arXiv:2107.10987v2 [cs.DC] 26 Jul 2021

OCTO-TIGER’S NEW HYDRO MODULE AND PERFORMANCE
USING HPX+CUDA oN ORNL’S SUMMIT

A PREPRINT

Patrick Diehl
LSU Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803 U.S.A
Email: patrickdiehl @lsu.edu

Gregor Dail}
IPVS, University of Stuttgart, Stuttgart, 70174 Stuttgart, Germany

Dominic Marcello
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.

Kevin Huck
OACISS, University of Oregon, Eugene, OR, U.S.A.

Sagiv Shiber
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.

Hartmut Kaiser
LSU Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803 U.S.A

Juhan Frank, Geoffrey C. Clayton
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.

Dirk Pfliiger
IPVS, University of Stuttgart, Stuttgart, 70174 Stuttgart, Germany

July 27, 2021

ABSTRACT

Octo-Tiger is a code for modeling three-dimensional self-gravitating astrophysical fluids. It was
particularly designed for the study of dynamical mass transfer between interacting binary stars.
Octo-Tiger is parallelized for distributed systems using the asynchronous many-task runtime sys-
tem, the C++ standard library for parallelism and concurrency (HPX) and utilizes CUDA for its
gravity solver. Recently, we have remodeled Octo-Tiger’s hydro solver to use a three-dimensional
reconstruction scheme. In addition, we have ported the hydro solver to GPU using CUDA kernels.
We present scaling results for the new hydro kernels on ORNL’s Summit machine using a Sedov-
Taylor blast wave problem. We also compare Octo-Tiger’s new hydro scheme with its old hydro
scheme, using a rotating star as a test problem.

Keywords Octo-Tiger - High Performance Computing - HPX - Asynchronous Manytask System - CUDA

https://orcid.org/0000-0003-3922-8419
https://orcid.org/0000-0001-7064-8417
https://orcid.org/0000-0001-6107-0887
https://orcid.org/0000-0002-8712-2806
https://orcid.org/0000-0002-0141-7436
https://orcid.org/0000-0002-4360-0212

1 Introduction

Octo-Tiger is an astrophysics finite volume hydrodynamic
code for simulating the evolution of stellar systems [1].
Octo-Tiger consists of several modules, e.g. hydro, grav-
ity, and radiation. The gravity is solved based on the fast
multipole method using adaptive octrees. The hydro mod-
ule solves the mass, momentum and energy equations of
an inviscid fluid in a rotating frame of reference, which re-
duces numerical viscosity effects. Recently, we improved
the accuracy of the hydro module by including a full three-
dimensional reconstruction technique (see a thorough in-
troduction of this technique in [1]). With the fully three-
dimensional reconstruction, the hydro module became the
hotspot of the application. Here, we present and test its
initial GPU implementation. Our radiation module, still in
the testing phase, uses an explicit transport scheme with
the reduced speed of light approximation, coupled to an
implicit scheme for the radiation-hydro coupling terms,
in a manner similar to Skinner et al. [2].

To validate the theoretical claim that the full three-
dimensional reconstruction technique results in more ac-
curacy, a rotating star simulation using the old and new
hydro modules with the same gravity module were ex-
ecuted. The error and convergence of both methods is
compared to validate the theoretical claim with numeri-
cal results, see Section 6. However, this paper focuses on
the task-based execution using adaptive mesh refinement,
resulting in some irregular parallelism. The task-based
approach helps us with properly parallelizing the tree-
traversals. As we strive for the lowest time per timestep
possible, this in turn means we have to process millions of
cells in sub-second runtimes. This means we have a task-
graph of extremely short running compute kernels mixed
with the communication and data transfers.

We are revisiting the performance of the gravity module
and studying the performance of the new hydro module on
ORNL’s Summit. Octo-Tiger’s scaling capabilities have
been previously shown: NERSC’s Cori [3] and on CSCS
Piz Daint [4], however, in these measurements an older
version of the hydro module was used. We have experi-
ence running Octo-Tiger and the C++ standard library for
parallelism and concurrency (HPX) [5] on x86 systems
and CRAY based systems, but not much previous experi-
ence with distributed runs on IBM® Power9™ systems.

First, the hydro module for the Sedov-Taylor blast wave
is studied. Second, a rotating star for the combination
of the hydro and gravity module is simulated. For both
problems, we show the node level scaling for CPU and
CPU+GPU runs on a single node. Note that due to the
different implementations of the hydro kernels, especially
the more computationally intense reconstruction of the
fluxes in the new implementation, we can not directly
compare the scaling results.

In addition, analyzing such large task graphs can be rather
challenging, see Figure 1. This is the first time we employ
APEX with CUDA support to get combined profiling of

A PREPRINT - JULY 27, 2021

the CPU and GPU tasks. CPU-only profiling with APEX
has been shown in [6].

The paper is structured as follows: Section 2 covers the
related work. Section 3 sketches the software framework.
Section 4 introduces Octo-Tiger’s new hydro module and
its GPU acceleration. Section 5 shows the node level and
distributed scaling of Octo-Tiger on Summit. Section 6
compares the accuracy of the new three-dimensional full
reconstruct of the hydro kernel with the previous kernel.
Finally, Section 7 concludes the paper.

2 Related work

There are many astrophysics codes which combine hy-
drodynamic and gravity solvers for the simulation of as-
trophysical fluids. Here, however, we are focusing on
those which have two additional properties that Octo-
Tiger has:) They are accelerated by an asynchronous
many-task system (AMT) and 2) They use adaptive grid
refinement. ChaNGa (Charm N-body Gravity solver) [7]
performs collisionless N-body simulations for cosmolog-
ical simulations or simulations of isolated stellar sys-
tems. A moving-mesh hydrodynamic solver was added
to ChaNGa [8] together with the implementation of mul-
tiple time-steps techniques to form the code MANGA [9],
suitable for simulating interacting binary stars. Enzo-E
/ Cello (formerly Enzo-P) [10], which is currently under
active development, is designed for astrophysics simula-
tions, including star formation and cosmology applica-
tions. Cello provides the AMR feature within Enzo-E.
Both of these codes use the AMT Charm++ [11]. An-
other AMR-based code is Castro [12], part of the AMReX
Astrophysics suite utilizing the more traditional MPI+X
approach. The Athena++ code, a C++ rewrite of the
magneto-hydrodynamic code Athena C, implements an
adaptive mesh refinement and uses MPI+OpenMP for
its parallelization [13]. A GPU-accelerated version of
Athena++, K-Athena, was refactored using Kokkos to
achieve better performance and portability [14]. All these
codes attempt to exploit high abstraction programming for
the parallelization of their code to display scaling on ex-
ascale supercomputers. For example, Charm++ and the
AMT used by Octo-Tiger, HPX, have very similar pro-
gramming models. From an application developer per-
spective, HPX can be seen as an abstraction to C++ and
Charm++ more as a standalone library [15]. According to
this survey [16] HPX has the highest technical readiness.
Two of the codes, K-Athena and Castro, have recently
reported their scaling and performance on OLCF’s Sum-
mit [14, 17]. We aim to report Octo-Tiger’s performance
on Summit as well, in particular after upgrading the hydro
solver and porting it to GPU CUDA kernels. Since two of
the main functionalities of the code, the gravity and hy-
dro solvers, can be executed on GPUs, it is interesting
to study the scaling on numerous GPUs. Although a di-
rect comparison between the performance of codes is not
trivial, a simple basic measurement of interest is the num-
ber of cells (zones) updated per second (or per microsec-

onds). Castro reported a value of 130 zones/useconds on
one Summit node [17], while K-Athena reported a peak
value of > 100 zones/useconds [14].

