
© 2021 IEEE under DOI 10.1109/Cluster48925.2021.00087. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

Energy Efficiency Aspects of the
AMD Zen 2 Architecture

Robert Schöne1 Thomas Ilsche2 Mario Bielert2 Markus Velten2 Markus Schmidl3 Daniel Hackenberg2

Center for Information Services and High Performance Computing (ZIH), TU Dresden, Dresden, 01062, Germany
1 robert.schoene@tu-dresden.de 2 firstname.lastname@tu-dresden.de 3 markus.schmidl@mailbox.tu-dresden.de

Abstract—In High Performance Computing, systems are eval-
uated based on their computational throughput. However, per-
formance in contemporary server processors is primarily limited
by power and thermal constraints. Ensuring operation within
a given power envelope requires a wide range of sophisticated
control mechanisms. While some of these are handled transpar-
ently by hardware control loops, others are controlled by the
operating system. A lack of publicly disclosed implementation
details further complicates this topic. However, understanding
these mechanisms is a prerequisite for any effort to exploit the full
computing capability and to minimize the energy consumption
of today’s server systems. This paper highlights the various
energy efficiency aspects of the AMD Zen 2 microarchitecture to
facilitate system understanding and optimization. Key findings
include qualitative and quantitative descriptions regarding core
frequency transition delays, workload-based frequency limita-
tions, effects of I/O die P-states on memory performance as
well as discussion on the built-in power monitoring capabilities
and its limitations. Moreover, we present specifics and caveats
of idle states, wakeup times as well as the impact of idling and
inactive hardware threads and cores on the performance of active
resources such as other cores.

Index Terms—AMD; Zen 2; Epyc Rome; power saving; energy
efficiency; DVFS; C-State; performance; RAPL

I. INTRODUCTION

With the Epyc Rome processor generation, AMD processors
gained a noticeable share in the TOP500 list of supercomputers
for the first time since Opteron Interlagos, which debuted in
2011. The new architecture is not only competitive in terms of
performance, but also power efficiency among systems using
general-purpose x86 processors as Figure 1 shows.

The Green500 [1] list, used to create Figure 1, ranks top
High Performance Computing (HPC) systems by their energy
efficiency under full load. In practice, energy efficiency is not

0 1 2 3 4 5 6
Power Efficiency [GFlops/W]

AMD Zen 2 (Rome)
Intel Cascade Lake

Intel Xeon Phi
Intel Skylake

Intel Broadwell
Intel Haswell

Fig. 1: Efficiency of systems with x86 processors in the
2021/07 Green500 list [1] (architectures with > 5 systems).

only defined by power efficiency during peak performance.
Many mechanisms, such as P-states or C-states, concern
operation during scaled-down performance or idle phases.
Other mechanisms, such as Turbo frequencies and power
capping, aim at maximizing performance under thermal and
power constraints. They are supported by internal energy
measurements, which can also be used for energy-efficiency
optimizations. This paper analyzes these dynamic and highly
configurable mechanisms rather than the application-specific
performance per watt. The resulting insight is the foundation
to improve the complex interactions between applications,
operating systems (OSs), and independent hardware control
for performance and energy efficiency.

The paper is structured as follows: Section II and Section III
discuss existing work on the evaluation of energy efficiency
mechanisms and the Rome architecture, respectively. Sec-
tion IV introduces our test system and power measurement
infrastructure. The next three sections highlight particular
aspects, each including methodologies, test results, and a
discussion: In Section V, we unveil details on processor
frequencies. Section VI covers characterizations of processor
idle states. In Section VII, we validate the accuracy of the
internal power monitoring mechanism. We conclude the paper
with a summary and outlook in Section VIII.

II. RELATED WORK ON EFFICIENCY MECHANISMS

A. ACPI States

Power saving interfaces are defined in the Advanced Con-
figuration and Power Interface (ACPI) [3]. Performance states
(P-states) provide different performance levels and can be
selected during runtime [3, Section 2.6]. Usually processors
implement these with Dynamic Voltage and Frequency Scaling
(DVFS). However, their particular implementation is highly
processor-architecture dependent. Mazouz et al. were one of
the first to investigate this in [4]: They describe how P-
state transition times depend on initial and target processor
frequency. We show in [5] that waking an idling processor
core is also frequency-dependent, but additionally depends on
the waker-wakee-relation and the applied idle state. Likewise,
we also show in [6] how long it takes to enter an idle state.
Finally, we describe the effect of clock modulation (throttling)
in [7]. This paper covers P-state and C-state transitions in
Section V and Section VI, respectively. Software controlled
clock modulation, however, is not publicly documented for
the Zen 2 architecture [2], [8].

ar
X

iv
:2

10
8.

00
80

8v
2 

 [
cs

.A
R

] 
 2

5 
O

ct
 2

02
1

https://doi.org/10.1109/Cluster48925.2021.00087


B. Processor-internal Power Measurement and Capping

Processor-internal power monitoring is used to select turbo
frequencies and implement power capping [9], [10]. The
accuracy of these monitoring mechanisms therefore directly
influences processor performance. We describe the Intel Run-
ning Average Power Limit (RAPL) for Intel Sandy Bridge and
the AMD Application Power Management (APM) for AMD
Bulldozer in [11]. We find that both are based on models
that use data from processor internal resource usage monitors.
We also analyze RAPL for Intel Haswell processors [12] and
describe it to be accurate and based on measurements. Hähnel
et al. measure the update rate of RAPL in [13] as 1ms. Lipp
et al. show in [14] that RAPL can provide significantly higher
rates for the core power domain (pp0) for certain processors.
They leverage this for a side channel attack [14].

C. Processor-specific Overviews

We describe the Intel Haswell server architecture in de-
tail [12]. In addition to the previously mentioned RAPL
analysis, the authors found an asynchronous mechanism that
sets core frequencies in an interval of 500 µs. We also describe
the interaction between core and uncore frequency mecha-
nisms and show how concurrency and frequencies influence
memory bandwidths. Gough et al. provide a broad overview
of the Haswell architecture as well as suggestions for tun-
ing server systems according to user requirements [15]. We
describe the Intel Skylake server architecture [16], covering
the internal hardware control for uncore frequencies, AVX-
frequency mechanisms, and the influence of data on the power
consumption of a well-defined workload. We show that uncore
frequency changes can occur every 1.5ms.

