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Abstract—EAR is an energy management framework which
offers three main services: energy accounting, energy control,
and energy optimization. The latter is done through the EAR
runtime library (EARL). EARL is a dynamic, transparent, and
lightweight runtime library that provides energy optimisation
and control. EARL optimises energy by selecting the optimal CPU
frequency, based on the energy policy selected and application
runtime characteristics without any application modification or
user input. Currently EARL only works for MPI applications
but EAR itself can still operate for non-MPI applications. It au-
tomatically (and transparently) identifies iterative regions (loops)
and computes a set of metrics per iteration, application signature,
and, together with the system signature, applies energy models to
estimate the execution time and power for the CPU frequencies
available. System signature is a set of coefficients per-node
computed during EAR installation via a learning phase. Given
time and power projections, EARL selects the best frequency
based on policy settings.

This papers shows how to optimize energy using the EAR
library with min_time_to_solution energy policy and how
to analyse applications through EAR framework. Evaluation
includes eight applications with different sizes and application
signatures. Results show how EARL computes each application
signature on the fly and applies the CPU frequency selected by
the min_time_to_solution policy.

Index Terms—Energy, System software, Optimization, Data
centers

I. INTRODUCTION

This paper presents how to optimize energy by using
EAR runtime library (EARL), one of the components of
the EAR framework and the energy policy by default:
min_time_to_solution. EARL measures a set of applica-
tion metrics at runtime, the application signature, and based on
energy models and policies it automatically selects the optimal
frequencies for the specific run knowing EARL will select
different frequencies if the application signature changes over
time.

Tools like cpupower or schedulers like SLURM or PBS offer
the possibility to change manually the CPU frequency of the
node where the application is running, but the performance and
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power impacts of such change are totally out of reach of these
tools. Figures 1 and 2show time, power and energy variation
when running two of the applications used in this paper when
varying the CPU frequency from 2.4Ghz to 1.8Ghz. The first
application is doing an intensive CPU utilization and the
second one exhibits an exhaustive utilization of main memory.
Therefore the first application will report significant power
savings when reducing its CPU frequency but at the expense
of an increased time, while the second application will report
significant power savings with little performance penalty lead-
ing to significant energy reduction. That’s the analysis EARL
is doing automatically and transparently to make the right
decision depending on the application characteristics gathered
by the application signature.

All the applications used in this paper present different
behaviours when changing submission parameters such as
number of MPI processes, threads, or input files, creating the
need of a runtime solution to identify these characteristics.
EARL is able to do that without any user input or application
modification. Moreover, the rest of EAR’s components offer a
complete energy management framework, offering a simple
way to apply an energy optimization policy and getting
performance metrics for application evaluation and analysis.
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Fig. 1. Impact on BT-MZ.D when varying CPU frequency

This paper will evaluate and analyse a set of real applica-
tions when using the min_time_to_solution energy policy.
We will show how simple it is to apply an energy policy
and analyse application performance and power metrics when
using EAR. Additional metrics which are valuable for energy
efficiency classification, such as CPI or GFlops, are also
reported, making it easy both for normal users and sysadmins
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to do application analysis and workload characterization.
The evaluation section VII will present results on eight

applications showing how GFlops/Watt is improved 9% in
average when using EARL+min_time_to_solution.

The rest of the paper is organised as follows: Section II
describes EAR as energy management framework. Section
III presents EAR library in detail. Section IV presents the
application signature and energy models used by EAR. Section
VI presents the min time to solution policy. Section VII
shows how to run and get performance metrics with EAR.
SectionVIII evaluates EARL in terms of performance and
energy savings. Section IX presents the related work. And
finally, section X presents conclusions and future work.

II. EAR OVERVIEW

EAR offers three main services concerning energy man-
agement as shown on Figure 3: Monitoring, Accounting,
Control and Optimisation. Energy optimisation is offered by
EARL and only enabled for MPI or hybrid MPI+OpenMP
applications.
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Fig. 3. Energy capabilities provided by EAR

Fig. 4 shows the EAR components and main interactions be-
tween them: EAR Daemon, EARL, EARDBD, EARGMD and
EAR submission plugin (only SLURM plugin is available).