3 Software framework

3.1 C++ standard library for parallelism and
concurrency

HPX is the C++ standard library for parallelism and con-
currency. It exposes an API that fully conforms to the
recent C++ standards [18-21] on top of an asynchronous
many-task runtime system (AMT). It has been described
in detail in other publications, such as [5,22-25]. In the
context of this paper, HPX has been used for two pur-
poses. a) to coordinate the asynchronous execution of
a multitude of heterogeneous tasks (both on CPUs and
GPUs), thus managing local and distributed parallelism
while observing all necessary data dependencies, and b)
as the parallelization infrastructure for executing CUDA-
kernels on the CPUs via the asynchronous HPX backend.

3.2 APEX

APEX [26] is a performance measurement library for dis-
tributed, asynchronous multitasking systems. It provides
lightweight measurements without perturbing high con-
currency through synchronous and asynchronous inter-
faces. To support performance measurement in systems
that employ user-level threading, APEX uses a depen-
dency chain in addition to the call stack to produce traces
and task dependency graphs. The synchronous APEX
instrumentation application programming interface (API)
can be used to add instrumentation to a given run time and
includes support for timers and counters. The NVIDIA
CUDA Profiling Tools Interface [27] provides CUDA host
callback and device activity measurements. Additionally,
the hardware and operating system are monitored through
an asynchronous measurement that involves the periodic
or on-demand interrogation of the operating system, hard-
ware states, or runtime states (e.g., CPU use, resident set
size, memory “high water mark’). The NVIDIA Manage-
ment Library interface [28] provides periodic CUDA de-
vice monitoring to APEX. In previous work [29], APEX
was extended to capture additional timers and counters
related to CUDA device-to-device memory transfers, as
well as tracking memory consumption on both device and
host when requested with the cudaMalloc* API calls.

Tracing measurement is typically used by application de-
velopers to understand timing and dependency relation-
ships between different tasks within an application. When
tracing to the Open Trace Format (OTF2) or Google Trace
Events Format, each concurrent CUDA Stream is as-
signed three virtual “threads” to track kernel, memory and
synchronization activity. This is necessary because these
three classes of events are not perfectly nested timers —
there is a potential for asynchronous overlap — which are
a requirement for the OTF2 tracing library (Google Trace

A PREPRINT - JULY 27, 2021

Events are more forgiving). However, each operation
class within a Stream does have a guaranteed ordering,
so this segregation of event types is sufficient to meet the
requirements of the tracing libraries and formats. How-
ever, because the Octo-Tiger CUDA implementation uses
up to 128 concurrent streams per process (along with the
actual HPX worker and helper threads on the CPU), even
a relatively small run with 6 ranks per node can result in
over 2400 unique “threads” of execution, and a collection
of trace files over 27GB in size from just 25 iterations.
To work around this issue of scale, APEX was extended
to support task dependency trees to complement the ex-
isting task dependency graph support. The tree is a sum-
mary representation of the task dependency relationships
(task types, not individual tasks), revealing the full depen-
dency chain and not just immediate parent/child relation-
ships. While this can result in tree representations that
are larger than the graph representation — due to expanded
recursions and continuations, see Figure 1b for an exam-
ple — the trees are still quite manageable and helpful in
diagnosing problems in programming models like HPX
that do not have a meaningful callstack context but do
have a task dependency context, including tasks and other
activity offloaded to GPU devices. To complement the
taskgraph and tasktree data in the absence of a full trace,
APEX also captures task and counter scatterplot data, in-
dicating on the x axis when the task started or the counter
was captured, and the y axis contains the duration of the
task or the value of the counter. The tasks are sampled
using a user-specified fraction (default 1%) whereas the
counters are sampled at every value capture. This data
collection allows the application developer to capture a
time sequence of data without the filesystem overhead of
a full event trace. Examples are shown in Section 5.

4 Octo-Tiger

In this section, we briefly introduce the modules of Octo-
Tiger studied in this paper, followed by details on how
we integrate their GPU implementation with HPX. For a
more general overview of the modules themselves, we re-
fer to Octo-Tiger’s method paper [1].

4.1 Octo-Tiger’s Gravity Solver

Octo-Tiger uses a fast multipole method (FMM) for solv-
ing the gravity [30]. This particular implementation of
the FMM globally conserves both linear and angular mo-
menta to machine precision, and, when coupled to the
hydro-dynamics solver, also globally conserves energy to
machine precision. The solver uses a third order multi-
pole expansion. Its accuracy can be varied by adjusting
the opening criterion, 6. Lower values of the opening
criterion lead to stricter multipole acceptance criteria, re-
quiring that multipoles be further away to interact. This
increases the solver’s accuracy at the cost of more com-
putation time.

(a) Task tree example.

A PREPRINT - JULY 27, 2021

(b) Task graph example.

Figure 1: Task tree and task graph of Octo-Tiger as captured by APEX. Intensity of red color is correlated with the
node’s contribution to the overall runtime. The recursive structure of the octree is evident in the expanded tree. High
resolution images are available here (https://doi.org/10.6084/m9.figshare.14666184.v1).

4.2 Octo-Tiger’s Hydro Implementation

Octo-Tiger solves the equations of hydrodynamics using
a finite volume method. It evolves the mass density, three
linear momenta, and gas energy on a rotating adaptive
mesh refinement (AMR) mesh. The AMR mesh is based
on an octree structure, with each node of the octree being
either not refined at all or fully refined with eight sub-grids
of twice the resolution as their parent. By default, each of
those sub-grids consists of 83 cells, however, this is ad-
justable at compile-time to allow for more finely refined
sub-grids with more cells (for instance 163). The evolved
variables reside on the leaf sub-grids of the octree. It ad-
ditionally evolves an entropy tracer, using it to implement
the dual energy formalism of Bryan et al. [31]. First, the
evolution variables are reconstructed from cell averages
at 26 quadrature points on the cell face: the centers of
cell faces and cell edges and at cell vertices. This is ac-
complished by applying the piece-wise parabolic method
(PPM) of Colella et al. [32]. This third order, five cell
stencil is applied along the lines between cell centers that
coincide with particular quadrature points, producing left
and right values for each. Octo-Tiger optionally allows for
the contact discontinuity detection available with PPM.
Once the evolution values are reconstructed, the semi-
discrete central-upwind scheme of Kurganov et al. [33]
is applied to the reconstructed left and right variables
at the quadrature points, producing fluxes. These fluxes
are summed at quadrature points on a given cell face us-
ing Newtonian quadrature to obtain the final flux. Octo-
Tiger’s complete hydro scheme is described by Marcello,
Shiber, et al. [1]. In this paper, we compare our new hydro
module to the old hydro module. The old hydro module
used the same reconstruction method, however, flux val-
ues were only computed at the centers of cell faces.

4.3 Octo-Tiger’s CUDA Implementation

To understand Octo-Tiger’s GPU implementation of the
hydro module, it is worth reintroducing the GPU imple-
mentation of the gravity module from prior work. While
the gravity module uses entirely different compute meth-
ods (which we will only briefly mention here), it uses the
same mechanism for combining HPX and CUDA to fa-
cilitate concurrent GPU kernel execution. The following
subsection offers details how (and why) we use this mech-
anism, followed by the details of the hydro GPU imple-
mentation in the subsequent subsections.

4.3.1 Gravity Module GPU Implementation

The gravity solver—more specifically the calculation of
the same-level interactions in the second FMM step—was
the original hot spot within Octo-Tiger [34,35]. Here, we
have to calculate the cell-to-cell interactions for each of
the cells of a sub-grid. The exact number of interactions
per cell depends on the parameter 6. The actual hot spot
consisted of different methods (henceforth called gravity
kernels) that take care of the various types of cell-to-cell
interactions. All kernels operate on one sub-grid at a time,
calculating all interactions between the cells within that
sub-grid in addition to their interactions with cells in the
ghost layer. The interaction types and the gravity kernels
themselves are detailed in prior work in more detail [34].

