
1

Fast Dynamic Updates and Dynamic SpGEMM
on MPI-Distributed Graphs

Alexander van der Grinten∗, Geert Custers†, Duy Le Thanh∗, and Henning Meyerhenke∗
∗Humboldt-Universität zu Berlin Berlin, Germany
†Delft University of Technology, Delft, Netherlands

Abstract—Sparse matrix multiplication (SpGEMM) is a fun-
damental kernel used in many diverse application areas, both
numerical and discrete. For example, many algebraic graph
algorithms rely on SpGEMM in the tropical semiring to compute
shortest paths in graphs. Recently, SpGEMM has received
growing attention regarding implementations for specific (par-
allel) architectures. Yet, this concerns only the static problem,
where both input matrices do not change. In many applications,
however, matrices (or their corresponding graphs) change over
time. Although recomputing from scratch is very expensive, we
are not aware of any dynamic SpGEMM algorithms in the
literature.

In this paper, we thus propose a batch-dynamic algorithm for
MPI-based parallel computing. Building on top of a distributed
graph/matrix data structure that allows for fast updates, our
dynamic SpGEMM reduces the communication volume signifi-
cantly. It does so by exploiting that updates change far fewer
matrix entries than there are non-zeros in the input operands.
Our experiments with popular benchmark graphs show that our
approach pays off. For batches of insertions or removals of matrix
entries, our dynamic SpGEMM is substantially faster than the
static algorithms in the state-of-the-art competitors CombBLAS,
CTF and PETSc.

I. INTRODUCTION

Sparse general matrix-matrix multiplication, usually de-
noted by SpGEMM, is a fundamental computational kernel
for many applications in various areas – for instance scientific
computing (such as algebraic multigrid [1]), machine learning
with sparse DNNs [2], and data analytics (such as cluster-
ing [3]). Besides its use in numerical contexts, numerous
graph algorithms (such as triangle counting [4]) make use
of SpGEMM due to the correspondence between graphs and
matrices [5], [6]. Two other popular applications are shortest
paths with multiple sources and graph contraction [7]. Thus,
our results apply to both the matrix and the graph perspective
as well as for numerical and discrete problems.

In fact, we focus on algorithms and data structures for
dynamic SpGEMM in this paper. Note that dynamic problems
are very common in data analytics applications – for example,
consider the continuously changing inputs in areas such as rec-
ommender systems, online social networks, or time-dependent
mobility networks. Moreover, the use of dynamic SpGEMM is
also conceivable for deep learning on changing/growing data
sets. Frequently recomputing analytics results (or SpGEMM as
one step in the workflow) after changes in the input data is typ-
ically very time-consuming or even infeasible for large inputs.
It is thus desirable to use a dynamic algorithm that can update
the previous result in a more cost-efficient manner. Also,

numerous large-scale applications require (or at least benefit
from) the speed and memory of HPC platforms. Yet, despite
growing research interest in optimizing static SpGEMM for
various architectures and as part of MPI-based tools (see
Section II for a brief overview), no dynamic approach for
SpGEMM has been published so far – neither sequential nor
parallel/distributed.

Outline and Contributions: We thus first propose an
MPI-parallel data structure for fast dynamic updates to sparse
matrices and graphs (Section IV). This data structure stores
the adjacency matrix in a 2D distribution over the processes.
Based on this data structure, we propose a parallel dynamic
SpGEMM algorithm in Section V. More precisely, we provide
two variants, one for algebraic updates (update addition equals
the one in the SpGEMM semiring) and one for general
updates. The main idea behind the algorithm is to limit the
communication between processes at the potential cost of
a mild increase in other operations. To achieve this goal,
we change the way block submatrices are communicated
(and aggregated) between processes while using our dynamic
matrices. Our experimental results (see Section VII) show that
our approach pays off. A faster redistribution yields much
better insertion, update, and deletion times for the data struc-
ture compared to the state-of-the-art tools CombBLAS, CTF
and PetSC. Regarding SpGEMM, the dynamic algorithm for
algebraic updates (which performs better than the general one)
is between 3.41 and 6.18 times faster on average than a static
SpGEMM computation with CombBLAS (the best competitor)
– depending on the batch size with up to some millions of
non-zero updates. Finally note that related work is presented
in Section II, preliminaries and notation in Section III, while
concluding remarks are made in Section VIII.