• Node monitoring and Job accounting is provided by the
EAR Daemon, a Linux service running in compute nodes
(one instance per compute node), the SLURM SPANK
plugin (offering the basic EAR API to automatically
identify new jobs (start/end of new JobIDs.StepIDs in
SLURM are automatically detected), and the EAR DB
manager. Multiple EAR DB managers can be used in
the system to increase EAR scalability. The EAR DB
manager offers replication automatically so no special
hardware is needed to provide high availability.

• Optimization and per-application control is provided by
EARL and deeply described in section III.

• Global control is offered by the EAR Global Manager
(EARMG) and is out of the scope of this paper.
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III. EAR RUNTIME LIBRARY

EARL is a dynamic, transparent, and lightweight runtime
library that provides energy optimisation and control. EARL
identifies on the fly the application iterative structure existing
in many parallel codes. It does it without any user intervention
(without hints, code marks, tags etc).

Figure 5 shows EARL’s lifecycle with its main compo-
nents. One of the EAR research contributions is the DynAIS
algorithm which detects outer loops on the fly without ap-
plication modification which is quite unique compared with
other runtime solutions. EARL includes two energy policies by
default: min_time_to_solution targeted at improving the
performance by increased frequency starting from a lower than
nominal frequency and min_energy_to_solution, targeted
at saving energy by reducing frequency starting from nominal.

Once DynAIS identifies the iterative structure of the applica-
tion, EARL computes the application signature used by energy
model and energy policy. The energy model and energy policy
by default are specified in the ear configuration by the system
administrator but it is possible to select a different policy than
the default by using the --ear-policy=policy_name when
submitting the job.

Fig. 5 shows the main internal EARL phases: (1) MPI
interception, (2) Loop detection through DynAIS, (3) Appli-
cation Signature computation, (4) Time and power models
projections, and (5) Energy policy execution (using these
projections).
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1) MPI interception, the standard MPI profiling in inter-
face (PMPI)+LD PRELOAD. EAR offers MPI symbols
which are intercepted when pre-loading EARL before
MPI library.

2) DynAIS, which dynamically (and transparently) detects
the iterative regions (outer loops) of MPI applications
(or hybrid MPI+OpenMP). EARL generates a runtime
sequence of events based on MPI calls (together with
its arguments) which is the input for DynAIS. DynAIS
compares each event with the last N1 events and returns
the state corresponding to this event.

3) Based on DynAIS states, EARL computes the applica-
tion signature, that uniquely identifies the application
dynamic behaviour (which depends on specific nodes,
input data, configuration, etc).

4) Application signature is part of the input for the energy
models. The energy model predicts the time and power
for each CPU frequency available in the node

5) Energy projections are used by the energy policy to
select the optimal CPU frequency. Since EARL is aware
of the application structure, it self-evaluates the fre-
quency selected, and reverts it (or re-applies the policy)
if needed. Moreover as EARL is aware of any change
in the application by either detecting a new loop or by a
change in its signature, it will re-apply the energy policy
with the new context and metrics. We refer to this default
mode as DynAIS mode

If the application is not iterative, DynAIS will not detect
loops and EARL will not be able to apply steps 3 to 5. To
support these cases EARL dynamically detects this situation
and executes steps 3 to 5 every N seconds (configurable). We
refer to this mode as Periodic mode.

IV. EAR RUNTIME LIBRARY OVERHEAD AND
SCALABILITY

EARL main source of potential overhead is the DynAIS
algorithm since it’s applied for each MPI call. Because of

1N is part if the DynAIS configuration and it is called the Dynais window
size

that, we highly optimized it using AVX512 instructions. The
cost to process each MPI call has been measured at 0,1
usecs. Even though it’s small, it could be a problem for
application doing an intense number of MPI calls per second.
For example, SUSPENSE [7], one of the applications used in
the evaluation, reports 188.460 MPI calls per second causing
an 1.8% overhead. Even though SUSPENSE is an extreme use
case, one of the acceptance criteria to install in SuperMUC-
NG [37] was to report less than 1% of overhead. To address
the applications where the number of MPI calls per second
is extremely high, we introduced an internal mechanism to
limit the overhead. EARL computes the overhead due to MPI
calls based on the number of MPI calls per second measured
during the signature computation. If the estimated overhead
is greater than 0.5%, DynAIS is disabled and the last loop
detected by DynAIS is used as reference until a signature
change is detected. If none is detected, EARL assumes there
is no need to reapply DynAIS algorithm. This mechanism is
dynamic allowing DynAIS to be turned OFF and ON several
times during the application execution.