As a sub-grid only contains 512 cells by default, a grav-
ity kernel responsible for calculating the interactions of a
single sub-grid does not cause enough work to saturate a
GPU. There are two ways to address this. As mentioned
previously, the number of cells per sub-grid can be in-
creased, which in turn would provide more work for each
GPU kernel. However, this would be an Octo-Tiger spe-
cific solution. Instead, we were previously able to over-

come this limitation for the gravity-solver GPU kernels
by using a more general approach: A HPX-CUDA inte-
gration.

This integration allows for the execution of CUDA kernels
to be integrated with the HPX runtime system via HPX
futures. Essentially, after launching a CUDA kernel, HPX
offers the functionality to return a HPX future for it. The
HPX scheduler will then continue to poll a CUDA event
that will be set as soon as said CUDA kernel is done. Once
the event is set, the HPX future will be set to ready, which
in turn triggers all tasks that depend on it. This allows us
to integrate CUDA kernels into the HPX task graph.

We can thus handle CUDA kernels (and CPU/GPU data
transfers) the same way as any other HPX task, making
it easily possible to chain them with other tasks, such
as arbitrary CPU compute tasks, inter-node communica-
tion, or I/O. Crucially, this means that the execution of
a CUDA kernel gets automatically overlapped with other
tasks, which includes the execution of other CUDA ker-
nels on separate CUDA streams. This leads to the concur-
rent execution of multiple CUDA kernels on separate sub-
grids, preventing GPU starvation despite the small work-
load with just 512 workitems per kernel invocation.

As we launch each CUDA kernel within a normal HPX
task, we can easily suspend the task until the GPU ker-
nel is done (as indicated by its HPX future) and have an
HPX worker thread pick up the original task afterwards to
process its results. This allows a single worker thread to
easily handle multiple CUDA streams, switching between
HPX tasks. In previous work, we achieved a high GPU
utilization and performance using this approach within the
gravity solver [4]. There, we used 12 worker threads (one
for each CPU core) and 128 CUDA streams for one P100
GPU.

For this approach, however, we need to keep any GPU-
wide synchronization to a minimum. This includes calls
to cudaMalloc () and the creation of CUDA streams. To
avoid creating more CUDA streams than necessary, we
pre-allocate them at the start of the simulation. We usually
use a pool of 128 HPX CUDA executors per device, each
handling one CUDA stream. We further employ a GPU-
buffer manager to avoid on-the-fly allocation of buffers as
much as possible. If available, the manager reuses previ-
ously allocated but currently unused device buffers from
previous kernel invocations. Only if none is available a
new buffer will be created.

Both the HPX-CUDA integration (exposed with HPX fu-
tures) and the buffer manager (exposed by a set of alloca-
tors within the library CPPuddle) can now be used inde-
pendent of Octo-Tiger, to allow a similar scheme of easy,
task-based, concurrent GPU kernel execution in other ap-
plications. This also means we can also easily re-use
this technique to port more of Octo-Tiger’s solvers to the
GPU.

Furthermore, if needed, this CUDA-HPX integration ap-
proach can be combined with the other approach men-

A PREPRINT - JULY 27, 2021

tioned to increase GPU utilization: Increasing the size of
the sub-grids. This allows us to approach the issue both
on the tasking level using the integration and on the data-
structure level by using sub-grids with more cells.

4.3.2 Initial Hydro Module GPU Implementation

Between the GPU implementation of the gravity module
and the changes moving from the old hydro (where flux
values are only computed at the centers of cell faces) to
the new one as outlined in Section 4.2, the hydro module
becomes the new application hot spot. Hence, we have
ported the relevant methods of the hydro solver to CUDA
for this work. The two major hot spots within the solver
are the reconstruct method and the compute_fluxes
method (henceforth called hydro kernels). The recon-
struct method reconstructs the evolution variables using
the PPM method as mentioned in Section 4.2. In turn, the
flux method takes care of computing the fluxes and the
Newtonian quadrature to obtain the final flux.

Just as the kernel of the gravity solver, each hydro ker-
nel operates on one sub-grid in each invocation. There-
fore, we are facing the same challenge as for the gravity
solver: One kernel invocation on its own is insufficient
to prevent GPU starvation. We have therefore ported the
hydro solver’s methods into CUDA kernels in two steps:
First, we have optimized the kernels to run efficiently on
a GPU. We have removed any excessive branching within
the method (to avoid warp divergence), we have flattened
all required data structures into one-dimensional arrays of
continuous memory and removed any remaining, unnec-
essary memory in-directions of the initial CPU implemen-
tation. Second, we have integrated the kernels into the
HPX task graph as we did with the gravity kernel to facil-
itate concurrent GPU kernel execution and the overlap of
data transfers.

4.3.3 Next steps for the Hydro GPU Implementation

While porting the hydro solver to CUDA resolves a ma-
jor bottleneck within Octo-Tiger, the kernels themselves
are still an initial implementation and thus not yet tuned
to the maximum extent: We first need to evaluate whether
the concurrent execution of the multiple GPU hydro ker-
nels with several CUDA streams and HPX futures is suf-
ficient for GPU utilization. While we had achieved good
results with this approach within the gravity solver [4], the
hydro kernels are less compute-intensive than the gravity
kernels. Thus, we might reach the limits of this approach.

If we do, there are multiple ways to address the issue: The
easiest way is to simply increase the size of the sub-grids,
providing more work per kernel invocation, increasing the
number of blocks in the CUDA launch configuration. This
makes it both easier to utilize the entire device and to in-
crease the likelihood of having multiple resident blocks
per SM which increases occupancy and thus hides latency.
Of course, a higher sub-grid size comes with the trade-off
of decreased scalability as (given the same overall grid

Table 1: Toolchain and Octo-Tiger’s dependencies.

gce 8.1.1/9.1.0 | hwloc 1.11.12
spectrum-mpi 10.3.1 boost 1.70.0
cuda 11.2.0 jemalloc 5.1.0
hpx 1.6.0 silo 4.10.2
hdf5 1.8.12 cppuddle d32e50b

size) we have less sub-grids to distribute to the different
compute nodes. A more sustainable method would be to
combine the kernels of multiple sub-grids into one kernel.
However, this kind of work aggregation is more tedious to
implement and comes with several implementation chal-
lenges of its own.

Thus, the current state of the CUDA implementation in
this work provides a good starting point to evaluate the
performance, before moving forward to fine-tuning the
kernels themselves. We have therefore enabled Octo-
Tiger to be configured with larger sub-grid sizes at com-
pilation time, and we will study its performance and scal-
ability impact in the following sections. A significant per-
formance impact of larger sub-grid sizes in the hydro ker-
nels would be a strong indication that we should focus
on further work-aggregation before any fine-tuning of the
compute kernels themselves.

5 Performance measurements

In this section, we examine the scaling of Octo-Tiger on
ORNL’s Summit. Table 1 shows the toolchain that com-
piled Octo-Tiger. Table 2 lists the hardware information
of ORNL’s Summit. Note that we used 128 streams per
V100. Disclaimer: Due to a testbed allocation on Sum-
mit, we had limited node hours, which limited the possi-
ble performance measurements. In addition, for jobs with
more than 128 nodes we experienced some error from the
IBM® Spectrum MPI on Summit that we send too many
messages and a network device crashed, see IBM® ticket
TS005902510. We therefore cannot show scaling results
beyond 128 nodes. Strong scaling was used for all runs.

5.1 Sedov-Taylor Blast Wave (Pure Hydro)

To benchmark the new hydro kernels, the Sedov-Taylor
blast wave is used. Table 3 shows the details of each level
of refinement.