II. RELATED WORK

Sparse graph and matrix computations in general have re-
ceived considerable research attention in the last decades. One
more recent appealing idea is to express graph computations
by linear algebraic operations [5], which has led to the Graph-
BLAS initiative and standard [6], [8]. Compared to sparse
matrix-vector multiplication (SpMV), the more challenging
SpGEMM has been covered to a lesser extent in the literature
so far – as pointed out by Winter et al. [9]. Recently, however,
the optimization of static SpGEMM algorithms for specific
parallel architectures is on the rise, e. g., for multithreaded
CPUs [10], [11] GPUs [9], CPU/GPU combinations [12],

ar
X

iv
:2

20
2.

08
80

8v
3

 [
cs

.D
C

]
 3

1
M

ay
 2

02
2

[13], and other accelerators [10]. A possible reason for this
spike could be the use of SpGEMM in deep learning with
sparse DNNs, as described in Ref. [2]. Rather than providing a
comprehensive overview over static SpGEMM, our description
focuses on efforts for MPI – as only these are directly
comparable to our approach. For more details, the interested
reader is referred to a recent systematic literature review on
SpGEMM [7].

MPI-based frameworks for sparse graph computations
and/or sparse linear algebra include CombBLAS 2.0 [14],
Trilinos [15], CTF [16], LAMA [17], and PETSc [18]. In our
experiments, we compare against recent versions of Comb-
BLAS, CTF and PETSc.

As pointed out by Buluç et al. [19], the most common data
structures for sparse matrices and graphs in the context of
algebraic operations are variants of compressed sparse row
(CSR) or column (CSC). This also holds for the parallel case,
where the distribution of the matrix over the processes is an
important aspect. The two most common distributions are 1D
(vertex-based in graphs terms) and 2D (edge-based) [20], but
also 2.5D and 3D are in use [21]. In particular, for highly
irregular inputs, a 2D distribution fares better than 1D due
to better load balancing [22]. A 3D implementation with
multiple levels of parallelism [21] was shown to outperform
previous SpGEMM codes for MPI parallelism. Parallel dis-
tributions can lead to hypersparse (sub-)matrices on some
processes, for which doubly compressed versions of CSR/CSC
are known [20]. In the same work, Buluç and Gilbert [20]
also propose sparse SUMMA as their “algorithm of choice”
for static parallel SpGEMM due to its flexibility in terms of
matrix size. SUMMA is also used as part of the 3D algorithm
by Azad et al. [21] (see above). We argue in Section V why
sparse SUMMA is not well suited for a dynamic approach.

The potential of (batch-)dynamic algorithms – algebraic
or not – for other graph/matrix problems has been shown
in numerous recent works, among many others for core
maintenance with matchings [23], all-pair shortest paths and
betweenness centrality [24], as well as various other centrality
measures [25], [26].

III. PRELIMINARIES AND NOTATION

Our work is built on top of MPI. We denote the number of
MPI processes by p. Within each MPI process, we also make
use of shared memory (i.e., OpenMP) parallelism.

We consider matrices over arbitrary semirings; for an intro-
duction of matrix computations over semirings (in the context
of graphs), we refer the reader to Ref. [6]. Common examples
include the (+, ·) semiring, the (∧,∨) semiring over Boolean
values, or the (min,+) semiring (which is often used in
shortest path algorithms). We usually use the symbol 0 to refer
to the neutral element of the semiring.

Matrices are denoted by A, B, C and similar. The (u, v)-th
entry of A is denoted by au,v . Our framework will distribute
blocks of matrices to each MPI process in a 2D process grid
of size

√
p×√p. In this context, Ai,j refers to the block of A

that is located on MPI process (i, j), where i, j ∈ {1, . . . ,√p}.
We assume that matrices (e.g., input matrices for SpGEMM)

are sparse, i.e., that nnz(A)� n ·m for an n×m matrix A.
Some matrices that arise in our algorithms will be hypersparse,
i.e., nnz(A)� n and nnz(A)� m. Like most other sparse
matrix frameworks, we differentiate between structural (non-
)zeros and numerical (non-)zeros. In particular, an entry au,v
of a matrix A is considered to be structurally non-zero if
au,v is present in our sparse matrix data structure, even if
au,v = 0. In particular, a structural non-zero can still have the
numerical value of zero. The term non-zero will always be
used for structural non-zeros throughout this paper. Structural
zeros (i.e., entries of the matrix that are not present in our
data structures), are always implicitly equal to the (additive)
neutral element of the semiring (e.g., ∞ for (min,+)).

SpGEMM (sparse generalized matrix multiplication) is the
problem of computing C = αAB + βX, where A and B
may optionally be transposed. Since the main challenge of any
SpGEMM algorithm is computing the matrix multiplication
AB, most of this paper will be focused on that computation,
although we also give details about handling transposition in
Section V-C.