EAR library by itself does not use global synchronizations.
Synchronizations at application level only happen when a
function or a policy needs it. For example, there is no global
synchronization with the min time to solution policy but it is
used by the application power capping policy which is under
development

V. APPLICATION SIGNATURE AND ENERGY MODELS

The application signature, describing application dynamic
behaviour, includes: iteration time in seconds (Time), average
DC node power (Power), main memory transactions per
instructions (TPI), and cycles per instructions (CPI). Appli-
cation signature together with the System signature are the
inputs for the energy models. Application signature identifies
applications metrics influencing energy variation as a function
of the frequency.

EARL default energy model uses equations proposed in
[29] and [30] and evaluated in [8]. The fact that EARL uses
DC node power based on DC node energy and not only
CPU energy is one of the differences between EARL metrics
and other research works which focus only on CPU energy
consumption.

System signature is computed per node during EAR instal-
lation via a learning phase. It is a set of six per-node matrices
(A..F) where each of the (i,j) values are used to project time
and power from Freqi to Freqj. During the learning phase a set
of pre-selected kernels are executed with different frequencies
and the (A..F) coefficients are computed by a least square
method. Kernels have been selected to cover a wide range of
application characteristics, from CPU intensive applications to
memory intensive ones. Currently, the learning phase is using
the following applications: BT-MZ.C, SP-MZ.C, LU-MZ.C ,
EP.D, LU.C [9], and UA [10] from the NASPB benchmarks,
DGEMM [11], and STREAM [12]. Equations (1),(2) and (3)
show the default energy model used by EAR. Since this model



depends on the system and is critical to EAR accuracy, it can
only be modified by the sysadmin in EAR’s configuration.

Power(f) = A ∗ Power(f ref) ∗B ∗ TPI(f ref) + C (1)

CPI(f) = D ∗ CPI(f ref) + E ∗ TPI(f ref) + F (2)

T ime(f) = T ime(f ref) ∗ (CPI(f))/(CPI(f ref)) ∗ f ref/f n (3)

VI. EARL ENERGY OPTIMIZATION POLICIES: MINIMIZE
TIME TO SOLUTION

EARL has three energy policies: monitoring, min time to
solution and min energy to solution. The monitoring pol-
icy collects and reports information on the system and the
applications but does not perform any energy optimization.
We focus here one the min time to solution policy. The
minimize time to solution policy runs applications at a
frequency lower than nominal (the default frequency) and
increases the frequency if the ratio of performance benefit
vs frequency increase is greater than a given threshold ratio
set by the sysadmin. In other words, this policy will in-
crease the frequency of applications in which performance
scales some how with frequency to justify an extra power
consumption. For example, if min_ratio=0.75, EAR will
not set upper frequencies if the ratio between performance
gain and frequency gain do not improve at least 75%
(PerfGain >= FreqGain* min_ratio)(4)(5).

PerfGain = (T ime− T imenew)/T ime (4)

FreqGain = (Freqnew − Freq)/Freq (5)

When executed with min_time_to_solution policy, ap-
plications start at a predefined but configurable CPU fre-
quency lower than nominal. For example, given a sys-
tem with a nominal frequency of 2.4GHz with a de-
fault frequency set to 2.0GHz, an application executed
with min_time_to_solution will start with frequency
Fi=2.0GHz. When the application signature is computed,
EARL computes performance projection for Fi+1 together with
PerfGain(4) and FreqGain(5). If PerfGain is greater or equal
than FreqGain*min_ratio, the policy will process the next
performance projection Fi+2. Otherwise, the policy will select
the last frequency where the performance gain was satisfied,
preventing any waste of energy.