5.1.1 Node level scaling

The scaling on one Summit node is presented in this sec-
tion. Each configuration with an increasing sub-grid size,
see Table 3, is executed on a single node using CPUs and
CPUs + GPUs. We start with one HPX locality, which is
equivalent to one MPI process. Thus, using six HPX lo-
calities, we run six MPI processes on Summit. We chose
this setup to enable easy multi-GPU usage, at the expense
of more inter-process communication. For each HPX lo-

A PREPRINT - JULY 27, 2021

cality, we assigned seven CPU cores and none of the six
GPUs. Figure 2a shows the scaling with the increasing
number of localities.

The CPU-only scaling for the sub-grid sizes of 8% and 163
behaves similarly, and the sub-grid size of 322 performs
better for three and more localities.

For the next run, one locality was assigned to seven CPU
cores and one NVIDIA® V100 GPU. With six localities,
all available CPU cores and GPUs on a single node are
utilized. We assigned 128 CUDA streams to each locality.
Note that for the sub-grid size of 323 we had to decrease
the number of streams for the run with one locality, since
queuing too many large kernels caused the device to hit
its memory limit.

Figure 2b shows the number of processed sub-grids per
second. With increasing sub-grid size, the number of
cells processed per second improves notably, even though
the overall grid size stays the same (albeit consisting of
fewer sub-grids). As mentioned in Section 4.3.2, the hy-
dro GPU kernels might not offer enough work to prevent
GPU starvation, even with running multiple kernels (on
separate sub-grids using separate CUDA streams) con-
currently on the GPU. Increasing the sub-grid size in-
creases the amount of work per kernel accordingly, mak-
ing it easier to scale up to an entire GPU simply by hav-
ing more blocks of work items available. Of course, it
also increases the chance of having multiple blocks res-
ident on one SM (we ensure that register usage is low
enough for multiple blocks to be resident on one SM dur-
ing the compilation time), increasing occupancy and thus
hiding latencies more efficiently. The average runtime per
reconstruct kernel is just 258 microseconds, or 108 mi-
croseconds for the f1ux kernel when using a sub-grid size
of 83, further highlighting this point. In the short term,
we can offset this problem by using a larger sub-grid size.
However, an explicit work aggregation scheme combin-
ing multiple sub-grids might be preferable as a long-term
solution.

Overall, we get a reasonable speedup for using the GPUs
given the initial state of our hydro implementation. For
all sub-grid sizes, the processed number of sub-grids was
one order of magnitude higher.

5.1.2 Distributed scaling

The scaling up to 128 Summit nodes using 768
NVIDIA® V100 GPUS and 5376 CPU cores is studied.
Here, we use 6 localities with one GPU and 7 CPU cores
per node. Figure 3a shows the number of sub-grids pro-
cessed per second. Here, the sub-grid size of 163 per-
forms slightly better than the sub-grid size of 83. For up
to 8 nodes the sub-grid size of 323 performs best, but later
not enough work is available, and the scaling flattens out.
Figure 3b shows the speedup with respect to a single node.
For up to 8 nodes all sub-grid sizes perform similarly and
the largest sub-grid size flattens out again. Up to 16 nodes

A PREPRINT - JULY 27, 2021

Table 2: ORNL’s Summit hardware information

GPUs 6 NVIDIA® Volta™ V100
OS RHEL 7.4
Interconnect

CPU 2 IBM® POWER9™
Kernel 4.14.0
Mellanox® EDR 100G InfiniBand

Table 3: Simulation details of the Sedov-Taylor blast
wave. Note that each configuration has 16, 777,216 cells
to be processed.

Sub-Grid Size Sub-Grid Count Refinement level

83 32768 5
163 4096 4
3923 512 3

the lower two sub-grid sized perform similar and later the
smallest sub-grid size performs best.

We need at least 7 sub-grids per locality (42 per node), as
otherwise the 7 CPU cores are underutilized. While the
majority of the work is done by the GPUs, there are pre-
processing steps and the procedure of sending the data to
the GPU and launching the kernels that are done purely by
the CPU. Ideally, we have more sub-grids per locality, to
truly benefit from the overlapping of computation, inter-
locality communication and CPU/GPU data transfers that
we gain by using the task-based functionality offered by
HPX. Indeed, we can observe good scaling as long as
we have about 21 sub-grids per locality, as we both have
enough work for all cores and the GPU and benefit from
the overlapping. The parallel efficiency degrades visibly
when going below that threshold. First, we start losing
the benefits of overlapping. Later on, we simply cannot
use all CPU cores of a locality to do the pre-processing,
kernel launches and communication tasks (as one core al-
ways works on one sub-grid). Lastly, we hit the point
where we only have one sub-grid per locality. Here, we
naturally do not benefit at all by adding more nodes.

We can see this in the runs with sub-grid size 323. Here
we go below 21 sub-grids per locality in-between 4 and 8
nodes (as we use 6 localities per node), afterwards we go
below 7 sub-grids at 16 nodes. Lastly, we hit 1 sub-grid
per locality at 64 nodes, so further increasing the node
count to 128 makes no difference.

It is worth noting that the largest run with sub-grid size
82 and 128 nodes results in a runtime per timestep of just
286ms, while with a sub-grid size of 16 we get a run-
time per timestep of 211ms. Considering each timestep
consists of three consecutive iterations of the hydro solver
(due to Octo-Tiger’s use of a third-order Runge Kutta time
integration scheme) this highlights that even small ineffi-
ciencies and barriers could cause significant slowdowns,
simply due to the short runtimes involved.

5.2 Rotating star (Hydro and gravity)

For the second example, the rotating star problem is stud-
ied, where the gravity solver is added to the hydro solver.
Table 4 shows the details for each level. Here, we use
the default 6 value (0.5) for the rotating star problem,
which leads to fewer cell-to-cell interactions than we en-
counter with production run simulations. This makes the
gravity solver less compute-intensive than it would typ-
ically be. Furthermore, we have redesigned the grav-
ity GPU kernels to allow different (larger) stencil sizes,
making them currently less finely tuned than they previ-
ously were, as the shared-memory implementation in the
monopole-monopole gravity kernel assumed a fixed sten-
cil size. Still, the rotating star scenario presents a good
benchmark as it allows us to test the hydro- and gravity
solver together in a simple scenario.

5.2.1 Node level scaling

The scaling on one Summit node is presented in this sec-
tion. Each configuration with an increasing sub-grid size,
see Table 4, is executed on a single node using CPUs and
CPUs + GPUs. We start with one HPX locality, which is
equivalent to one MPI process. Therefore, using six HPX
localities, we run six MPI processes on Summit. For each
HPX locality, we assigned seven CPU cores and none of
the six GPUs. Figure 4a shows the node level scaling from
one up to 6 localities for CPUs only. The smaller sub-grid
sizes perform better using the CPUs only. We suspect that
this is due to the gravity solver’s handling of the root sub-
grid within the octree: We have to process all same-level
interactions within the sub-grid (as there is no higher level
available that would take care of those interactions within
the FMM algorithm). The runtime of calculating these
interactions is O(N?) with N as the number of cells in
the root sub-grid. In a CPU-only run, the root node is pro-
cessed like any other sub-grid, meaning the same-level in-
teractions are calculated within one HPX task; thus, only
one CPU core is working on it, while all other cores take
care of other tasks. This increases the runtime substan-
tially while increasing the size of the sub-grids in partic-
ular, since the entire next top-down tree-traversals within
the FMM algorithm depend on the results of the root sub-
grid. With an increasing number of CPU cores, more of
them will simply be idle whilst waiting on these results.
When increasing the number of localities, the ratio of the
root sub-grid’s work to the work of the remaining sub-
grids on the root locality increases, resulting in a higher
load imbalance.

Figure 4b shows the node level scaling adding one GPU
to each locality. In that case, the GPU kernels benefit of

A PREPRINT - JULY 27, 2021

Table 4: Simulation details of the rotating star. Note that each configuration has 16, 777, 216 cells.