IV. DATA STRUCTURES FOR DYNAMIC DISTRIBUTED
GRAPHS

Our framework stores each matrix in a fully distributed way.
We employ a 2D distribution of the matrix, i.e., each MPI
process stores a block of the matrix. Like other distributed
sparse matrix/graph frameworks (such as CombBLAS [14]),
we support square process grids of size

√
p × √p for this

purpose.
To store these blocks locally within each process, we distin-

guish between dynamic and static matrices. Dynamic matrices
support efficient in-place operations (such as insertions, dele-
tions, matrix addition or other element-wise transformations).
To store dynamic matrices, we use the DHB data structure [27]
which is based on adjacency arrays, together with a per-
row hash table that maps column indices to locations in
the adjacency array. This data structure allows us to quickly
discover whether a given index pair (i, j) has a non-zero value;
it also enables us to efficiently update a local entry of the
matrix in O(1) expected time.

We store static matrices in a CSR data structure. For various
hypersparse static matrices that arise in our algorithms, we use
a doubly compressed CSR (= DCSR) matrix instead, similarly
to the DCSC matrix that is used by CombBLAS [28]. DCSR
(or DCSC) further decrease the memory overhead of a sparse
matrix by storing only row pointer for non-zero rows (or
columns, respectively). Doubly compressed storage layouts
come at the cost of not being able to directly index (i.e., in
O(1) time) into a specific row (or column) anymore. However,
they can substantially decrease communication volume when
hypersparse matrices need to be communicated. Since none of
our algorithms needs to index into a static CSR or DCSR (i.e.,
no search for an index is ever necessary), we do not sort these
storage layouts in any way (and we also do not maintain hash
tables for these layouts).

2

A. Dynamic Updates

As a dynamic update, we consider the modification of a
non-zero entry of an existing matrix. An update can consist
of the insertion of a new non-zero, the deletion of an existing
non-zero, or the change of the numerical value of a matrix
entry. In many cases, such updates can be represented by
adding an update matrix to the original matrix; however, this
is not true in general semirings such as (min,+), where the
min operator can only decrease (but not increase) the value of
non-zeros of the matrix. We assume that MPI processes can
generate updates independently and without knowledge of the
distribution of data across the MPI process grid.

While our algorithms and data structures for dynamic up-
dates are different compared to the state of the art in MPI-
distributed sparse matrix processing, not many changes at the
interface are necessary to support dynamic updates. To insert
new entries into a matrix A, we first build an update matrix
A∗ that contains exactly the new values of all non-zeros that
should be updated in A. Afterwards, we either add A∗ to A
(if the update can be represented by addition), or we call a
MERGE(A,A∗) procedure that replaces all values (i, j) of A
by their corresponding entry in A∗ if the (i, j)-th entry of A∗

is non-zero. To delete entries, we support a MASK(A,A∗)
procedure that removes all entries (i, j) from A for which
A∗ is non-zero. Similar operations (optimized for the static
case) are already present in most state-of-the-art sparse matrix
frameworks.

The construction of A∗ involves communication to redis-
tribute data across MPI processes. After A∗ is constructed,
however, all dynamic update operations (i.e., matrix addition,
MERGE, MASK) operate only on local blocks of the matrices;
no communication is involved. All update operations can be
implemented efficiently if A is stored as a dynamic matrix and
A∗ is stored in DCSR layout. To ensure that these matrices are
indeed stored in these layouts, our framework requires the user
to mark dynamic matrices and update matrices appropriately.

B. Distribution of Update Matrices across MPI Processes

Since MPI processes can generate updates independently
and without knowledge of the data distribution, we need to
be able to quickly redistribute a set of updates to the MPI
process that stores the matrix block that is affected by the
update. Our redistribution uses straightforward techniques;
however, we found our algorithm to outperform existing MPI-
parallel implementations in practice (in particular, this holds
for implementations that rely on comparison-based sorting
and a single ALLTOALL, see Section VII). To redistribute
updates, we represent them as tuples (i, j, x), where (i, j)
is the index pair that should be updated to a new value
x. Our redistribution routine takes an array of such tuples
as input on each MPI process. We first exchange tuples
across the rows of the process grid. In a second step, we
exchange these tuples (which are now on the correct row of the
process grid) across the columns of the grid. An ALLTOALL
communication call is used to transfer the data. Before each
ALLTOALL, we use counting sort to group the tuples by their
destination rank. While ALLTOALL is expensive in general,

our two-step approach ensures that this call only affects
√
p

processes. Likewise, our counting sort has to consider only√
p buckets. We use OpenMP parallelism to efficiently insert

updates into local dynamic matrices (i.e., into adjacency arrays
and associated hash tables). To enable this procedure, we
use counting sort to group updates (i, j) according to (i
mod T), where T is the number of (shared-memory) threads.
Afterwards, we handle updates with different (i mod T) in
parallel.