The min_ratio=0.75 is the policy arguments that man-
ages how aggressive in terms of energy saving the policy is.
The higher the value the higher the energy savings (but also
the performance penalty).

VII. EXECUTING WITH EAR AND GETTING
PERFORMANCE METRICS

Executing an application with EARL is totally transparent
on systems where EARL is enabled by default for all appli-
cations. In case EARL’s usage is optional, it is as simple as
setting the EAR flag (--ear=on) or using any of the other
EAR flags to select this feature (--ear-policy=min_time).

For instance, the experiments used for this paper have
been done using one of three equivalent approaches shown
below. Option 1 is valid for Intel MPI versions older than
2019. Option 2 is valid for current Intel MPI versions. Option
3 is valid for all the Intel MPI versions as well as for
other MPI libraries such as OpenMPI which does not offer
a specific option to pass additional options to SLURM. All
the experiments done in this paper have been done using Intel
MPI version 2019.

/* Option 1 : Using mpirun*/
export $MPIS=80
mpirun -l -n $MPIS -bootstrap slurm
-bootstrap-exec-args="--ear-policy=min_time"\
./bt-mz.D.$MPIS

/* Option 2 : Using mpirun*/
export $MPIS=80
export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_\
EXEC_EXTRA_ARGS="--ear-policy=min_time"
mpirun -l -n $MPIS ./bt-mz.D.$MPIS

/* Option 3: Using srun */
export $MPIS=80
srun -l --ntasks=$MPIS \
--ear-policy=min_time ./bt-mz.D.$MPIS

Once the application is completed successfully, it is possible
to check its metrics by using the eacct command. This
command accepts different flags to specify the amount of
details reported, or to select the output (stdout or csv file).

TABLE I
EACCT -J 277 OUTPUT: PER JOB DEFAULT OUTPUT FOR A SPECIFIC JOB

Job Pol Freq. Time Power GBs CPI KJ GF/W
277.12 MO 2,32 371 321 8,9 0,66 1909 2,88
277.3 MT 2,14 380 282 8,6 0,67 1735 3,19

For example, Table I shows two rows and a subset of the
columns reported with the eacct when executing GROMACS
application. We have selected one stepid with monitoring

and another with min_time_to_solution for comparison.
This output can be easily loaded in any spreadsheet tool. 2

When using -j option, columns reported are the following
ones:

• Job: Job id and Step id assigned by SLURM
(SLURM JOB ID and SLURM STEP ID). eacct shows the
average metrics for all the nodes executing this jobid.step
except the energy, which is accumulated.

• User (not shown in Table 1): username.
• Application (not shown in Table 1): Job Name set by the

user when submitting the job or executable name when
not provided.

• Pol: Energy policy. NP= No energy policy.
MT=min time, MO=monitoring only.

2We have hidden some columns because lack of space.



• Nodes (not shown in Table 1): Number of nodes used by
the jobid.stepid.

• Freq (in GHz): Average frequency of all the nodes run-
ning this jobid.stepid. Moreover, the per-node frequency
used to compute the average is, in his turn, the average
frequency of all the cores. It is not the CPU freq set in
the governor but the effective CPU frequency computed
using aperf/mperf msr registers.

• Time: jobid.stepid Execution time in seconds.
• Power: Average power of all the nodes running this

jobid.stepid. In Watts.
• GBs: Average memory bandwith of all the nodes running

this jobid.stepid. In GBytes/second.
• CPI: Average CPI (Cycles per Instructions) of all the

nodes running this jobid.stepid.
• KJ: Accumulated energy (in Kilo Joules) of all the nodes

running this jobid.stepid (eacct reports energy in Joules,
we have converted to KJ to reduce the space).

• GF/W (GFlops/Watts): Total GFlops (floating point op-
erations per second) per Watts. It’s the average of the
accumulated GFlops for all the nodes running this jo-
bid.stepid and the accumulated Watts.

• MaxPower (not shown in Table 1): During the jo-
bid.stepid execution, the power is computed periodically.
This value is the maximum value detected during these
periodic metrics.