Sub-Grid Size Sub-Grid Count
83 44472
163 5944

AMR boundaries Refinement level
3800 8
3800 7

the larger sub-grid size and larger sub-grid sizes performs
better. The issue with the root sub-grid is less severe here
as the interactions are not being calculated by one CPU
core alone, but instead by a GPU kernel. Between this
improvement, and the general better runtime behavior of
the hydro kernels when dealing with larger sub-grids, the
performance improves when switching to a sub-grid size
of 163. However, the speedup is less severe than with
the Sedov-Taylor blast wave scenario as the gravity GPU
kernels do not seem to benefit from larger sub-grid sizes
(even with the improved GPU kernel for the root sub-
grid). Again, the processed sub-grids per second are one
order of magnitude higher adding the GPUs.

5.2.2 Distributed scaling

We now study scaling on up to 128 Summit nodes using
768 NVIDIA® V100 GPUS and 5376 CPU cores. Here,
we use 6 localities with one GPU and 7 CPU cores per
node. Figure 5a shows the processed sub-grids per second
for increasing number of nodes. Again, for the combined
hydro and gravity simulation, the larger sub-grid sizes re-
sults in slightly better performance. Larger sub-grid sizes
have less effect on the gravity solver and predominantly
accelerate the hydro solver. Therefore, we observe a sim-
ilar picture as for the hydro-only scenario. It is worth not-
ing that the runtime per time step on 128 nodes for the
sub-grid size 8% is ~ 0.48 seconds, and for sub-grid size
163 it is 0.45 seconds. Note that for each time step, Octo-
Tiger solves 3 hydro steps and 6 FMM steps (the gravi-
tational potential as well as its time derivative appear in
the source equations for the hydrodynamics). Here, the
same argument is valid that we have good scaling as long
as we have 21 sub-grids per locality. This indicates that
approximately 16 million cells are not enough work for
768 GPUs.

5.3 APEX + CUDA

The introduced overhead for the APEX CUDA mea-
surements was about 30 seconds for the run on a full
single node which is ~ 8.5% of the total execution
time. This is slightly more than using APEX without
the CUDA counters where the overhead was around one
percent [6]. This overhead is likely caused by excessive
callback processing for some frequently called but short-
lived CUDA functions. In fact, because the algorithms
support the ability for each locality to schedule work on
more than one GPU, the profiling showed that the function
cudaSetDevice is called over 4, 322, 208 times during a
332 second run. In addition, HPX uses polling to detect
GPU activity completion instead of callbacks — polling

provides faster throughput — and performing the polling
requires 3, 056, 145 calls to cudaEventQuery. These fre-
quent, short calls are fine on their own, but there is an
observed overhead in measuring them.

Figure 6 shows the time spent in the sampled tasks
during a short execution of the rotating star prob-
lem. The gravity (monopole/multipole interactions) and
hydro (flux_cuda_kernel, reconstruct_cuda_kernel) ker-
nels execute on the GPU, whereas other actions are
executed on the CPU. The validation routine (com-
pare_analytic_action_type) is executed on the CPU only.
As this routine is only used for validating the results, it is
unlikely to be ported to the GPU.

Figure 7 shows three counters captured during the rotating
star run that indicate utilization of the allocated hardware.
The CPU user-space utilization in Figure 7a is captured by
monitoring the /proc/stat virtual file. Although HPX
has launched 1 worker thread per physical core, the oper-
ating system detects 4 hardware threads per core. There-
fore, the maximum utilization possible in this configura-
tion is 25%. During the CPU-intensive validation at the
end of execution, these threads are fully utilized, and dur-
ing most of the execution the threads are well utilized.
Time spent processing system calls (not shown) peaks at
3% during initialization and finalization and otherwise av-
erages 0.66%. The GPU utilization data is captured by
periodically capturing the available NVML data for de-
vice 0. Finally, Figure 7c shows the total memory allo-
cated on the device through cudaMalloc* () calls, which
peaks out at less than 11% of available memory. The GPU
utilization and memory usage show that there is plenty
of resources available to increase the amount of work per
kernel and retain more data on the GPU.

6 Astrophysical Test Results

To verify that Octo-Tiger’s new hydro module delivers
better results for an equilibrium configuration, we ran a
rotating star test problem. This star was constructed us-
ing a polytropic structural equation of state with the self-
consistent field method (SCF) [36]. It is uniformly ro-
tating about its z-axis at a rate sufficient to produce a
star whose minor axis is 3/4 the length of its major axis.
We ran this problem for ten dynamical times. Since the
star begins in equilibrium, we expect it to stay in equilib-
rium. We used two resolutions and for each resolution,
two choices for the opening criterion, 6. (Lower ’s re-
sult in a larger multi-pole interaction stencil for the grav-
ity solver and hence better results). Here we define the

A PREPRINT - JULY 27, 2021

105 CPU only (Pure Hydro) 107 Blast wave (Pure Hydro)
[[[[[[[[I [[[
Sub-grid size 8- Sub-grid size
- 25 _o— 83 = —— 83
§ —— 163 § 6l —— 163
2 2 323 12 323
Q Q
a, a,
3 Tl
2 15| - 2
3] 3]
e e
a. a8,
4 1 / 12 2
))
O / O
0.5 . ol
| | | | | | | | | | | | | |
1 2 3 4 5 6 20 21 22 23 24 25 26 27
localities # nodes
(a) (a)
106 CPU + GPU (Pure Hydro) Blast wave (Pure Hydro)
6 7 I I I [[] I I I T T
Sub-grid size Sub-grid size
- —o— 83 —— 83
2 3 20 - 3
8 —— 16 16
2 4 32 . 329
Q o —— Optimal
_g" —g 24 [P
[()
A]
3 &
o) L |
E! 2 22 [
S
U ./’0/./.
ol i 20 [
| | | | | | | | | | | | |

localities
(b)

Figure 2: Cells processed per second for the node level
scaling. For one up to 6 localities on one Summit
node. One locality was assigned to seven CPUs and one
NVIDIA® V100 GPU.

density error as

Yalprc — p)A®

% ; 6]

PL1 ‘=

where p is the numerical mass density, p;c is the mass
density from the initial conditions, A is a cell width, V' is
the initial volume of the star, and the summation is over
the entire domain). As shown in Table 5, in all cases the
new hydro module delivers a lower error.

20 ol 92 93 94 95 96 o7
nodes

(b)

Figure 3: Cells processed per second for the distributed
scaling from one Summit node up to 128 Summit nodes.
Note that all six NVIDIA® V100 GPUs per node were
used.

7 Conclusion

This paper showed the following aspects in evaluating
Octo-Tiger’s performance on Summit. First, from the as-
trophysical aspect, the new implementation of the hydro
kernel using a fully three-dimensional reconstruction of
the fluxes is more computationally expensive than the old
kernel. However, the new hydro kernel evolves an equi-
librium rotating star with greater accuracy than the old
kernel.

A PREPRINT - JULY 27, 2021

Table 5: The average error in the density field for the rotating star test using the old and new hydro modules. In these

units, the central density of the star is 1.

Refinement Level

6 0.5
6 0.35
7 0.5
7 0.35

Opening Criterion

Old New
241 x 1073 145 x 1073
522 x107% 3.59 x 1074
252%x 1073 1.51 x 1073
4.49 x 107% 2.78 x 10~

Second, the scaling on Summit showed the following two
things. First, on a single node, the usage of the GPUs im-
proved the cells processed per second by an order of mag-
nitude. Thus, Octo-Tiger benefits from the usage of GPUs
for the hydro, and combined hydro and gravity simula-
tions. Second, the distributed scaling up to 128 nodes us-
ing 768 NVIDIA® V100 GPUS and 5376 CPU cores was
presented. Both test problems scaled up to 128 nodes for
the two lower sub-grid sizes. However, we have seen that
a problem containing 16, 777, 216 cells starts to flatten out
up to 128 nodes and indicates that even larger problems
are necessary to provide enough work for the additional
GPUs. With our testbed allocation on Summit, we could
only show preliminary scaling results; however, we will
continue to work to get the larger node counts running.