Analysis: Let nnz be the number of input tuples that
need to be redistributed. We assume that all processes initially
have nnz/p of these tuples. Applying a random permutation
to the input tuples (before invoking redistribution) allows us
to assume that load is evenly distributed even after redistribu-
tion [29]. Due to the ALLTOALL call, our redistribution has
a communication latency of

√
p and bandwidth requirements

of O(nnz/p), since each process sends at most as much data
as it locally has. We can assume that inserting into a local
dynamic matrix (i.e., into an adjacency list + hash table) can be
done in expected amortized O(1) time. Hence, the (expected
amortized) local computation time is O(nnz/p+

√
p), i.e., it

is dominated by our counting sort that groups non-zeros by
their destination process.

V. DYNAMIC DISTRIBUTED SPGEMM

We now consider the problem of dynamically updating the
result of an SpGEMM operation. In particular, we want to
compute C = AB, where A is a n × k matrix and B is a
k ×m matrix. Since our work concerns the dynamic variant
of this matrix multiplication, we assume that A and B have
been updated by inserting and/or removing non-zero entries.
These updates result in new matrices A′ and B′, respectively.
The dynamic matrix multiplication problem now consists of
computing C′ = A′B′, given the result C of the multiplication
before updates were applied. We consider two cases of the
dynamic matrix multiplication problem:
• Algebraic updates. We say that A′ is obtained by

algebraic updates if A′ = A+A∗ is the sum of A and an
update matrix A∗, where the sum uses the same addition
operator as the semiring that is used in the SpGEMM.
If A′ and B′ are obtained by algebraic updates, we can
exploit the distributive property of matrix multiplication
to compute C′ as C′ = (A + A∗)(B + B∗) = AB +
AB∗+A∗B+A∗B∗ = C+A∗B′+AB∗. Throughout
the remainder of this paper, we refer to the last two terms
of the latter expression as C∗, i.e.,

C∗ := A∗B′ + AB∗. (1)

The main goal of our algorithm for algebraic updates is
to compute C∗ without performing extensive communi-
cation (i.e., without communicating B′ or A).1

We note that if the semiring that is used for the matrix
multiplication is a ring, this covers all possible updates

1In the formulation of this paper, we always compute C∗ as A∗B′+AB∗.
Our algorithms can also be rewritten to perform the computation as C∗ =
A∗B+A′B∗. Both expressions are equally suitable for our algorithms; they
also yield identical algorithmic complexities.

3

Algorithm 1 MPI-parallel dynamic SpGEMM, algebraic up-
dates

. Executes in parallel on all MPI processes (i, j)
send A∗i,j to process (j, i), receive A∗j,i
send B∗i,j to process (j, i), receive B∗j,i
for k = 1, . . . ,

√
p do

broadcast A∗k,i over i-th process row
broadcast B∗j,k over j-th process column
Xi

k,j ← A∗k,iB
′
i,j . local

Yj
i,k ← Ai,jB

∗
j,k . local

aggregate Xi
k,j to Xk,j on process (k, j)

aggregate Yj
i,k to Xi,k on process (i, k)

end for
C′i,j ← Ci,j + Xi,j + Yi,j . local

since A∗ can simply be computed as A∗ = A′ −A in
rings (but not in general semirings).

• General updates. If the algebraic update condition does
not hold, we say that A′ and B′ are obtained by general
updates. General updates can update matrices in ways that
are “incompatible” with the semiring used for the matrix
multiplication. For example, they can set values to 0 in
the (∨,∧) semiring or increase values of non-zeros of the
matrix in the (min,+) semiring.
Even in the general case, we can define update matrices
A∗ and B∗ that contain only the non-zeros of A′ and
B′ that have changed compared to A and B. For our
algorithms, only the structure (and not the numerical
values) of A∗ and B∗ will be relevant. Given these
matrices, we can compute C∗ as in Eq. (1). While
C′ 6= C + C∗ in the general case, C′ can still only
differ from C at entries that are non-zero in C∗.
Note that deletions of non-zeros in the input matrices
can be handled in our algorithm for general updates by
removing the corresponding entries from A′ or B′ while
adding a structural non-zero to A∗ or B∗ to indicate
that the corresponding entries in the input matrices have
changed.

In both the algebraic and the general case, we assume that
update matrices (i.e., A∗ and B∗) are hypersparse (while
A′ and B′ are in general sparse, but not hypersparse). Our
algorithm works for any number of non-zeros in A∗ and B∗;
however, our analysis of compute- and communication time
relies on hypersparsity.