With this view, we can compare the application characteris-
tics between different executions. For instance, in Table I we
can compare the GROMACS execution time when executed
with min_time_to_solution vs monitoring_only and
see it leads to 2% of performance penalty but also to 14% of
power saving, 10% of energy saving and 10% improvement
in GFlops/Watts. This view presents also the average cpu
frequency for the whole application. It is an average across
all the nodes and the whole execution, so differences between
nodes can be hidden but it’s a good indicator of EARL
optimizations. If more details are needed, for instance between
nodes, the -l flag can be set. Table II presents this output.

TABLE II
EACCT -J 277.3 -L OUTPUT: LONG FORMAT FOR A SPECIFIC JOB ID AND

STEP ID

Job Node Freq Time Power GBs CPI KJ VPI
277.3 n25 2,14 380 282 8,8 0,65 108 0,44
277.3 n26 2,14 380 273 8,9 0,77 105 0,40
277.3 n27 2,14 380 273 8,8 0,67 105 0,45
277.3 n28 2,14 380 276 8,9 0,67 106 0,46
277.3 n29 2,14 380 280 8,7 0,66 107 0,46
277.3 n30 2,14 380 286 8,6 0,66 110 0,46
277.3 n31 2,14 380 282 8,9 0,66 108 0,44
277.3 n32 2,14 380 274 8,7 0,66 105 0,46
277.3 n33 2,14 380 275 8,8 0,67 108 0,46
277.3 n34 2,14 380 275 8,8 0,67 108 0,46
277.3 n35 2,14 380 280 8,7 0,67 109 0,46
277.3 n36 2,14 380 276 8,9 0,67 105 0,45
277.3 n37 2,14 380 281 8,8 0,65 106 0,45
277.3 n38 2,14 380 285 8,8 0,66 106 0,36
277.3 n39 2,14 380 273 8,9 0,68 105 0,45
277.3 n40 2,14 380 275 8,7 0,64 105 0,45

For a matter of size, some columns are not included. In
the table the per-node metrics for jobid=277 and stepid=3 are
reported one per row. Most of the columns show the same
information than in the previous example but per-node rather
than the average (we have shortened some names to fit in the
page). The extra columns not listed when the -l flag is not
used are:

• Node: Nodename
• StartTime (not shown in the table): the date and time

when the jobid.stepid started
• VPI: VPI (Vectorial Per Instructions) is the percentage

of the FLOP-AVX512 performance counter value over
the total number of instructions. It provides an insight
about the utilization of AVX512 instructions which have
a major impact on the application performance and power
consumption.

In this view the per-node metrics are reported for the whole
execution of the jobid.stepid. The VPI extra column shows
us the weight of AVX512 instructions over the total. This
ratio shows if the code is highly vectorized which is very
important since AVX512 instructions have a different behavior
with respect to CPU frequency and power consumption than
non-AVX512 instructions.

These columns are a subset of information available in the
DB. To get all the metrics the -c flag has to be used and
it generates a csv file. With the -c flag, columns such as
total instructions, total cycles and the individual FLOPS event
counter are reported.

VIII. EVALUATION

A. Applications

We have evaluated executed seven real applications and one
kernel benchmark with min_time_to_solution energy
policy.

• GROMACS. GROningen MAchine for Chemical Sim-
ulations [20] is a molecular dynamics package mainly
designed for simulations of proteins, lipids and nucleic
acids . We used 640 MPI processes, 16 nodes.

• BQCD. Berlin quantum chromodynamics program [1]
is a Hybrid Monte-Carlo program for simulating lattice
QCD with dynamical Wilson fermions. We used 400 MPI
processes, 10 nodes.

• SUSPENSE [7] is an improved method for computing
incompressible viscous flow around suspended rigid par-
ticles using a fixed and uniform computational grid. We
used 1000 MPI processes, 25 nodes.

• DUMSES [19] is a 3D MPIOpenMP & MPI/OpenACC
Eulerian second-order Godunov (magneto)hydrodynamic
simulation code in cartesian, spherical and cylindrical
coordinates. We used 1024 MPI processes, 26 nodes.