Third, the variation of sub-grid sizes was added to Octo-
Tiger and this work studied the performance impact for
the first time. For the hydro module on a single node, the
sub-grid size of 323 showed the best performance for the
combined CPU and GPU runs, since with the larger sub-
grid size more work was available for a single kernel run.
However, for the distributed runs, only up to 8 nodes the
largest sub-grid size gave the best performance. For the
combined hydro and gravity simulation, the sub-grid size
of 162 gives slightly better performance. This indicates
that this sub-grid size will be the default for production
runs.

Finally, the APEX CUDA profiling provides combined
task trees and task graphs for the work on the GPU
and CPU. Previously, Octo-Tiger was run first to pro-
file the CPU usage with APEX and a second time with
NVIDIA®profiler. The new plots provide some insights
into the asynchronicity of HPX and the dependency of
tasks. The scatter plots showed that the memory usage on
the GPU was small, since only the data to be computed are
kept in the device memory. In addition, we could show a
good utilization of the CUDA devices on a single node.
These plots provide a good base to analyze the combined
asynchronous tasks on the CPU and GPU and support our
efforts to optimize the concurrent CPU and GPU tasks.

7.1 Future Work

The results of this work motivate further improvements
of the hydro solver’s GPU implementation. We plan to
investigate on-the-fly work aggregation across sub-grids
to combine the benefits of larger GPU kernels to saturate

10

GPUs with the increased scalability that smaller sub-grids
offer.

Furthermore, after recent promising results using HPX
and Kokkos together within the gravity solver, we plan
to port the current hydro CUDA implementation to
Kokkos [37] as well. The HPX Kokkos integration works
similarly as the CUDA one, and transforming the hydro
CPU methods into GPU Kokkos kernels would have re-
quired the same changes to the methods themselves as
outlined in Section 4.3.2. Hence, as of the current state,
we have already completed the first important steps.

Using Kokkos rather than pure CUDA provides us with
two advantages: We can easily target GPUs of other ven-
dors, such as AMD GPUs (and with the recently intro-
duced Kokkos SYCL execution space, also Intel GPUs).
Furthermore, Kokkos provides the means of using explicit
SIMD vectorization [38] to run GPU-capable kernels ef-
ficiently on the CPU as well. Currently, we have to main-
tain a second set of CPU kernels using Vc for SIMD
vectorization, which would be replaced by the Kokkos
kernels. With a portable Kokkos implementation, there
would be no need to maintain two specialized CPU and
GPU kernels to cover all platforms anymore. APEX al-
ready supports Kokkos profiling.

Furthermore, we plan to optimize the hydro kernels for
shared memory usage as soon as they have been ported to
Kokkos. With respect to HPX, more debugging is needed
for jobs with larger node counts (> 128 nodes): We have
experienced stalls for higher node counts due to an er-
ror from the IBM® Spectrum MPI on Summit possibly
caused by sending too many messages which result in a
network device crash, see IBM® ticket TS005902510.

From the application perspective, the authors would like
to compare the performance of the rotating star with the
Castro code to gain insight into whether the more accu-
rate hydro module results in more stable shapes of the star.
However, a comparison of the scaling is not trivial since
different algorithms and solvers are used in both codes. In
addition, Octo-Tiger utilizes asynchronous computation
with HPX, which CASTRO does not, as it uses MPI+X.
Next, these scaling results are the preparation for large
production runs on GPU accelerated supercomputers.

Acknowledgment

This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facil-

CPU only (Hydro and gravity)

A PREPRINT - JULY 27, 2021

Rotating star (Hydro and gravity)

10° -107
T T T T T 4 - T T T T T T T T
Sub-grid size Sub-grid size
o 250 1z —o— 83
= <
g S 3 —e— 163
(] (]
= 21 i
Q Q
a, 2,
3 > 2
2 15p 12
3 3]
2 =
2 1] 1% 1}
3 3
@) @)
0.5 8
0 -
| | | | | | | | | | | | |
1 3 4 5 6 20 21 22 23 24 25 26 27
localities # nodes
(a) (a)
106 CPU + GPU (Hydro and gravity) Rotating star (Hydro and gravity)
1.5 — T T T T] T T T T T T T T
Sub-grid size Sub-grid size
- —o— 83 —— 83
= 3 26 - 3
I —o— 16 —o— 16
% 10 . —— Optimal
[
o =3 4
: |—
5 3 2
z g
3 @
<)
a 0.5 - * 22 [
35
@)
20 [
0 = ! ! ! ! ! ! — | | | | | | | |
1 2 3 4 5 6 20 2t 22 23 94 95 96 of
localities # nodes

(b)

Figure 4: Cells processed per second for the node level
scaling. For one up to 6 localities on one Summit
node. One locality was assigned to seven CPUs and one
NVIDIA® V100 GPU.

ity supported under Contract DE-AC05-000R22725. Diehl and
Marcello thank the LSU Center of Computation & Technology
for supporting this work. The APEX work was supported by the
Scientific Discovery through Advanced Computing (SciDAC)
program funded by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research (ASCR) under
contract DE-SC0021299.

11

(b)

Figure 5: Cells processed per second for the distributed
scaling from one Summit node up to 128 Summit nodes.
Note that all six NVIDIA ® V100 GPUs per node were
used.

Supplementary materials

The scripts to compile Octo-Tiger are available on GitHub [39]
and the script to run the jobs and the input files on Zenodo [40],
respectively. CPPuddle is available here'.

'nttps://github.com/SC-SGS/CPPuddle

https://github.com/SC-SGS/CPPuddle

A PREPRINT - JULY 27, 2021

GPU: cuda_multipole_interactions_kernel_non_rho() GPU: cuda_multipole_interactions_kernel_rho()
v]
L . ---- 8 Mean: 349.372 | 10000 . ---- 83 Mean: 448.217
b ---- 163 Mean: 839.402 | & . ---- 16° Mean: 1213.207
S 1000 o .. Lo . I | 3 s000 .
""" —e@e----------oooo- 0 MV,M‘M‘“““““““““““'":::::::.‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
seconds from program start seconds from program start
GPU: cuda_p2m_interaction_non_rho() GPU: cuda_p2m_interaction_rho()
750 ® 750 ‘. . . .
0 500 fonshian i Sessshateates 1ot ---- 83 Mean: 80.319 o ---- 8% Mean: 84.72
e0csesecer o ode Soo coctesicoce ove 500
2 ---- 16% Mean: 176.171 I ---- 16> Mean: 184.206
o S 250 o S
0 50 100 150 200 0 50 100 150 200 250 300
seconds from program start seconds from program start
GPU: cuda_p2p_interactions_kernel() GPU: flux_cuda_kernel()
o 400 . ---- 83 Mean: 75.686 © 400 ---- 8% Mean: 68.877
b * ---- 16> Mean: 81.798 3 ---- 16> Mean: 181.641
> 200 ° .o A . 8,0 . > 200
0
Loonslenainibitaioiinsstiibieittiinnnennemene- e - - - - 8- - —----- -8
0 50 100 150 200 250 300 200 250 300
seconds from program start seconds from program start
000 GPU: reconstruct_cuda_kernel() check_for_refinement_action_type
1 g v N
o . . ---- 83 Mean: 192.715 o 5000 i“ ’ ---- 83 Mean: 327.805
& so0 . ---- 163 Mean: 302.293 | @ bt . ---- 16° Mean: 962.387
=] =]
[TR SN Vi besdacencass Y ———— o “'Z::::::::l i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
seconds from program start seconds from program start
compare_analytic_action_type form_tree_action_type
v 1000 L
. ---- 83 Mean: 61549.199 ---- 83 Mean: 14.489
@ 2000000 . 3] 3
2 . ~=-- 16° Mean: 442822.587 b S0, o, . ---- 16° Mean: 20.532
« “ye oy . s y
0= el afeieieieieiuieiieulajeieieie OL'] j] i
0 50 100 150 200 0 50 100 150 200 250 300
seconds from program start seconds from program start
1600 regrid_scatter_action_type solve_gravity_action_type
o . ---- 83 Mean: 45.518 o ---- 83 Mean: 239.792
2 . I " --=- 16> Mean: 33.352 | § 200007 . ---- 16 Mean: 776.698
| L | N ab-.. N —
50 100 150 200 250 300 0 50 100 150 200 250 300
seconds from program start seconds from program start