III. ARCHITECTURAL DETAILS OF “ROME” PROCESSORS

A. General Architecture Details

Zen 2 uses a modular design on multiple levels [2, Section
1.8.1]. The structure of the processor is depicted in Figure 2.
Four cores are clustered in one Core Complex (CCX, also
CPU Complex). One Core Complex Die (CCD) comprises
two CCXs. Up to eight CCDs are attached to one I/O die

on processors with up to 64 cores. Based on the core count,
two or one of the CCDs attach to the same switch within
the I/O die network. Each of the switches on the I/O die that
connects the CCDs also attaches a memory controller with
two memory channels, which can result in four non-uniform
memory access (NUMA) nodes.

Each core has a common front-end which fetches instruc-
tions for two independent hardware threads [17]. The fetch
window is 32B wide and fed to a 4-way decoder. The back-
end is split into two parts: One part comprises four Arithmetic
Logical Units and three Address Generation Units (AGUs),
the other contains two 256-bit-wide Floating-point Multiply-
Add (FMA) and two 256-bit-wide floating-point add units.
The AGUs can be used for two loads and one store per cycle,
where each of these can transfer up to 32B of data.

Each processor core holds an op cache for 4096 ops, 32KiB
L1I and L1D caches, and 512KiB L2 cache, which is used
for instructions and data. In addition, each CCX holds 16MiB
of L3 cache, distributed over four slices with 4MiB each.

B. Energy Efficiency Details for ACPI States
The AMD Zen 2 architecture implements a wide range of

power saving mechanisms. According to AMD’s Processor
Programming Reference [2, Section 2.1.14.3], a maximum of
eight P-states can be defined. However, on most systems, the
number of available P-states will be lower. The actual number
can be retrieved by polling the P-state current limit Model
Specific Register (MSR). The definition of single P-states
includes specifications for frequency, the “expected maximum
current dissipation of a single core”, and a “voltage ID”. The
latter is not publicly documented. A processor core frequency
can be higher than nominal when using Core Performance
Boost. No implementation details are disclosed for server ar-
chitectures. For desktop processors, AMD describes Precision
Boost, where the frequency can be increased in 25MHz steps
as part of the SenseMI technology1. This would match the
frequency multiplier entry in the MSR, where multiples of
25MHz can be defined.

1https://community.amd.com/t5/blogs/understanding-precision-boost-2-in-
amd-sensemi-technology/ba-p/416073

C
C

X Core 2

IF

4 MiB L3 Core 34 MiB L3

Core 0 4 MiB L3 Core 14 MiB L3

C
C

X Core 4 4 MiB L3 Core 54 MiB L3

Core 6 4 MiB L3 Core 74 MiB L3

(a) Core Complex Die (CCD) with Core Complexes (CCXs)

I/O,
xGMI

DRAM

CCD CCD CCDCCD

CCD CCD CCD CCD

UMC UMC DRAM

UMC DRAMDRAM UMC

DRAM UMC UMC DRAM

UMC DRAMDRAM UMC

(b) I/O die with memory controllers (UMC), attached memory, IF-
Switches (brown), CCDs, repeaters, and I/O; xGMI attachements not
depicted; based on [2]

Fig. 2: Block diagram of AMD Rome Architecture, communication via Infinity Fabric (IF)

https://community.amd.com/t5/blogs/understanding-precision-boost-2-in-amd-sensemi-technology/ba-p/416073
https://community.amd.com/t5/blogs/understanding-precision-boost-2-in-amd-sensemi-technology/ba-p/416073


Zen 2 implements the usage of idle power states with
the instructions monitor/mwait and I/O addresses, which
when accessed trigger the entering of one of these states. The
latter are defined in the C-state base address MSR [2, Section
2.1.14.3] . There is no indication that AMD implements clock
modulation as Intel does [7]. However, according to Singh et
al., processors support more frequency ranges on some market
segments with run-time duty-cycle settings [18, Fig. 2.1.5].

C. Other Energy Efficiency Details

In addition to traditional power saving mechanisms, AMD
also implements I/O die P-states. According to [17, Section
“ROME” SOC], the frequency is decoupled from core P-states
and can be used to control the performance and power budget
of the I/O die. The reference document [2, Section 2.1.14.3]
also indicates that the L3 cache has a dedicated frequency
domain and names some restrictions (“L3 frequencies below
400MHz are not supported by the architecture”). However,
the underlying mechanism is not disclosed.

Parts of the core can be clock-gated at a fine granularity
even during active states. Singh et al. state in [18] that “clock
gating opportunities were identified for low-IPC patterns,
where only a portion of the pipeline is used”. Suggs et al. name
“continuous clock and data gating improvements” in [17,
Section Energy Efficiency]. In particular, the upper 128 bit
of the SIMD-capable Floating-Point (FP) units were target
for optimization, since only specialized software uses 256-bit
SIMD instructions. Singh et al. state that “Zen 2 gated the
FP clock mesh 128-bit regions with no additional clocking
overhead [...]”, which “saved 15% clock mesh power in
idle and average application cases where FP was inactive”.
Due to the large number of partially clock-gated, wide super
scalar execution units, power consumption now depends on
the actual workload being executed. “[A]n intelligent EDC
manager which monitors activity [...] and throttles execution
only when necessary” helps to avoid peaks that “cause electri-
cal design current (EDC) specifications to be exceeded” [17,
Section Floating-Point/Vector Execute]. We evaluate this in
Section V-E.

Burd et al. describe more power saving mechanisms for
AMD Zen/Zeppelin processors in [19], which could also be
available for AMD Zen 2/Rome. These include a package C-
state PC6 “in which the CPU power plane can be brought to
a low voltage when there are no active CPU cores”, but also
a low power state that could be implemented in the I/O die. In
this state, “most of the IO and memory interfaces are disabled
and placed in a low-power state”. Burd et al. also mention
the possibility to lower the infinity fabric link width between
sockets.

With the Zen architecture, AMD replaced APM (Appli-
cation Power Management) with RAPL (Running Average
Power Limit) [2]. The implementation seems similar to the
Intel solution, but uses different MSRs. While Intel typically
provides multiple domains and the option to limit power
consumption over various time frames [20, Section 14.10],
AMD only describes registers for reading package and core

power consumption. However, the latter is available with a
per-core spatial resolution, compared to per-package for Intels
core domain (pp0). While Intel switched from a model to
measurement with the Haswell architecture, slides from AMD
indicate that they use a model based on “> 1300 critical
path monitors, 48 on-die high speed power supply monitors,
20 thermal diodes, [and] 9 high speed droop detectors”2 for
Zen desktop processors. We evaluate the resulting accuracy of
RAPL in Section VII.

