% during initialization and finalization and otherwise av-
erages 0.66%. The GPU utilization data is captured by
periodically capturing the available NVML data for de-
vice 0. Finally, Figure 7c shows the total memory allo-
cated on the device through cudaMalloc*() calls, which
peaks out at less than 11% of available memory. The GPU
utilization and memory usage show that there is plenty
of resources available to increase the amount of work per
kernel and retain more data on the GPU.

6 Astrophysical Test Results

To verify that Octo-Tiger’s new hydro module delivers
better results for an equilibrium configuration, we ran a
rotating star test problem. This star was constructed us-
ing a polytropic structural equation of state with the self-
consistent field method (SCF) [36]. It is uniformly ro-
tating about its z-axis at a rate sufficient to produce a
star whose minor axis is 3/4 the length of its major axis.
We ran this problem for ten dynamical times. Since the
star begins in equilibrium, we expect it to stay in equilib-
rium. We used two resolutions and for each resolution,
two choices for the opening criterion, θ. (Lower θ’s re-
sult in a larger multi-pole interaction stencil for the grav-
ity solver and hence better results). Here we define the

8



A PREPRINT - JULY 27, 2021

1 2 3 4 5 6

0.5

1

1.5

2

2.5

·105

# localities

C
el

ls
pr

oc
es

se
d

pe
rs

ec
on

d
CPU only (Pure Hydro)

Sub-grid size
83

163

323

(a)

1 2 3 4 5 6

0

2

4

6
·106

# localities

C
el

ls
pr

oc
es

se
d

pe
rs

ec
on

d

CPU + GPU (Pure Hydro)

Sub-grid size
83

163

323

(b)

Figure 2: Cells processed per second for the node level
scaling. For one up to 6 localities on one Summit
node. One locality was assigned to seven CPUs and one
NVIDIA® V100 GPU.

density error as

ρL1 :=

∑
Ω(ρIC − ρ)∆3

V
, (1)

where ρ is the numerical mass density, ρIC is the mass
density from the initial conditions, ∆ is a cell width, V is
the initial volume of the star, and the summation is over
the entire domain Ω. As shown in Table 5, in all cases the
new hydro module delivers a lower error.
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Figure 3: Cells processed per second for the distributed
scaling from one Summit node up to 128 Summit nodes.
Note that all six NVIDIA® V100 GPUs per node were
used.

7 Conclusion

This paper showed the following aspects in evaluating
Octo-Tiger’s performance on Summit. First, from the as-
trophysical aspect, the new implementation of the hydro
kernel using a fully three-dimensional reconstruction of
the fluxes is more computationally expensive than the old
kernel. However, the new hydro kernel evolves an equi-
librium rotating star with greater accuracy than the old
kernel.
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Table 5: The average error in the density field for the rotating star test using the old and new hydro modules. In these
units, the central density of the star is 1.

Refinement Level Opening Criterion Old New
6 0.5 2.41× 10−3 1.45× 10−3

6 0.35 5.22× 10−4 3.59× 10−4

7 0.5 2.52× 10−3 1.51× 10−3

7 0.35 4.49× 10−4 2.78× 10−4

Second, the scaling on Summit showed the following two
things. First, on a single node, the usage of the GPUs im-
proved the cells processed per second by an order of mag-
nitude. Thus, Octo-Tiger benefits from the usage of GPUs
for the hydro, and combined hydro and gravity simula-
tions. Second, the distributed scaling up to 128 nodes us-
ing 768 NVIDIA® V100 GPUS and 5376 CPU cores was
presented. Both test problems scaled up to 128 nodes for
the two lower sub-grid sizes. However, we have seen that
a problem containing 16, 777, 216 cells starts to flatten out
up to 128 nodes and indicates that even larger problems
are necessary to provide enough work for the additional
GPUs. With our testbed allocation on Summit, we could
only show preliminary scaling results; however, we will
continue to work to get the larger node counts running.