Figure 6: GPU kernel activity and CPU task actions for the gravity and hydro tasks when executing the 8% and 163
rotating star test on 6 localities. The 163 decomposition leads to longer-running tasks and kernels, but a shorter overall
execution time because there are significantly fewer of them.

12

CPU User %

Pord A VA, oA WA Moty] AN
v !
o201 [|

|
|

161 |

—— locality 0
Mean: 21.6

| “V\wﬂ ‘
1) || ! ‘*"-zw'*w'v\‘
129 ||

50 200 250

100 150
seconds from program start

(a) CPU Utilization of the 168 total available hard-
ware threads. Data captured by locality 0 repre-
sents the aggregate utilization of all processes on
the node.

GPU: Device 0 Utilization %

70 1
60 ' I -
g | ‘”A‘H sl
T30 H w‘w‘ ﬁ‘ | \‘\l N W‘o“‘v“ A
20 ‘\l ‘\ fidll u\m LI u A “\N HVH‘M“
o WU a
TP U Y PV EU T |
50 200

OMA...»M

0 150
seconds from program start

(b) GPU Utilization for Device 0 used by locality 0.

GPU: Total Bytes Occupied on Device

—— locali

1
1500000000
1

e
1
E

€ 7500000001

500000000 {
2500000001 "A
0
100 150
seconds from program start

(c) Total memory occupied through explicit alloca-
tions on each GPU.

H
Mean: 584197830.5

200 250

Figure 7: APEX Performance counter metrics from the
163 rotating star test case run on 6 localities.

Copyright notice

©2021 IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

References

[1] D. C. Marcello, S. Shiber, O. De Marco, J. Frank,
G. C. Clayton, P. M. Motl, P. Diehl, and H. Kaiser,
“Octo-tiger: a new, 3d hydrodynamic code for stel-
lar mergers that uses hpx parallelisation,” Monthly
Notices of the Royal Astronomical Society, 2021.

M. A. Skinner and E. C. Ostriker, “A Two-moment
Radiation Hydrodynamics Module in Athena Using
a Time-explicit Godunov Method,” ApJS, vol. 206,
no. 2, p. 21, Jun. 2013.

T. Heller, B. A. Lelbach, K. A. Huck, J. Biddis-
combe, P. Grubel, A. E. Koniges, M. Kretz, D. Mar-
cello, D. Pfander, A. Serio ef al., “Harnessing bil-
lions of tasks for a scalable portable hydrodynamic
simulation of the merger of two stars,” The Interna-
tional Journal of High Performance Computing Ap-
plications, vol. 33, no. 4, pp. 699-715, 2019.

G. Dai, P. Amini, J. Biddiscombe, P. Diehl,
J. Frank, K. Huck, H. Kaiser, D. Marcello, D. Pfan-

(2]

(3]

(4]

13

(5]

[6

—_

(7]

(8]

(9]

(10]

(11]

(12]

(13]

A PREPRINT - JULY 27, 2021

der, and D. Pfiiger, “From piz daint to the stars: Sim-
ulation of stellar mergers using high-level abstrac-
tions,” in Proceedings of the international confer-
ence for high performance computing, networking,
storage and analysis, 2019, pp. 1-37.

H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lel-
bach, P. Amini, A. Berge, J. Biddiscombe, S. R.
Brandt, N. Gupta, T. Heller, K. Huck, Z. Khatami,
A. Kheirkhahan, A. Reverdell, S. Shirzad, M. Sim-
berg, B. Wagle, W. Wei, and T. Zhang, “Hpx
- the c++ standard library for parallelism and
concurrency,” Journal of Open Source Software,
vol. 5, no. 53, p. 2352, 2020. [Online]. Available:
https://doi.org/10.21105/j0ss.02352

P. Diehl, D. Marcello, P. Armini, H. Kaiser,
S. Shiber, G. C. Clayton, J. Frank, G. Daiss,
D. Pfliiger, D. C. Eder et al., “Performance mea-
surements within asynchronous task-based runtime
systems: A double white dwarf merger as an appli-
cation,” Computing in Science & Engineering, 2021.

P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and
T. Quinn, “Massively parallel cosmological simu-
lations with changa,” in 2008 IEEE International
Symposium on Parallel and Distributed Processing,

2008, pp. 1-12.

P. Chang, J. Wadsley, and T. R. Quinn, “A moving-
mesh hydrodynamic solver for ChaNGa,” mnras,
vol. 471, no. 3, pp. 3577-3589, Nov. 2017.

L. J. Prust and P. Chang, “Common envelope evolu-
tion on a moving mesh,” mnras, vol. 486, no. 4, pp.
5809-5818, Jul. 2019.

J. Bordner and M. L. Norman, “Enzo-p / cello: Scal-
able adaptive mesh refinement for astrophysics and
cosmology,” in Proceedings of the Extreme Scaling
Workshop, ser. BW-XSEDE *12. USA: University
of Illinois at Urbana-Champaign, 2012.

L. V. Kale and S. Krishnan, “Charm++: A portable
concurrent object oriented system based on c++,”
in Proceedings of the Eighth Annual Conference on
Object-Oriented Programming Systems, Languages,
and Applications, ser. OOPSLA '93. New York,
NY, USA: Association for Computing Machinery,
1993, p. 91-108. [Online]. Available: https:
//doi.org/10.1145/165854.165874

A. Almgren, M. B. Sazo, J. Bell, A. Harpole,
M. Katz, J. Sexton, D. Willcox, W. Zhang,
and M. Zingale, “Castro: A massively parallel
compressible astrophysics simulation code,” Journal
of Open Source Software, vol. 5, no. 54, p. 2513,
2020. [Online]. Available: https://doi.org/10.21105/
joss.02513

J. M. Stone, K. Tomida, C. J. White, and K. G.
Felker, “The Athena++ Adaptive Mesh Refine-
ment Framework: Design and Magnetohydrody-
namic Solvers,” apjs, vol. 249, no. 1, p. 4, Jul. 2020.

https://doi.org/10.21105/joss.02352
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
https://doi.org/10.21105/joss.02513
https://doi.org/10.21105/joss.02513

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

P. Grete, F. W. Glines, and B. W. O’Shea, “K-
Athena: a performance portable structured grid fi-
nite volume magnetohydrodynamics code,” arXiv e-
prints, p. arXiv:1905.04341, May 2019.

I. P. Demeshko, P. Diehl, B. Adelstein-Lelbach,
R. Buch, H. Kaiser, L. S. Kale, Z. Khatami,
A. Koniges, and S. Shirzad, “TBAA20: Task-Based
Algorithms and Applications,” Los Alamos National
Laboratory, Tech. Rep. LA-UR-21-20928, 2021.

P. Thoman, K. Dichev, T. Heller, R. Iakym-
chuk, X. Aguilar, K. Hasanov, P. Gschwandtner,
P. Lemarinier, S. Markidis, H. Jordan et al., “A
taxonomy of task-based parallel programming tech-
nologies for high-performance computing,” The
Journal of Supercomputing, vol. 74, no. 4, pp. 1422—
1434, 2018.