In [19], Burd et al. describe how on the Zen architecture,
System Management Units (SMUs) work together to com-
municate applied frequencies and necessary voltages, where
each die of the package implements its own SMU. In [19,
Fig. 7], they describe that from this set of SMUs, a Master
SMU is chosen, which evaluates data from other SMUs and
runs control loops for package power and temperature. It also
triggers frequency changes and controls the external voltage
regulator. The slide set of [21]3 also shows SMUs being part
of the Rome architecture and still responsible for “power
management” and “thermal control”.

IV. TEST SYSTEM AND POWER MEASUREMENTS

For our analysis, we use a dual socket system with two
AMD EPYC 7502 processors, where each processor hosts 32
Cores in 4 CCDs. We configured the system to use the “2-
Channel Interleaving (per Quadrant)” mode [22]. From the
available frequencies (1.5GHz, 2.2GHz and 2.5GHz), we use
the reference frequency (2.5GHz) and the “Auto” I/O die P-
state unless specified otherwise. By default, memory is clocked
at 1.6GHz. The system runs Ubuntu Linux 18.04 with kernel
5.4.0-47-generic. We use the GNU Compiler Collection (GCC)
in version 7.5.0 as the default compiler. Access to MSRs is
performed via the msr kernel module, except for RAPL energy
readouts, for which we use custom libraries4. We use the Linux
cpufreq governor “userspace” to control processor frequencies.
By default, we enabled all available C-states. We use sysfs
files to control C-states5 and hardware threads6.

We use a ZES LMG670 power analyzer with L60-CH-
A1 channels to measure the total AC power consumption
of the test system. In our configuration, the power measure-
ment has an accuracy of ±(0.015% + 0.0625W). During
the experiments, a separate system collects the active power
values at 20 Sa/s. The out-of-band data collection avoids any
perturbation. Measurement data is merged with the internal
power and performance monitoring in a post-mortem step.
For quantitative comparisons, we use average power values
within the inner 8 s of a 10 s interval in which one workload
configuration is executed continuously. This approach avoids
inaccuracies due to misaligned timestamps. We pre-heat the
system for power-sensitive workloads.

2Michael Clark, The “Zen” Architecture, https://www.slideshare.net/
pertonas/amd-ryzen-cpu-zen-cores-architecture

3https://www.slideshare.net/AMD/amd-chiplet-architecture-for-
highperformance-server-and-desktop-products

4https://github.com/tud-zih-energy/x86_energy with x86_adapt backend
5/sys/devices/system/cpu/cpu\d+/cpuidle/state[012]
6/sys/devices/system/cpu/cpu\d+/online

https://www.slideshare.net/pertonas/amd-ryzen-cpu-zen-cores-architecture
https://www.slideshare.net/pertonas/amd-ryzen-cpu-zen-cores-architecture
https://www.slideshare.net/AMD/amd-chiplet-architecture-for-highperformance-server-and-desktop-products
https://www.slideshare.net/AMD/amd-chiplet-architecture-for-highperformance-server-and-desktop-products
https://github.com/tud-zih-energy/x86_energy


V. PROCESSOR FREQUENCIES

A. Influence of Idling Hardware Threads on Core Frequencies

To investigate the influence of idling hardware threads,
we set up a simple workload, where one thread of a core
executes a constant workload (while(1);) running at min-
imum frequency (1.5GHz). We monitor its frequency with
perf stat -e cycles -I 1000. Then, we change the
frequency of the second thread of the same core to the
nominal frequency (2.5GHz). We let the second thread idle
and monitor its activity also with perf stat. The idling
thread reports only a usage of less than 60 000 cycle/s and
uses idling states. However, even though the second thread
is idling, the frequency of the first thread is elevated to
the nominal frequency (2.5GHz) rather than its configured
minimal frequency (1.5GHz). In another attempt, we disable
the idling thread. Still, the frequency of the core is defined
by the offline thread. Based on this observation, it can be
advantageous to set the frequency of unused hardware threads
to the minimal frequency to allow active threads to control
their effective frequency. We never observed this behavior on
Intel processors with enabled deep idle states. It may therefore
be unexpected for system administrators.

B. Frequency Transition Delays

While operating systems change processor frequencies
based on resource usage, researchers also use these mecha-
nisms to optimize energy efficiency for code paths [23], [24].
However, the possible time scales for both highly depend on
the delay of the frequency transition, which can take tens to
hundreds of microseconds [4], [12].

For our tests, we refined the approach from [4] to measure
this delay as follows: The benchmark switches the core
frequency and measures the runtime of a minimal workload.
It repeats the measurement until the expected performance of
the target frequency is reached. Afterwards, the performance
is measured another 100 times and validated with a confidence
interval of 95%. Then, the benchmark applies the initial
frequency, waits for the appropriate performance level and
validates it as before. If either one of the two validations
fails, the sample and the following sample is discarded. Before
the next measurement, the benchmark waits a random time
between 0ms and 10ms. We measure each combination of
initial and target frequency 100 000 times. Other cores in the
system are set to the minimum frequency of 1.5GHz.

Figure 3 shows the distribution of transition delays for a
switch from 2.1GHz to 1.5GHz. The measured latencies
are approximately uniformly distributed between 390 µs and
1390 µs. This wide distribution indicates that an internal fixed
update interval of 1ms is used. A similar mechanism was ob-
served for core and uncore frequencies of Intel processors [12],
[16]. The delay from the initial request to a transition slot is up
to 1ms and the actual frequency change takes another 390 µs.

We also observe comparable results for other frequency
combinations with the exception of changes between 2.5GHz
and 2.2GHz, where we experienced a significantly higher

0 250 500 750 1000 1250 1500
Transition latency [µs]

0

500

1000

1500

Sa
m

pl
e 

Co
un

t

Fig. 3: Histogram of frequency transition delays from 2.2 to
1.5GHz (random starting time, 25 µs bins).

rate of invalid measurements. When switching from 2.5GHz
to 2.2GHz, some measured latencies are below the assumed
minimal transition delay, down to 160 µs. Symmetrically, there
are less measurement samples above 1100 µs. When switching
from 2.2GHz to 2.5GHz, some transitions are executed
instantaneously (1 µs delay). Here, the previous transition did
not finish completely (e.g., frequency set, but not voltage).
Therefore, returning to a previous setting is faster. The effect
disappears with random wait times of at least 5ms.

Based on the measurements, we can show that AMD intro-
duced update intervals for core frequencies that define times
when frequency transitions can be initiated. On our system, the
period of that window is 1ms, compared to 500 µs on Intel
systems [12], [16]. The delay of approx. 390 µs for the actual
transition (360 µs for increasing frequency) is also significantly
higher compared to the Intel Haswell architecture (21 µs to
24 µs). This might be caused by communication between the
SMUs, which likely creates higher delays compared to a
centralized Power Control Unit on Intel architectures.