• ECMWF OpenIFS [21] is a scientific outreach pro-
gramme that provides an portable version of the IFS code
in use at ECMWF for operational weather forecasting. We
used 40 MPI processes with 4 threads, 10 nodes.



• BT-MZ class D. Block Tri-diagonal solver from the NAS-
PB [9]. We used 160 MPI processes, 4 nodes.

• AFiD. AFiD is a highly parallel application for Rayleigh-
Benard and Taylor-Couette flows. It is developed by
Twente University, SURFsara and University of Rome
”Tor Vergata” [33]. We used 576 MPI processes, 15
nodes.

• POP [35] is the open source Parallel Ocean Model version
2 developed by Los Alamos National Lab. We used 384
MPI processes, 10 nodes.

Table III shows for each of the eight use cases the execution
time, DC node power, CPI, GBS and GF/W reported by
EARL with monitoring only policy, i.e. without any energy
optimization used. This table shows metrics for the whole
application.

TABLE III
APPLICATIONS

Application CPI GBs Exec.Time
(sec)

DC
Power/node GFlops/Watt

GROMACS 0.66 9 371 321 2.88
BQCD 0.63 15 222 325 0.31
BT-MZ.D 0.40 25 214 343 0.34
OpenIFS 0.67 28 195 291 0.18
AFiD 0.99 75 262 332 0.12
POP 1.64 61 1565 324 0.08
SUSPENSE 1.22 90 269 334 0.08
DUMSES 1.09 65 550 314 0.09

We see that GROMACS, BQCD, BT-MZ and OpenIFS are
cpu bound applications. These applications have high values
for GFlops/Watts, corresponding with lower values of CPI
(less than 0.7). On the other hand, we note that AFiD, POP,
SUSPENSE and DUMSES are memory bound applications
with higher CPI values (more than 1), and corresponds with
cases with low values of GFlops/Watt, being less energy
efficient.

Applications have been executed in a cluster of Lenovo
ThinkSystem SD530 nodes where each node includes two
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz (20c) per node
(Hyper-threading is activated but we are not using it), 40 cores
in total and 12*8GB dual rank DIMMs per node. For all
the experiments, three runs have been executed and we are
using the average of all three. For a fair comparison, all the
executions for each application have been done using the same
set of nodes.

Table IV present the energy , power and time variation
when using EAR with the min time to solution policy for
the cpu bound applications BQCD, BT-MZ, GROMACS and
OpenIFS and the memory bound applications POP, DUM-
SES, AFiD and SUSPENSE. Figure 6 presents the frequency
EAR selected for each application. Figure 7 presents the
improvement in GFlops/Watt. In all cases the metrics presented
in the graphs are the delta of the time, power and energy
measurements when the applications are executed with EARL
and min time to solution policy vs when they are executed
at nominal frequency 2.4 GHz. The default frequency selected

is 2.1GHz and the minimum efficiency ratio is set to 70%. In
all experiments, we have computed three metrics:

• Increment of the execution time (labeled ”Performance
penalty” in table). The lower the better

• Reduction of average Power (labeled ”Power savings” in
table). The higher the better

• Reduction of Energy. (labeled ”Energy savings” in table).
The higher the better

TABLE IV
APPLICATION EVALUATION WITH MIN TIME TO SOLUTION

Appplication Energy
saving

Power
Saving

Performance
penalty

BT 1% 2% 1%
BQCD 2% 3% 1%
GROMACS 10% 12% 3%
OpenIFS 2% 4% 3%
POP 14% 15% 1%
DUMSES 7% 8% 1%
AFiD 7% 9% 2%
SUSPENSE 7% 11% 4%

First four applications do an intensive use of the CPU (as
shown by a CPI less or equal than one) and are more sensible
to frequency variations, such it is difficult to provide energy
savings without performance penalty. This is due to the fact
that the performance of applications with a low CPI scales
linearly with frequency. This explains that EAR decisions lead
to little performance, power and energy variations since larger
power savings would lead to larger performance degradations.
This will be also highlighted in Figure 6.