A. Algorithm for Algebraic Updates

As detailed above, we can compute C′ = C + C∗ in the
algebraic case, with C∗ as in Eq. (1). The standard algo-
rithm to evaluate the matrix multiplications X := A∗B′ and
Y := AB∗ in MPI-distributed frameworks is the SUMMA al-
gorithm (= scalable universal matrix multiplication). SUMMA
performs

√
p rounds. In each round, it broadcasts blocks of

the left-hand side of the matrix multiplication over the rows
of the process grid, and blocks of the right-hand side over
the columns of the grid. This procedure ensures that process
(i, j) will receive exactly the blocks (i, k) of the left-hand

side and (k, j) of the right-hand side that are required to form
block (i, j) of the result i.e., exactly the block of the output
matrix that is supposed to reside on process (i, j). Due to the
way data is broadcasted in SUMMA, the aggregation of partial
results into block (i, j) of the result is entirely local. SUMMA
has an efficient communication pattern if both left-hand and
right-hand sides have similar numbers of non-zeros. However,
in our case (e.g., when computing A∗B′), one of the matrices
(namely, A∗) is expected to have far fewer non-zeros than the
other matrix, since A∗ represents updates that usually affect
only a small subset of A.

Algorithm 1 depicts the pseudocode of our algebraic al-
gorithm for dynamic SpGEMM. Instead of relying on the
usual SUMMA algorithm, our algorithm can be seen as a
combination of two passes of input-stationary SUMMA [30],
without materializing intermediate results. In particular, our
algorithm avoids broadcasting blocks of A and B′. This
comes at the cost of an additional non-local aggregation step.
However, since we expect A∗, B∗, and C∗ to be sparser
than A and B′, it reduces the overall communication volume.
The pseudocode of our algorithm is given in Section VI.
Like SUMMA, we operate in

√
p rounds. In each round,

we broadcast blocks of A∗ across rows of the process grid
and blocks of B∗ across columns (and we do not have to
broadcast A nor B′ at all). In particular, in the k-th round,
we broadcast block A∗k,i across the i-th row of the process
grid (and block B∗j,k across the j-th row), for all i (and j).
These broadcasts are visualized in Figure 1a, for matrix A∗.
To make this possible, we first need to perform one round
of point-to-point communication to move A∗k,i and B∗j,k to
the right process row and column, respectively. Since process
(k, i) communicates with its transposed rank (i, k) in this
round (and likewise for process (j, k)), each process only
needs to communicate with a single peer. After the broadcasts
are done, we compute the muliplications Xi

k,j := A∗k,iB
′
i,j

and Y j
i,k := Ai,jB

∗
j,k locally on MPI process (i, j). This is

done on all processes (i, j) in parallel. Finally, we compute
Xk,j :=

∑√p
i=1 X

i
k,j and Yi,k :=

∑√p
j=1 Y

j
i,k by aggregating

all Xi
k,j and Yj

i,k on process (k, j) and (i, k), respectively
(see Figure 1c).

Analysis: Like SUMMA, our algorithm requires a com-
munication latency of O(

√
p log p) since we perform

√
p

rounds of collective communication over
√
p processes (as-

suming that broadcast and aggregation steps are implemented
with a latency of O(log p)). We require a communication
bandwidth of O(max(nnz(A∗) + nnz(B∗), nnz(C∗))/

√
p),

whereas SUMMA requires O((nnz(A) + nnz(B′))/
√
p).

In particular, our algorithm requires less bandwidth if
A∗, B∗ and C∗ are considerably sparser than A and
B′. Let flops denote the number of scalar multiplica-
tions required to form C∗. SUMMA requires O(flops/p)
time for local computation, while our algorithm requires
O((flops log p)/p) (assuming that a (log p)-round parallel re-
duction is used for aggregation). Our algorithm consumes at
most O(max(nnz(A′), nnz(B′), nnz(C′))/p) memory.

4

. . .





. . .

. . .

...
...

. . .




k

(a) Broadcast of A∗k,i in k-th round. (Matrices
are first sent from processes (k, i) to processes
(i, k) first to enable parallel broadcasts.)

...
...





X1
k,j = A∗k,1B

′
1,j

X2
k,j = A∗k,2B

′
2,j

X
√
p

k,j = A∗k,√pB
′√

p,j

(b) Local multiplication, visualized for j-
th process column. Parallel multiplications
proceed similarly in all columns.

...
...




Xk,j =

∑
i X

i
k,j

(c) Aggregation of j-th column into (k, j)-
th block of result on process (k, j). All
columns aggregate their results in parallel.