Third, the variation of sub-grid sizes was added to Octo-
Tiger and this work studied the performance impact for
the first time. For the hydro module on a single node, the
sub-grid size of 323 showed the best performance for the
combined CPU and GPU runs, since with the larger sub-
grid size more work was available for a single kernel run.
However, for the distributed runs, only up to 8 nodes the
largest sub-grid size gave the best performance. For the
combined hydro and gravity simulation, the sub-grid size
of 163 gives slightly better performance. This indicates
that this sub-grid size will be the default for production
runs.

Finally, the APEX CUDA profiling provides combined
task trees and task graphs for the work on the GPU
and CPU. Previously, Octo-Tiger was run first to pro-
file the CPU usage with APEX and a second time with
NVIDIA®profiler. The new plots provide some insights
into the asynchronicity of HPX and the dependency of
tasks. The scatter plots showed that the memory usage on
the GPU was small, since only the data to be computed are
kept in the device memory. In addition, we could show a
good utilization of the CUDA devices on a single node.
These plots provide a good base to analyze the combined
asynchronous tasks on the CPU and GPU and support our
efforts to optimize the concurrent CPU and GPU tasks.

7.1 Future Work

The results of this work motivate further improvements
of the hydro solver’s GPU implementation. We plan to
investigate on-the-fly work aggregation across sub-grids
to combine the benefits of larger GPU kernels to saturate

GPUs with the increased scalability that smaller sub-grids
offer.

Furthermore, after recent promising results using HPX
and Kokkos together within the gravity solver, we plan
to port the current hydro CUDA implementation to
Kokkos [37] as well. The HPX Kokkos integration works
similarly as the CUDA one, and transforming the hydro
CPU methods into GPU Kokkos kernels would have re-
quired the same changes to the methods themselves as
outlined in Section 4.3.2. Hence, as of the current state,
we have already completed the first important steps.

Using Kokkos rather than pure CUDA provides us with
two advantages: We can easily target GPUs of other ven-
dors, such as AMD GPUs (and with the recently intro-
duced Kokkos SYCL execution space, also Intel GPUs).
Furthermore, Kokkos provides the means of using explicit
SIMD vectorization [38] to run GPU-capable kernels ef-
ficiently on the CPU as well. Currently, we have to main-
tain a second set of CPU kernels using Vc for SIMD
vectorization, which would be replaced by the Kokkos
kernels. With a portable Kokkos implementation, there
would be no need to maintain two specialized CPU and
GPU kernels to cover all platforms anymore. APEX al-
ready supports Kokkos profiling.

Furthermore, we plan to optimize the hydro kernels for
shared memory usage as soon as they have been ported to
Kokkos. With respect to HPX, more debugging is needed
for jobs with larger node counts (≥ 128 nodes): We have
experienced stalls for higher node counts due to an er-
ror from the IBM® Spectrum MPI on Summit possibly
caused by sending too many messages which result in a
network device crash, see IBM® ticket TS005902510.

From the application perspective, the authors would like
to compare the performance of the rotating star with the
Castro code to gain insight into whether the more accu-
rate hydro module results in more stable shapes of the star.
However, a comparison of the scaling is not trivial since
different algorithms and solvers are used in both codes. In
addition, Octo-Tiger utilizes asynchronous computation
with HPX, which CASTRO does not, as it uses MPI+X.
Next, these scaling results are the preparation for large
production runs on GPU accelerated supercomputers.
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Supplementary materials

The scripts to compile Octo-Tiger are available on GitHub [39]
and the script to run the jobs and the input files on Zenodo [40],
respectively. CPPuddle is available here1.

1https://github.com/SC-SGS/CPPuddle
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Figure 6: GPU kernel activity and CPU task actions for the gravity and hydro tasks when executing the 83 and 163

rotating star test on 6 localities. The 163 decomposition leads to longer-running tasks and kernels, but a shorter overall
execution time because there are significantly fewer of them.
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Figure 7: APEX Performance counter metrics from the
163 rotating star test case run on 6 localities.
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