C. Influence of Mixed Frequencies on a Single CCX

For this evaluation, we configure cores of a single CCX
to use different frequencies. We run a simple workload
(while(1);) on all cores of a CCX and measure the
frequency of one core, which is configured differently than
other cores. We monitor each setup for 120 s and capture
the frequency every second via perf stat. The results are
presented in Table I. Evidently, core frequencies are reduced if
other cores on the same CCX apply higher frequencies. While
this effect is moderate for a core running on 1.5GHz, with
a reduction of 33MHz and 71MHz, the performance penalty
for 2.2GHz is more severe with a reduction of 200MHz.

To understand the influence different core frequencies have
on the L3-cache frequency, we use a pointer chasing bench-
mark, developed by Molka et al. [25]. We disabled hardware
prefetchers in this test and explicitly used huge pages via
the hugetlbfs. As with the previous test, we test one core
of one CCX, while the other cores are in an active state.
We measure each combination several times and present
the minimal measured latencies to filter out outliers, where
the measurement has been influenced by software (OS) or
hardware (processor internal mechanisms). As Figure 4 shows,
the latency to the L3 cache decreases for a core running at
1.5GHz, when other cores in the same CCX apply a higher



TABLE I: Applied mean core frequencies GHz in a mixed
frequency set-up on one CCX, Tests with lower applied
frequency than other cores are highlighted.

Set frequencies of other cores [GHz]
1.5 2.2 2.5

Set frequency of
measured core
[GHz]

1.5 1.499 1.466 1.428
2.2 2.200 2.199 2.000
2.5 2.497 2.499 2.499

1.5 2.2 2.5
Frequency of Reading Core [GHz]

0

5

10

15

20

25

La
te

nc
y 

[n
s]

25.2

17.2
15.2

22.0

17.2
15.2

21.2

17.2
15.2

Frequency of Remaining Cores
1.5 GHz
2.2 GHz
2.5 GHz

Fig. 4: L3-cache latencies in a mixed frequency set-up on one
CCX.

core frequency, even though its own frequency is decreased
by the previously mentioned effect. We explain this with an
increased L3-cache frequency that is defined by the highest
clocked core in the CCX.

Both effects have severe consequences for performance
modeling and energy efficiency optimizations. Even if an
optimal core frequency is predicted correctly and applied to
a processor core, other cores can disturb the well-optimized
setup, resulting in a loss of performance and energy efficiency.
However, the same mechanism that can reduce the frequency
and subsequently performance of a single core in a CCX
can also decrease L3-cache latencies and therefore increase
performance.

D. Influence of I/O Die P-state and DRAM Frequency on
Memory Performance

In addition to core and L3-cache frequencies, the I/O die
has its own voltage and frequency domain, which can influence
NUMA, I/O, and memory accesses that pass the I/O die. In
this section, we analyze how different configurations for I/O
die and memory frequencies will influence main memory per-
formance. To do so, we use two benchmarks: The STREAM-
Triad benchmark proposed by McCalpin [26], and the memory
latency benchmark described by Molka et al. [25]. In contrast
to previous measurements, we use the Intel compiler for the
STREAM benchmark as it reaches higher performance levels.
We further vary the number of cores that concurrently access
memory by using additional well placed threads, defined
via OpenMP environment variables. We disabled hardware
prefetchers, as mentioned in Section V-C, and explicitly use
huge pages for the latency benchmark. For both benchmarks
we vary I/O die P-states and DRAM frequencies in the BIOS.

Figure 5 presents the results. The pattern for memory
bandwidths shows that two cores on one CCX already reach
the maximal main memory bandwidth and additional cores
can lead to performance degradation. Using higher I/O die
P-states reduces power consumption but also lowers memory
bandwidth. Surprisingly, a higher DRAM frequency does not
increase memory bandwidth significantly. As expected, the
lowest power state performs best in this benchmark and the
auto setting has the same performance. This could lead to
the assumption that for performance analysis it would be
best to pin the I/O die P-state to 0 to remove one source of
inpredictability. However, when looking at the latencies-result,
one can see that auto outperforms the P-state 0 with 92.0 ns
vs 96.0 ns. Moreover, for the higher memory frequency, also
the I/O die P-state 2 performs better than P-state 0. This could
be attributed to a better match between the frequency domains
for memory and I/O die. According to our observations, the
auto setting performs good for all scenarios. However, we did
not investigate the hardware control loop and how fast it reacts
to different access patterns.

E. Frequency Limitations for High-Throughput Workloads

Starting with the Haswell-EP processor generation, Intel
defined AVX frequencies, where workloads that use wide
SIMD instructions would use a lower “nominal” frequency
[10]. [17, Section Floating-Point/Vector Execute] describes
such a static assignment a “simplistic approach to mitigating
this issue” and describes that Zen 2 uses “an intelligent EDC
manager which monitors activity [...] and throttles execution
only when necessary”. To evaluate how the test system is
influenced by workloads that utilize all processor resources
to the highest extend, we use FIRESTARTER 2 [27]. The
workload schedules up to two 256-bit FMA instructions per
cycle accompanied by 256-bit vector loads and stores to
different levels of the memory hierarchy. To maximize back-
end utilization, these instructions are interleaved with integer
and logical instructions. To utilize the front-end, we increase
the size of the inner loop such that it does not fit into the L0 op
cache but in the L1I cache. This limits the maximal throughput
of each core to four instructions per cycle. Before we run our
tests, we execute FIRESTARTER for 15min in order to create
a stable temperature. We run our tests at nominal frequency
for two minutes and measure frequency and throughput with
perf stat. For power measurements, we use the external
AC measurements described in Section IV as well as RAPL
package energy counters. We exclude data for the first 5 s and
last 2 s to avoid including the initialization phase in addition
to clock synchronization issues. Performance data for all used
threads is collected in 1 s intervals.