Figure 1: Communication pattern of MPI-parallel dynamic SpGEMM algorithm for algebraic updates. Between broadcast and
aggregation, all MPI processes (i, j) compute A∗k,iB

′
i,j locally. Figures depict computation of A∗B′; computation of AB∗

proceeds similarly.

Algorithm 2 MPI-parallel dynamic SpGEMM, general up-
dates
C∗,F∗ ← COMPUTEPATTERN(A,A∗,B,B∗)
Ei,j ← Fi,j ⊕ F∗i,j masked at C∗i,j . local
aggregate(⊕) Ei,j to Ri over j-th process row
AR

i,j ← A′ filtered by Ri . local
send AR

i,j to process (j, i), receive AR
j,i

for k = 1, . . . ,
√
p do

broadcast AR
k,i over i-th process row

broadcast C∗k,j over j-th process column
Zi

k,j ,H
i
k,j ← AR

k,iB
′
i,j masked at C∗k,j

. local, returns the new Bloom filter in Hi
k,j

aggregate Zi
k,j to Zk,j over j-th process column

aggregate(⊕) Hi
k,j to Hk,j over j-th process column

end for
merge Zi,j into Ci,j , masked at C∗i,j , to obtain C′i,j .
local
merge Hi,j into Fi,j , masked at C∗i,j , to obtain F′i,j .
local

B. Algorithm for General Updates

For general updates, it is not enough to communicate the
update matrices among MPI processes. Since general updates
are not restricted in any way, computing the result of the
dynamic matrix multiplication can require arbitrary entries of
the new input matrices A′ and B′ (including entries that were
not changed in comparison to A and B). Fortunately, we can
still reduce the communication volume and computational cost
compared to a static recomputation since not all entries of
C′ need to be recomputed. Our approach is to use a masked
SpGEMM for this purpose that we specialize for the problem
of dynamically updating C′. For any masked SpGEMM, it is
straightforward to identify the rows of A′ and the columns
of B′ that can contribute to a given set of entries in C′ (by
just considering the appropriate rows/columns that have non-
zero entries in the mask). However, our algorithm can further
restrict the data that we need to exchange by considering only
some columns of A′ and some rows of B′. For this purpose,
we use a Bloom filter that remembers which of the terms

ai,kbk,j contribute to any ci,j .2 More specifically, our Bloom
filter is a matrix F that stores an `-bit bitfield in each entry
fi,j , where ` is a constant (in practice, we use ` = 64). While
computing C = AB, we set the (k mod `)-th bit of fi,j
to 1 if the term ai,kbk,j contributes to the value of ci,j (and
fi,j = 0 if there is no such k). Given this bitmask, we can
later recover a superset of the columns of A (or rows of B)
that contributed to ci,j .

Our algorithm is given in Algorithm 2. We first compute
C∗ as given in Eq. (1). This computation is done using the
algorithm for algebraic updates. We modify that algorithm to
also compute a Bloom filter F∗ such that bit (k mod `) is
set in f∗i,j whenever the terms a∗i,kb

′
k,j or a′i,kb

∗
k,j contribute

to c∗i,j . This computation is denoted by COMPUTEPATTERN in
our pseudocode. We remark that we do not require the values
of C∗ for our algorithm; computing the sparsity structure of
C∗ is enough.

Given F∗, we compute the matrix F⊕F∗, where ⊕ denotes
bitwise or. We form the matrix E by keeping only the entries
of F⊕F∗ that are non-zero in C∗. This matrix acts as a Bloom
filter that can be used to select a superset of the columns of A′

and rows of B′ that are needed to compute C′; considering F∗

is needed to account for columns/rows that are required due
to new non-zeros in A′ and B′ (compared to A and B). We
reduce E over its rows (via bitwise or). The result is a vector
R such that bit (k mod `) is set in ri if there is any column
j of C′ such that a′i,kb

′
k,j is required to compute c′i,j . We

now extract the rows i of A′ such that ri is non-zero and only
extract the columns k such that bit (k mod `) is set in ri. This
yields the matrix AR. While it would also be possible to filter
(and broadcast, in the next step of the algorithm) B′ instead
of A′, we chose A′ because our matrices are locally stored
row-wise. Hence, we can efficiently extract specific rows of
A and then discard a subset of the columns from these rows.

The remainder of the algorithm proceeds similarly to the
algorithm for the algebraic case. We broadcast AR over the
rows of the process grid (similarly to the algebraic case, see
Figure 1a). To be able to make use of C∗ as an output mask

2A Bloom filter was previously used by Azad et al. [31] for (non-dynamic)
masked SpGEMM. However, while their approach uses a Bloom filter to
exclude rows of the left-hand side that need to be communicated, we use the
exact mask (and not the Bloom filter) to avoid communicating rows of the
left-hand side, and use the Bloom filter to additionally exclude columns.