M. P. Katz, A. Almgren, M. Barrios Sazo, K. Ei-
den, K. Gott, A. Harpole, J. M. Sexton, D. E. Will-
cox, W. Zhang, and M. Zingale, ‘“Preparing Nu-
clear Astrophysics for Exascale,” arXiv e-prints, p.
arXiv:2007.05218, Jul. 2020.

The C++ Standards Committee, “ISO International
Standard ISO/IEC 14882:2011, Programming Lan-
guage C++,” Geneva, Switzerland: International Or-
ganization for Standardization (ISO)., Tech. Rep.,
2011, http://www.open-std.org/jtc1/sc22/wg21.

—— “ISO International Standard ISO/IEC
14882:2014, Programming Language C++,”
Geneva, Switzerland: International Organization
for Standardization (ISO)., Tech. Rep., 2014,
http://www.open-std.org/jtc1/sc22/wg21.

“ISO International Standard ISO/IEC

14882:2017, Programming Language C++,”
Geneva, Switzerland: International Organization
for Standardization (ISO)., Tech. Rep., 2017,

http://www.open-std.org/jtc1/sc22/wg21.

——, “ISO International Standard ISO/IEC

14882:2020, Programming Language C++,”
Geneva, Switzerland: International Organization
for Standardization (ISO)., Tech. Rep., 2020,

http://www.open-std.org/jtc1/sc22/wg21.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio,
and D. Fey, “HPX: A Task Based Programming
Model in a Global Address Space,” in Proceedings
of the 8th International Conference on Partitioned
Global Address Space Programming Models, ser.
PGAS "14. New York, NY, USA: ACM, 2014, pp.
6:1-6:11. [Online]. Available: http://doi.acm.org/
10.1145/2676870.2676883

H. Kaiser, T. Heller, D. Bourgeois, and D. Fey,
“Higher-level parallelization for local and dis-
tributed asynchronous task-based programming,”
in Proceedings of the First International Work-
shop on Extreme Scale Programming Models and
Middleware, ser. ESPM °15. New York, NY,

14

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

A PREPRINT - JULY 27, 2021

USA: ACM, 2015, pp. 29-37. [Online]. Available:
http://doi.acm.org/10.1145/2832241.2832244

H. Kaiser, B. Adelstein-Lelbach, T. Heller, and
A. B. etal., “HPX V1.6: The C++ Standard
Library for Parallelism and Concurrency,” 2021,
http://dx.doi.org/10.5281/zenodo.598202.

T. Heller, H. Kaiser, P. Diehl, D. Fey, and M. A.
Schweitzer, “Closing the Performance Gap with
Modern C++,” in High Performance Computing,
ser. Lecture Notes in Computer Science, M. Taufer,
B. Mohr, and J. M. Kunkel, Eds., vol. 9945.
Springer International Publishing, 2016, pp. 18-31.

K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser,
A. D. Malony, T. Sterling, and R. Fowler, “An
autonomic performance environment for exascale,”

Supercomputing frontiers and innovations, vol. 2,
no. 3, pp. 49-66, 2015.

NVIDIA, “Cuda profiling tools interface,” 2020,
https://docs.nvidia.com/cuda/cupti/index.html.

, “Nvidia management library
(nvml),” 2020, https://developer.nvidia.com/
nvidia-management-library-nvml.

W. Wei, E. D’Azevedo, K. Huck, A. Chatterjee,
O. Hernandez, and H. Kaiser, “Memory reduction
using a ring abstraction over gpu rdma for dis-
tributed quantum monte carlo solver,” 2021.

D. C. Marcello, “A Very Fast and Angular Momen-
tum Conserving Tree Code,” AJ, vol. 154, no. 3,
p- 92, Sep. 2017.

G. L. Bryan, M. L. Norman, J. M. Stone, R. Cen,
and J. P. Ostriker, “A piecewise parabolic method for
cosmological hydrodynamics,” Computer Physics
Communications, vol. 89, no. 1-3, pp. 149-168,
Aug. 1995.

P. Colella and P. R. Woodward, “The Piecewise
Parabolic Method (PPM) for Gas-Dynamical Simu-
lations,” Journal of Computational Physics, vol. 54,
pp- 174-201, Sep. 1984.

A. Kurganov, A. Guergana, and P. Siam, “Semidis-
crete central-upwind schemes for hyperbolic conser-
vation laws and hamilton—jacobi equations,” J. Com-
put. Phys. SIAM J. Sci. Comput, vol. 23, pp. 707-
740, 01 2000.

D. Pfander, G. Daif3, D. Marcello, H. Kaiser, and
D. Pfliiger, “Accelerating Octo-Tiger: Stellar merg-
ers on Intel Knights Landing with HPX,” in Proceed-
ings of the International Workshop on OpenCL, ser.
IWOCL °18. New York, NY, USA: ACM, 2018,
pp. 19:1-19:8.

G. Daif}, “Octo-tiger: Binary star systems with hpx

on nvidia p100,” Master thesis, Universitét Stuttgart,
May 2018.

I. Hachisu, “A Versatile Method for Obtaining
Structures of Rapidly Rotating Stars,” ApJS, vol. 61,
p. 479, Jul. 1986.

http://doi.acm.org/10.1145/2676870.2676883
http://doi.acm.org/10.1145/2676870.2676883
http://doi.acm.org/10.1145/2832241.2832244
https://docs.nvidia.com/cuda/cupti/index.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

[37]

[38]

[39]

[40]

H. C. Edwards, C. R. Trott, and D. Sunderland,
“Kokkos: Enabling manycore performance portabil-
ity through polymorphic memory access patterns,”
Journal of Parallel and Distributed Computing,
vol. 74, no. 12, pp. 3202 — 3216, 2014, domain-
Specific Languages and High-Level Frameworks for
High-Performance Computing.

D. Sahasrabudhe, E. T. Phipps, S. Rajamanickam,
and M. Berzins, “A portable simd primitive using
kokkos for heterogeneous architectures,” in Interna-
tional Workshop on Accelerator Programming Us-
ing Directives. Springer, 2019, pp. 140-163.

P. Diehl, G. Daif3, P. Amini, and S. Schiber, “Power-
tiger: Octo-tiger’s build chain,” 2021, https://github.
com/diehlpk/PowerTiger.

P. Diehl and D. Marcello, “Supplementry mate-
rial: Revisiting Octo-Tiger’s performance using
HPX+CUDA on Summit,” May 2021. [Online].
Auvailable: https://doi.org/10.5281/zenodo.4777149

15

A PREPRINT - JULY 27, 2021

https://github.com/diehlpk/PowerTiger
https://github.com/diehlpk/PowerTiger
https://doi.org/10.5281/zenodo.4777149

	1 Introduction
	2 Related work
	3 Software framework
	3.1 C++ standard library for parallelism and concurrency
	3.2 APEX

	4 Octo-Tiger
	4.1 Octo-Tiger's Gravity Solver
	4.2 Octo-Tiger's Hydro Implementation
	4.3 Octo-Tiger's CUDA Implementation
	4.3.1 Gravity Module GPU Implementation
	4.3.2 Initial Hydro Module GPU Implementation
	4.3.3 Next steps for the Hydro GPU Implementation

	5 Performance measurements
	5.1 Sedov-Taylor Blast Wave (Pure Hydro)
	5.1.1 Node level scaling
	5.1.2 Distributed scaling

	5.2 Rotating star (Hydro and gravity)
	5.2.1 Node level scaling
	5.2.2 Distributed scaling

	5.3 APEX + CUDA

	6 Astrophysical Test Results
	7 Conclusion
	7.1 Future Work