In our measurements, average processor core frequencies
are reduced to 2.0GHz or 2.1GHz, depending on whether
two threads per core are used or not. This is depicted in
Figure 6. The standard deviation is 3.04MHz and 0.82MHz,
respectively. The frequency difference can be explained with
a higher average throughput of 3.56 instruction

core cycle (standard de-
viation 0.008) instead of 3.23 instruction

core cycle (standard deviation



1 2 3 4 4 (2 CCX)
Cores on one CCD

1.467 1.6 1.467 1.6 1.467 1.6 1.467 1.6 1.467 1.6
DRAM Frequency [GHz]

3

2

1

0

auto

I/O
-D

ie
 P

-S
ta

te

22.2

28.3

28.9

31.7

32.1

22.2

28.2

30.0

30.6

31.0

27.2

33.7

37.6

39.6

39.6

27.1

33.7

39.1

40.1

40.1

26.8

32.9

36.8

38.8

38.9

26.8

32.9

38.5

39.5

39.5

26.5

32.4

35.9

38.1

38.1

26.4

32.4

37.8

38.6

38.6

26.5

32.6

36.0

38.2

38.2

26.5

32.5

37.9

38.8

38.8
22.2

26.7

31.1

35.6

40.1

Ba
nd

wi
dt

h 
[G

B/
s]

(a) STREAM Triad bandwidth

1.467 1.6
DRAM Frequency [GHz]

3

2

1

0

auto

I/O
-d

ie
 P

-s
ta

te

142

101

113

96

92

137

104

110

109

104
92.1

104.5

117.0

129.5

142.0

La
te

nc
y 

[n
s]

(b) latency

Fig. 5: DRAM bandwidth and latency for I/O die P-states and DRAM frequencies.

0.004), respectively. Also the average power consumption of
the system is higher when both hardware threads of a core are
used. It is 509W instead of 489W with a standard deviation
of less than 4W in both cases. Meanwhile, the RAPL package
counter reports 170W for both processors even though their
TDP is stated to be 180W. This might be related to the
accuracy of the processor internal power measurement, which
we investigate in Section VII. Enabling Core Performance
Boost has almost no influence on throughput, frequency and
power consumption.

Based on our measurements, we conclude that the EDC
manager works as expected and will lower processor fre-
quencies if needed. This poses a threat to the efficiency of
HPC systems. In well balanced applications, one throttling
processor can slow down the whole program. On Intel sys-
tems, administrators and users know about the severity of
this problem and can apply counter measures (e.g., running
highly parallel programs at reduced frequency) based on the
documented AVX frequency ranges. For AMD Rome systems,
measurements are required to determine the actual frequency
ranges on a specific processor.

with SMT without SMT
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Pe
rfo

rm
an

ce 2.03
3.56 509

2.1 3.23
489

Metric
frequency normalized to nominal frequency
instructions per cycle on one core normalized
to maximal throughput of four instructions
average power consumption [W]

0

110

220

330

440

550

Po
we

r [
W

]

Fig. 6: Observed parameters at set nominal frequency
2.5GHz) with and without the usage of two hardware threads
per core. Error bars depict standard deviation.

VI. POWER STATE DETAILS

In this section, we analyze processor power states (C-states),
as described in [3, Section 8.6]. Idling C-states are triggered
by the operating system when there is no thread that can
be scheduled on a hardware thread. When all threads of a
processor core enter such a state, (parts of) the processor
core can be clock gated [28, Section 5.2.1.1] or even power
gated [28, Section 5.3.2]. When all cores of a processor are in
an idle power state, the processor can take additional measures,
e.g., clock and power gating shared components, which lowers
the power envelop of the processor further. However, returning
from an idling power state takes some time, which can violate
the requirements for real-time systems. To support the decision
of the OS, which C-state to use, processors typically hand
over ACPI objects describing the transition latency and the
average power consumption [3, Section 8.4.2.1]. On our test
system, three C-states are supported, the active C-state C0,
and two additional idling C-states, C1 and C27. While the
former is entered with the instructions monitor and mwait,
the latter uses IO address 0x814 in the C-state address range
described in Section III-B. Transition times are reported as
1 µs and 400 µs, respectively. The power values reported by
the hardware to the OS are UINT_MAX for the active C-state
and 0 for the idle states and cannot contribute towards an
informed selection of C-states.

A. Power Consumption in Different Power States

In the following, we characterize the average AC power
consumption of the full system in different configuration of
idle states, each measured for 10 s. All configurations are
shown in Figure 7. When all hardware threads are using the
C2 state to the extent that is possible on a standard Linux
system with regular interrupts, the system consumes 99.1W.
In the following experiment, we put more hardware threads
in C1 by disabling the C2 state in sysfs. The change is
applied linearly, following the logical CPU numbering in steps
of single CPUs. We start with the hardware thread of each

7This paper uses the OS C-state numbering.



core within the first processor package, the second processor
package, and then the second hardware threads of each core,
again grouped by package. With a single core using C1 rather
than C2, the power consumption increases by 81.2W to a
total of 180.3W. Additional cores in C1 only increase power
consumption by 0.09W each with no further change when the
second hardware thread of each core is put into C1. The minor
frequency-independent additional power per core is consistent
with the observation that the hardware counters for cycles,
aperf, and mperf do not advance on cores that are in C1.
Both effects indicate that cores are clock-gated during C1.

For the active state (C0) we pin an unrolled loop of pause
instructions to each hardware thread. This workload exhibits
a more stable and slightly lower power consumption than
POLL, which is also based on pause, but without unrolling
and more sophisticated checks for each iteration. With one
active thread and all others in C2, the system uses almost
the same power (180.4W) than with one thread in C1 and all
others in C2. While C1 and C2 power was independent of core
frequency, active power does depend on frequency as expected.
For 2.5GHz, additional active cores increase power by 0.33W
each and hardware thread costs 0.05W each. On our dual-
socket system, there was no measurable impact of activating
the second package. There appears to be only one criterion for
deep package sleep states: All threads of all packages must be
in the deepest sleep state. The C1 state is only relevant for one
specific core, as opposed to the C1E state on Intel systems.

The reported numbers are only valid for our specific system
and depend on the processor model, processor variations,
and other components. However, this example particularly
highlights the disproportionately high cost of not using the
deepest sleep states on a single hardware thread and thus the
importance of managing C-states correctly on idle systems.

Compared with a dual socket Intel system using Xeon Gold
6154 CPUs [16, Section III], the deepest idle state (69W, all
C6) and first core in C1E (+97W) are in a similar order
of magnitude. However, on the Intel Skylake system, each
additional active core (pause loop) costs 3.5W - about ten
times the power of our AMD Rome system.

B. Influence of Idling Hardware Threads on Idle States

In some scenarios, administrators disable the additional
hardware threads of each core via operating system interfaces,
to decrease the probability of leaving a package C-state
and subsequently increasing the average power consumption
during idle times. While such an optimization can be recom-
mended on Intel systems, we would strongly discourage using
this option on AMD Rome. Under conditions we could not
yet clearly identify, a strange behavior was observable: even
though C2 states are active and used by the active hardware
threads, system power consumption is increased to the C1 level
as long as the disabled hardware threads are offline. Only an
explicit enabling of the disabled threads will fix this behavior.
While we cannot pinpoint it to either Linux OS or AMD
processor, we assume that it is the interaction between both,
elevating some disabled hardware threads to C1.