5

during the local multiplication, we broadcast this matrix over
the columns of the process grid and perform a local masked
matrix multiplication. This local multiplication also produces
an updated Bloom filter (called Hi

k,j in the pseudocode).
Finally, we aggregate both the updated entries of the matrix
(called Zi

k,j in Algorithm 2) and updated entries of the Bloom
filter onto MPI process (i, j).

Analyis: Following a similar analysis as in the algebraic
case, we find that our communication latency is O(

√
p log p)

(which is identical to the SUMMA algorithm). The com-
munication bandwidth is dominated by the broadcasts, i.e.,
O((nnz(AR) +nnz(C∗))/

√
p). Local computation costs are

O(flops log p)/p, where flops is the number of scalar multipli-
cations required to form ARB′. While nnz(AR) = nnz(A′)
in the worst case, we expect that our Bloom filter allows us
to discard many non-zeros of A′ without considering them in
the computation.

C. Handling Transposition

Given an efficient local algorithm for SpGEMM that sup-
ports transposition, our algorithms can naturally be extended to
the case where A and/or B are transposed. In the algorithm for
algebraic updates, we can simply replace A∗k,i and B∗j,k by
A∗i,k and/or B∗k,j if A and/or B are transposed. Furthermore,
if A and/or B are transposed, we need to broadcast B∗ over
rows and/or A∗ over columns of the process grid. In some
cases, this allows us to get rid of the initial send/receive
call since the blocks that are broadcasted are already on the
right process row and/or column. Finally, the local matrix
multiplication algorithm has to take transposition into account.

A similar strategy can be applied in the case of general
updates. We note that in the transposed case, the Bloom
filter can be used to discard rows of A′ and columns of B′,
respectively. Hence, it is still possible to filter the matrices
efficiently, even if transposition is applied.

VI. IMPLEMENTATION DETAILS

A. Algebraic SpGEMM

Our implementation stores C′ as a dynamic matrix. A∗

and B∗ are stored in DCSR format as we expect them to be
hypersparse. We also use the DCSR format when broadcasting
blocks of matrices.

Our local multiplication uses Gustavson’s row-wise sparse
matrix multiplication algorithm [32]. We use shared-memory
parallelism to parallelize the computation of different rows of
the result. Each shared-memory thread uses a sparse accumu-
lator based on a dynamic array combined with a hash table
for this purpose. We concatenate all output rows into a DCSR
to form Xi

k,j and Yj
i,k.

Since Xi
k,j and Yj

i,k are expected to have different sparsity
patterns, we cannot use a straightforward MPI REDUCE call
to aggregate them. Instead, we use an approach based on
a custom reduce-scatter implementation for sparse matrices.
Since the output of that aggregation (i.e., C′) is a dynamic
matrix that supports efficient local updates, we do not need
any auxiliary data structure (such as a SPA [33] or similar)
during aggregation.

Table I: List of real-world instances.

Instance Source Type n nnz

LiveJournal SNAP Social 4M 86M
orkut SNAP Social 3M 234M
tech-p2p Network Repository Peer-to-Peer 5M 295M
indochina Network Repository Web 7M 304M
sinaweibo Network Repository Social 58M 522M
uk2002 Network Repository Web 18M 529M
wikipedia Network Repository Web 27M 1 088M
PayDomain Network Repository Web 42M 1 165M
uk2005 Network Repository Web 39M 1 581M
webbase Network Repository Web 118M 1 736M
twitter Network Repository Social 41M 2 405M
friendster SNAP Social 124M 3 612M

B. General SpGEMM

As in our algorithm for algebraic updates, we store the result
matrices C′ and F′ as dynamic matrices and all intermediate
matrices as DCSR.

To efficiently compute the local masked matrix multiplica-
tion, we locally build a hash table that stores the indices (u, v)
of all non-zeros in C∗k,j on process (i, j). While this dupli-
cates the work of building the same hash table on multiple MPI
processes, we found it to be faster than broadcasting the hash
table itself (instead of C∗k,j) in preliminary experiments; this
is caused by the fact that the hash table is considerably larger
than nnz(C∗k,j) due to its empty slots. We then perform a
variant of Gustavson’s row-wise sparse matrix multiplication
that uses the hash table to check whether (u, v) is non-zero in
C∗ before adding an index pair (u, v) to the sparse aggregator.