Applications with a high AVX512 content and a high VPI
( VPI larger than 0.3) are an exception to this rule. While
their performance scale with frequency, it is still possible to
reduce their energy with little performance penalty due to the
high power consumption of AVX512 instructions. GROMACS
is a very good example of such behavior and EARL is able
to take benefit of it. GROMACS does an intense utilization
of AVX512 instructions (as shown in Table II column VPI).
These instructions are very efficient in terms of GFlops/Watt
(GROMACS reports 2.9 GFlosp/Watt whereas the other ap-
plications report less than 1). AVX512 instructions run at
frequencies determined automatically by the processor. As
these instructions are complex and use a lot of power, they run
at frequencies lower than the base non-AVX512 frequency. For
example the processor 6148 as a base non-AVX512 frequency
of 2.4 GHz but the base AVX512 frequency is 1.6 GHz
and the max frequency with all cores active is 2.2 GHz.
Due to this behavior and the introduction of the AVX512
instruction impact in the energy model, EAR is able to find the
right compromise between high frequency and energy savings
leading to 10% energy savings and only 3% of performance
penalty.

Last four applications in table IV have high CPI and high
GBS making an intensive use of main memory are less
sensible to frequency variations than cpu bound applications.
Due to this characteristic, EAR is able to find significant



energy savings with up to 11% for POP and 7% for the oth-
ers, highlighting that the frequency influence on performance
decreases as CPI gets higher, as shown in Table III.

Figure 6 shows the average frequency computed when
running with min_time_solution policy. We clearly see
how EARL dynamically selects the frequency according to
the application characteristics, resulting in lower frequencies
for memory intensive applications and frequencies close to
the maximum (2.4Ghz) for CPU intensive applications with
the exception of highly vectorized applications. It is worth
mentioning that the average frequency reported by EAR is
computed using the msr registers ”aperf” and ”mperf” which
report always a frequency which is a few KHz lower than
the frequency set by the userspace governor. For instance, an
average frequency of 2.37 or 2.38 corresponds to a 2.4GHz
CPU frequency.
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Fig. 7. GFlops/Watt increment

Figure 7 shows the increment in GFlops/Watt computed
when using EAR with min_time_solution policy.

IX. RELATED WORK

Some other recent works have also been tackling the
power/energy management. Reference [13] presents a com-
plementary approach to EARL. READEX tool suite is a set
of tools targeted to help application developers to create an
energy efficient version of their applications. It requires much
more user intervention since applications must be compiled
and tuned to be able to construct the model that will be used

later at runtime. Moreover, they rely on external system soft-
ware, such as the SLURM [15] or HDEEM [14] to compute
energy consumption. EAR framework doesn’t need any exter-
nal software to calculate the metrics for energy management.
Moreover, EAR is not only providing energy optimization as it
provides also a more general framework offering energy/power
control, accounting as well as hints about the system reliability
and performance whereas READEX has a scope similar to
EARL.

In [22] authors propose Adagio which is very interesting
approach for power management. Adagio is a runtime library
targeted to save as much energy as possible minimising the
performance penalty. Adagio takes its frequency decisions at
runtime and doesn’t need user intervention. EARL is similar
to Adagio as it targets also energy optimization at runtime
with on-line collected information. However, it differs in the
approach and the scope of the work. EARL supports two
energy policies and plans for the near future to support a clear
interface to simplify the introduction of new policies (such
as the power balancing policies used in Adagio). EARL has
been used in production with a significant number of cores
and hybrid applications on SuperMUC-NG system at LRZ
with 6480 nodes demonstrating its robustness and reliability
[37]. Moreover, our scope coves not only power optimization
but also global energy accounting and control with the EAR
Global Manager EARGM. Reference [16] presents Conductor,
a run-time system that intelligently distributes available power
to nodes and cores to improve performance. Conductor and
EAR are not directly comparable since EAR doesn’t provide
instantaneous power capping but both targets energy manage-
ment (or power) in a dynamic way. Conductor is also based
on detecting critical paths using more power in these parts.
However Conductor requires the user to mark the end of the
iterative timestep while DynAIS does it automatically. Con-
ductor targets MPI+OpenMP applications and it can be seen
as an extension or improvement of Adagio since it exploits
similar concepts in a different context. Conductor exploits the
thread level by reconfiguring the number of threads and later
redistributing the power to speedup the critical path. Conductor
and Adagio assume a per-job power bound while EAR as-
sumes a global energy limit with no per-job limits. Conductor
uses a global scheduler after application reconfiguration for
power reallocation. It does global synchronization for a few
time steps, expecting the applications is running so many
time step that this overhead will become negligible. EARL
is not applying global synchronisations in order to minimize
the overhead. Authors reports an overhead of 35 usec. per
MPI call with Conductor while EAR algorithm needs only 0,1
usec.. Our experience with applications doing millions of MPI
calls demonstrate that 35 usec can lead to serious overheads.