1 16 32 48 64 80 96 112 128
Number of Threads not in C2

0

25

50

75

100

125

150

175

200

AC
 S

ys
te

m
 P

ow
er

 [W
]

State
active (pause)
C1
C2 (all threads)

Frequency [MHz]
1500
2200
2500

Fig. 7: Average full system AC power consumption for dif-
ferent idle combinations with increasing number of hardware
threads in lower C-states.

C. Power State Transition Times

To determine the transition times for idle states, we use
the workload Ilsche et al. explained in [6]. However, we
had to change the logged event for triggering the transition
to sched_waking, since the newer Linux kernel does not
report sched_wake_idle_without_ipi, which Ilsche et al. used
for the test case. The remaining setup stays the same: Two
threads are started: caller and callee. While the callee is
idling via pthread_cond_wait, the caller wakes it with
pthread_cond_signal. We schedule the threads within
a CCX for local measurements and on one core of each of
the two sockets for remote measurements. We also measure
the influence of frequencies and take 200 samples for each
combination of C-state, frequency, and local/remote-scenario.
Results for local transition times are depicted in Figure 8.

The outliers can be attributed to the measurement, which
runs on the same resources as the test workload and therefore
influences the results. Also, the depicted C-state is the one
requested by the OS, not necessarily the one that is realized by
the hardware. The latency for returning from C1 is consistent
with the value reported by hardware with ∼1 µs at 2.2GHz
and 2.5GHz and 1.5 µs at 1.5GHz. The C2 latency is between
20 µs and 25 µs and significantly lower than reported to the
OS (400 µs). However, this value could significantly increase
when package C-states are used, which disable additional pro-
cessor components. This case is not measurable with the used
methodology since the active caller would prevent package
C-states.

Transition times for remote configurations only add a small
overhead (∼1 µs) to the results shown in these diagrams
and are therefore not presented in this paper. However, this
validates the finding from Section VI-A: package C-states are
not used as long as a single core (which runs the caller thread)
in the system is active.



1.5 2.2 2.5
Frequency [GHz]

0.0

0.5

1.0

1.5

2.0
La

te
nc

y 
[

s]

(a) C1

1.5 2.2 2.5
Frequency [GHz]

0

5

10

15

20

25

La
te

nc
y 

[
s]

(b) C2

Fig. 8: C-state transitions (caller and callee in same CCX).

VII. INTEGRATED ENERGY MEASUREMENT WITH RAPL

In this section, we analyze AMD’s RAPL implementation.
We separately analyze its quality with a high-level focus on
the executed workload and the detailed impact of input data on
instruction-level power consumption. We measured an update
rate of 1ms for RAPL by polling the MSRs via the msr kernel
module, which meets the specification for Intel processors.

A. Quality of the Integrated Power Measurement

To analyze the accuracy of RAPL readings, we follow the
methodology presented by Hackenberg et al. [12]. We execute
a set of experiments, where each forms a particular combina-
tion of workload, thread placement, frequency, and enabled C-
states, for a duration of 10 s. We record RAPL package energy
measurements, RAPL core information, and system AC power
for each workload configuration as described in Section IV.

If AMD RAPL would use an accurate measurement that
covers all components for which power varies by workload,
a single function would map RAPL readings to the reference
measurement. Instead, Figure 9a is reminiscent of Intel’s im-
plementation before Haswell [11]. The results indicate that the

energy data is modeled, not measured: Even workloads that do
not use memory (sqrt, add_pd, mul_pd) show inconsistent
power. Further, the energy consumption of memory accesses
(e.g., memory_read, memory_write) is not fully captured
by RAPL. No DRAM domain is available and the RAPL
package domain reports significantly lower power compared to
the external measurement. Considering the different domains,
this does not necessarily imply that RAPL readouts are wrong.
But it shows that they cannot be used to accurately estimate
and therefore optimize for total system power, as opposed to
Intel systems since Haswell. On such systems, this is possible
when adding Package and DRAM energy [12].

The comparison in Figure 9b reveals that there is a simple
relation between the different RAPL measurement domains
for compute-only workloads while the power difference for
memory-intensive workloads and idle varies. This seems intu-
itive, since a model for package power consumption would in-
clude modeled core energy but also shared non-core resources.

B. Measurement of Data-dependent Power Consumption

The power consumption for executing a workload does
not only depend on the used instructions, but also on the
processed data. Given data-dependent power differences of
up to ∼15% full system power [16], data can also have a
significant impact on RAPL accuracy. Subsequently, applied
processor frequencies can be inaccurate, which can lead to an
exceeded TDP or performance loss.

Another aspect to consider is the exploitation of RAPL
for software-based side-channel attacks as demonstrated on
Intel systems. In [14], Lipp et al. also indicate that it could
be possible on newer AMD systems. On the one hand, the
authors distinguish different instructions based on RAPL mea-
surements. While not always accurate, Figure 9 confirms that
RAPL on Zen 2 does reflect the different power consumption
of instructions to some extent. On the other hand, Lipp et al.
use RAPL to distinguish operands of instructions. To that end,

0 100 200 300 400
System AC Power [W]

0

100

200

300

400

RA
PL

 S
um

 P
ac

ka
ge

 [W
]

(a) Reference vs. RAPL Package

0 50 100 150 200 250 300 350
RAPL Sum Package [W]

0

50

100

150

200

250

300

350

RA
PL

 S
um

 C
or

e 
[W

]

(b) RAPL core vs. RAPL package

idle
addpd
busywait
compute
matmul
memory_read
mulpd
sqrt
memory_write
memory_copy
linear fit
identity

Fig. 9: Readings of RAPL on AMD Epyc 7502 and the AC reference measurements in relation to each other.



they measure the energy consumption of the shr instruction
with RAPL on an AMD Zen 2 desktop system and show
a slightly shifted probability density function for different
numbers of set bits (operand Hamming weight).

We measure the instruction power consumption by repeating
an unrolled loop of the respective instruction for a fixed num-
ber of total instructions. Successive instructions use different
registers to avoid stalling. For each block of instructions, the
test application randomly chooses a relative Hamming weight
of either 0, 0.5, or 1 and executes this configuration on all
hardware threads. The instruction count is chosen such that
each instruction block runs for 10 s. Overall, 3000 instruc-
tion blocks are executed (∼1000 per operand weight). The
experiment application collects RAPL energy values between
instruction blocks. Even though the measured duration is very
stable, we normalize the energy values to power.

First, we look at a 256-bit vxorps instruction and vary the
the operand that determines the toggled bits in the destination
register. Figure 10 illustrates the distribution of average power
values for the repeated instruction blocks of each operand
configuration. To avoid smoothing, we use empirical cumu-
lative distribution plots. Moreover, to confirm whether the
distribution is stable, we separate the samples into ten random
subsets and plot the distribution for each subset. As can be
seen in Figure 10a, the system power consumption increases
with the number of toggled bits with a significant difference
of 21W (7.6%) with no overlap in distributions. The RAPL
measurements do not reflect this difference: Their overall
averages are within 0.08% for different operand weights.
Figure 10b shows that the distributions are distinguishable but
strongly overlapping. Moreover, the clear ordering between
operand weights 0, 0.5, 1 is not reflected by RAPL.

To contrast the findings of [14], we also ran the experiment
with a 64-bit shr instruction. The operand is seeded depend-
ing on the selected operand weight and repeatedly shifted by
0. The system power consumption averages are much closer
within 0.9% for different operand weights whereas RAPL
core power averages are within 0.015% and their distribution

overlaps similarly to the previous experiment. In all cases, the
RAPL package domain measurements behave similarly, albeit
with different ordering of distributions.

Primarily, the results show that the RAPL implementation
on our system does not correctly represent the impact of
data on power consumption, possibly affecting measurement
accuracy in workloads with biased data. However, it is con-
ceivable that this RAPL implementation could still be used to
leak information about the processed data through very small
differences in the distribution of power consumption samples.
The results indicate that this is due to indirect effects, e.g.,
an increased temperature based on the number of set bits.
Nevertheless, distinguishing the operand weight from RAPL
values on this system would take substantially more samples
compared to a physical measurement. Moreover, on our test
system, RAPL is not accessible to unprivileged users.

VIII. CONCLUSION AND FUTURE WORK

With the Zen 2 Rome processors, AMD ships a complex
x86 architecture, which includes numerous power saving and
monitoring mechanisms for an improved energy efficiency. In
this paper, we provide a detailed analysis of these.

To maximize energy efficiency, users and administrators
can take the following measures: Hardware threads should
not be disabled in the OS as this can disable package C-
states and significantly increase idle power consumption under
specific circumstances. Unused hardware threads should be run
at the lowest possible frequency. Otherwise, they can raise
the frequency of hardware threads on the same core. Mixed
frequencies within one CCX should be avoided, since this can
lead to performance losses on cores with lower frequency set-
tings. The processor frequency should be monitored to detect
throttling when using 256-bit SIMD instructions. This can lead
to significant performance degradation, especially for highly
parallel HPC codes. Energy measurements of AMDs RAPL
implementation should be considered inaccurate. No DRAM
domain is provided, and DRAM energy consumption is not
(fully) included in the package domain. Therefore, AMD’s

260 265 270 275 280 285
System AC Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Op. Weight
0.0
0.5
1.0

(a) Reference measurement, full system

2.046 2.048 2.050 2.052 2.054
RAPL Core 0 Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Op. Weight
0.0
0.5
1.0

(b) RAPL, core

Fig. 10: Full system AC and RAPL power consumptions for vxorps. Each chart shows the empirical cumulative distribution
of ten random sample sets for the three different relative operand Hamming weights.



RAPL is unsuitable to optimize total energy consumption.
The modeled approach also fails on reflecting the influence of
operands, which can also be seen as a benefit when it comes
to power measurement based side-channel attacks.

Our findings are valuable for a wide audience: Performance
models can be improved for a better accuracy, tuning mecha-
nisms can be refined to become more efficient, and operating
systems can be optimized to fix or prevent some of the
identified peculiarities.

As future work, we will analyze the frequency throttling on
processors with more cores. We expect a more severe impact,
since the ratio of compute to I/O resources is higher. We will
also analyze the memory architecture and the influence of
power saving mechanisms on these in higher detail. Finally,
we plan to analyze why offline hardware threads can prevent
the usage of package C-states.

ACKNOWLEDGMENTS AND REPRODUCIBILITY

This work is supported in part by the German Research
Foundation (DFG) within the CRC 912 - HAEC.

Measurement programs, raw data, and chart notebooks are
available at https://github.com/tud-zih-energy/2021-rome-ee.

REFERENCES

[1] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, and H. Meuer,
“Top500,” 2020, https://top500.org (accessed 2020-11-29).

[2] Advanced Micro Devices, “Preliminary Processor Programming Ref-
erence (PPR) for AMD Family 17h Model 31h, Revision B0 Pro-
cessors,” 2020, https://developer.amd.com/wp-content/resources/55803_
B0_PUB_0_91.pdf(accessed 2020-11-18).

[3] “Advanced Configuration and Power Interface (ACPI) specification,
revision 6.3,” Unified Extensible Firmware Interface (UEFI) Forum,
Inc., Jan. 2019, https://uefi.org/sites/default/files/resources/ACPI_6_3_
final_Jan30.pdf (accessed 2020-11-18).

[4] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of
CPU Frequency Transition Latency,” Computer Science - Research and
Development, 2014, DOI: 10.1007/s00450-013-0240-x.

[5] R. Schöne, D. Molka, and M. Werner, “Wake-up Latencies for Processor
Idle States on Current x86 Processors,” Computer Science - Research
and Development, 2014, DOI: 10.1007/s00450-014-0270-z.

[6] T. Ilsche, R. Schöne, P. Joram, M. Bielert, and A. Gocht, “System Mon-
itoring with lo2s: Power and Runtime Impact of C-State Transitions,”
in 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), 2018, DOI: 10.1109/IPDPSW.2018.00114.

[7] R. Schöne, T. Ilsche, M. Bielert, D. Molka, and D. Hackenberg, “Soft-
ware Controlled Clock Modulation for Energy Efficiency Optimization
on Intel Processors,” in Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), ser. E2SC ’16. IEEE
Press, 2016, DOI: 10.1109/E2SC.2016.15.

[8] Advanced Micro Devices, “Processor Programming Reference (PPR)
for AMD Family 17h Model 60h, Revision A1 Processors,” 2020, https:
//www.amd.com/system/files/TechDocs/55922-A1-PUB.zip(accessed
2021-06-18).

[9] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops PhD Forum,
2012, DOI: 10.1109/IPDPSW.2012.116.

[11] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and
W. E. Nagel, “Power Measurement Techniques on Standard Compute
Nodes: A Quantitative Comparison,” in IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE,
2013, DOI: 10.1109/ISPASS.2013.6557170.