GEOPM [23] from Intel also presents an open source
framework for power management. GEOPM implements a
hierarchical design to support Exascale systems. GEOPM is
an extensible framework where new policies can be added
at the node level or application (MPI) level. Some GEOPM
policies requires application modifications but some others



don’t. However in this case one additional process is created
and metrics used for frequency selection cannot be associated
with specific parts of the application structure (for instance
outer loops). GEOPM doesn’t include the EARL capability
to dynamically detect the application structure offered by
DynAIS. Energy control in GEOPM is not included as part
of the GEOPM framework but it offers an API to be used by
the resource manager while energy control is part of the EAR
framework.

DVFS has been also used in other works to reduce the power
consumed by applications. In the context of MPI applications,
DVFS have been used extensively inside the MPI library to
reduce the power consumed during communication periods
[24] [25] [26]. The goal of these proposals was to reduce the
power consumed inside the MPI library without introducing a
significant performance degradation in the application execu-
tion. EAR does not only consider communication parts of an
application but analyzes the outer loop of the application to
determine the best frequency to minimize the energy for the
whole iteration.

Power capping has been also targeted at the scheduler and
resource manager level, for instance in SLURM [27] or PBS
[28] to control the total power consumption. EAR provides
also energy capping which means EAR will ensure that a given
maximum total power consumption will not be reached on the
average over a given period of time.

Frequency selection at the cluster was used in the Energy
Aware Scheduling feature of the IBM LSF scheduler [29]
[30]. With this feature, frequency selection was statically done
for the all job, based on a user provided ”energy tag” at
job submission and historic information gathered during the
execution of previous jobs run with the same tag. But relying
on user information is a source of error which limited the
success of this feature.

Energy Efficiency is a larger topic that the one addressed
by EAR and the other tools and this work about energy
management [36] is a good presentation of all aspects of
energy efficiency from the servers to the data centers, from
hardware to software.

X. CONCLUSIONS AND FUTURE WORK

This paper shows how EAR provides automatic and trans-
parent support for energy optimization for MPI applications.
Optimization is done through the the EAR library based on
the energy policies included by default. In this paper we
have evaluated seven real applications being representative use
cases running on up to 1024 cores (26 nodes) with millions
of MPI calls. EAR is used at the Leibniz Supercomputing
Center (LRZ) on the 6480 compute nodes SuperMUCNG
supercomputer, running a lot of real applications on a very
large number of core and threads [37].

EAR library is able to dynamically compute the application
signature used by energy models and energy policies to select
the optimal CPU frequency on the fly without any user
information or application modification.

The EAR command eacct is a simple command line tool to
recover applications metrics computed by EAR library which
simplifies the application analysis.

This paper is focussing on energy optimization but EAR
has other values like hints about the node reliability and
applications performance leading to a better utilization of the
system and its workload.

EAR is currently ported on Intel CPUs. Next development
steps will bring support for AMD CPU and NVIDIA GPU as
well as instantaneous power capping and support for non-MPI
applications.

It’s also worth to mention the information gathered by
EARL for applications is really valuable since it includes
signatures computed at runtime and global application signa-
tures. All these signatures characterizes system workload with
meaningful data associated with relevant parts of applications.
This information could be used for system optimization,
specific energy models, application classification etc.
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