[10] J. Schuchart, D. Hackenberg, R. Schöne, T. Ilsche, R. Nagappan, and
M. K. Patterson, “The Shift from Processor Power Consumption to
Performance Variations: Fundamental Implications at Scale,” Computer
Science - Research and Development, 2016, DOI: 10.1007/s00450-016-
0327-2.

[12] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An Energy Efficiency Feature Survey of the Intel Haswell
Processor,” in 2015 IEEE International Parallel and Distributed Process-
ing Symposium Workshop. IEEE, 2015, DOI: 10.1109/ipdpsw.2015.70.

[13] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring Energy Con-
sumption for Short Code Paths Using RAPL,” SIGMETRICS Perform.
Eval. Rev., Jan. 2012, DOI: 10.1145/2425248.2425252.

[14] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based Power Side-Channel Attacks on
x86,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2021.

[15] C. Gough, I. Steiner, J. Koomey, and L. Cheng, Energy Efficient Servers:
Blueprints for Data Center Optimization. Apress Media, 2015, ISBN:
978-1-4302-6638-9.

[16] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg,
“Energy Efficiency Features of the Intel Skylake-SP Processor and
Their Impact on Performance,” in 2019 International Conference
on High Performance Computing Simulation (HPCS), 2019, DOI:
10.1109/HPCS48598.2019.9188239.

[17] D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen 2” Proces-
sor,” IEEE Micro, 2020, DOI: 10.1109/MM.2020.2974217.

[18] T. Singh, S. Rangarajan, D. John, R. Schreiber, S. Oliver, R. Seahra,
and A. Schaefer, “Zen 2: The AMD 7nm Energy-Efficient High-
Performance x86-64 Microprocessor Core,” in 2020 IEEE Inter-
national Solid- State Circuits Conference - (ISSCC), 2020, DOI:
10.1109/ISSCC19947.2020.9063113.

[19] T. Burd, N. Beck, S. White, M. Paraschou, N. Kalyanasundharam,
G. Donley, A. Smith, L. Hewitt, and S. Naffziger, ““Zeppelin”: An SoC
for Multichip Architectures,” IEEE Journal of Solid-State Circuits, 2019,
DOI: 10.1109/JSSC.2018.2873584.

[20] Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume Volume 3 (3A, 3B, 3C & 3D): System Programming Guide, In-
tel, Nov 2020, https://software.intel.com/content/dam/develop/external/
us/en/documents-tps/325384-sdm-vol-3abcd.pdf (accessed 2020-11-18).

[21] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “AMD
Chiplet Architecture for High-Performance Server and Desktop Prod-
ucts,” in 2020 IEEE International Solid- State Circuits Conference -
(ISSCC), 2020, DOI: 10.1109/ISSCC19947.2020.9063103.

[22] Advanced Micro Devices, “Socket SP3 Platform NUMA Topology for
AMD Family 17h Models 30h–3Fh,” 2019, https://developer.amd.com/
wp-content/resources/56338_1.00_pub.pdf (accessed 2020-11-18).

[23] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making DVS Practical for Complex
HPC Applications,” in Proceedings of the 23rd International Conference
on Supercomputing, ser. ICS ’09. New York, NY, USA: Association
for Computing Machinery, 2009, DOI: 10.1145/1542275.1542340.

[24] O. Vysocký, L. Říha, and A. Bartolini, “Application Instrumentation for
Performance Analysis and Tuning with Focus on Energy Efficiency,”
Concurrency and Computation: Practice and Experience, 2020, DOI:
10.1002/cpe.5966.

[25] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller, “Mem-
ory Performance and Cache Coherency Effects on an Intel Ne-
halem Multiprocessor System,” in 2009 18th International Conference
on Parallel Architectures and Compilation Techniques, 2009, DOI:
10.1109/PACT.2009.22.

[26] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE computer society technical com-
mittee on computer architecture (TCCA) newsletter, vol. 2, pp. 19–25,
1995.

[27] R. Schöne, M. Schmidl, M. Bielert, and D. Hackenberg,
“FIRESTARTER 2: Dynamic Code Generation for Processor Stress
Tests,” in IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2021, (accepted).

[28] Weste, Neil H. E. and Harris, David M., CMOS VLSI Design - A
Circuits and Systems Perspective, 4th Edition. Pearson, 2011, ISBN:
0321547748.

https://github.com/tud-zih-energy/2021-rome-ee
https://top500.org
https://developer.amd.com/wp-content/resources/55803_B0_PUB_0_91.pdf
https://developer.amd.com/wp-content/resources/55803_B0_PUB_0_91.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://doi.org/10.1007/s00450-013-0240-x
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1109/IPDPSW.2018.00114
https://doi.org/10.1109/E2SC.2016.15
https://www.amd.com/system/files/TechDocs/55922-A1-PUB.zip
https://www.amd.com/system/files/TechDocs/55922-A1-PUB.zip
https://doi.org/10.1109/IPDPSW.2012.116
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1007/s00450-016-0327-2
https://doi.org/10.1007/s00450-016-0327-2
https://doi.org/10.1109/ipdpsw.2015.70
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1109/MM.2020.2974217
https://doi.org/10.1109/ISSCC19947.2020.9063113
https://doi.org/10.1109/ISSCC19947.2020.9063113
https://doi.org/10.1109/JSSC.2018.2873584
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325384-sdm-vol-3abcd.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325384-sdm-vol-3abcd.pdf
https://doi.org/10.1109/ISSCC19947.2020.9063103
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1002/cpe.5966
https://doi.org/10.1002/cpe.5966
https://doi.org/10.1109/PACT.2009.22
https://doi.org/10.1109/PACT.2009.22

	I Introduction
	II Related Work on Efficiency Mechanisms
	II-A ACPI States
	II-B Processor-internal Power Measurement and Capping
	II-C Processor-specific Overviews

	III Architectural Details of ``Rome'' Processors
	III-A General Architecture Details
	III-B Energy Efficiency Details for ACPI States
	III-C Other Energy Efficiency Details

	IV Test System and Power Measurements
	V Processor Frequencies
	V-A Influence of Idling Hardware Threads on Core Frequencies
	V-B Frequency Transition Delays
	V-C Influence of Mixed Frequencies on a Single CCX
	V-D Influence of I/O Die P-state and DRAM Frequency on Memory Performance
	V-E Frequency Limitations for High-Throughput Workloads

	VI Power State Details
	VI-A Power Consumption in Different Power States
	VI-B Influence of Idling Hardware Threads on Idle States
	VI-C Power State Transition Times

	VII Integrated Energy Measurement with RAPL
	VII-A Quality of the Integrated Power Measurement
	VII-B Measurement of Data-dependent Power Consumption

	VIII Conclusion and Future Work
	References