VII. EXPERIMENTS

In this section, we present experiments to evaluate the per-
formance of our algorithms in practice. We have implemented
our algorithms in C++. The code of our algorithms will be
published as open source software once this paper is accepted.
We use CombBLAS 2.0, CTF 1.35 and PETSc 3.17.1 as state-
of-the-art competitors. We note that CombBLAS seems to
outperform both CTF and PETSc on our benchmarks; this
result is in line with results by the authors of CombBLAS [14].

A. Experimental Setup

The experiments are performed on a 16-node compute
cluster. Each compute node of the cluster features two Intel
Xeon 6126 CPUs with 12 cores per CPU, and 192 GB RAM.
The cluster is connected using 100 GBit Intel Omni-Path
Architecture interconnects. For CombBLAS, CTF and our
algorithms, we run 4 MPI processes per node (i.e., two MPI
processes per CPU socket) as these frameworks require a
square processor grid. In this configuration, we run 6 OpenMP
threads per MPI process. For PETSc, we found that a single
MPI process per node (and 24 threads per MPI process)
yields the best performance.3 Except in the parallel scalability
experiments, we use all 16 compute nodes in each experiment.

3In experiments that have a fixed input size per MPI process (e.g., weak
scaling experiments below), we adjust the input size of PETSc to ensure that
all competitors operate on the same number of non-zeros.

6

or
ku

t
Liv

eJo
ur

na
l

te
ch

-p
2p

ind
oc

hin
a

uk
20

02
wi

kip
ed

ia
uk

20
05

tw
itt

er
Pa

yD
om

ain
sin

aw
eib

o
we

bb
as

e
fri

en
ds

te
r0

1

2
re

la
tiv

e
pe

rfo
rm

an
ce

our approach
CombBLAS 2.0
CTF 1.35
PETSc 3.17.1

Figure 2: Construction

Figure 3: Matrix construction performance on real-world
graphs. Performance is measured relative to CombBLAS.

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

batch size

0

250

500

750

1000

tim
e

(m
s)

our approach
CombBLAS 2.0

Figure 4: Mean insertion performance on real-world graphs.
CTF and PETSc are considerably slower than our algorithm
(at least 55.15× slower, and 460.83× slower, respectively) and
not plotted.

Our experimental data consists of several large graphs –
ranging from 86 million to almost 4 billion edges – and is
shown in Table I. All instances were downloaded from the
SNAP datasets [34] and Network Repository [35]. We always
read graphs as undirected when creating adjacency matrices,
i.e., for an edge {u, v} in the input data, we add non-zeros
(u, v) and (v, u) to the matrix.

The instances we use demonstrate significant imbalance
without remapping. To avoid load imbalance, we randomly
permute input indices before constructing each matrix. Given
our 2D representation (and the memory layouts of our com-
petitors), random permutation provides an adequate distribu-
tion of the input data. The same I/O and same permutation
method is used for our code and for our competitors. We do
not measure I/O times in any of our experiments.

B. Performance of Data Structures for Dynamic Distributed
Graphs

In our first experiments, we evaluate the performance and
parallel scalability of our dynamic distributed matrix data
structure and our redistribution algorithm for updates.

a) Construction: We measure the time that it takes
to construct the adjacency matrix of each input graph. We

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

batch size

0

500

1000

1500

tim
e

(m
s)

our approach
CombBLAS 2.0

(a) Updates

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

batch size

0

500

1000

1500

tim
e

(m
s)

our approach
CombBLAS 2.0

(b) Deletion

Figure 5: Mean update and deletion performance on real-world
graphs. CTF and PETSc are not plotted, but at least 59.8× and
477.11× slower than our algorithm for updates. For deletions,
CTF is at least 101.43× slower than our algorithm (PETSc
does not support efficient deletions).

1x4 4x4 16x4
MPI processes

0

20

40

tim
e

pe
r n

nz
 (n

s)

Figure 6: Weak scalability of insertions on real-world graphs,
for different numbers of compute nodes. Each MPI process
performs 1.3M insertions.

use our dynamic matrix data structure for this purpose; for
CombBLAS, we use its default DCSC data structure, PETSc
uses its parallel compressed sparse row implementation.

Figure 2 depicts the results of this experiment. We report
the performance relative to CombBLAS. Our redistribution
algorithm outperforms all state-of-the-art competitors. Our
code is between 1.68× and 2.59× faster than CombBLAS (the
best competitor); both CTF and PETSc are slower than both
CombBLAS and our code on every instance. This difference in
performance is due to two reasons: first, our dynamic matrix
data structure allows for fast insertion and exploits shared-
memory parallelism effectively. Secondly, our redistribution
of non-zeros is faster than the competitor’s (which consists
of a comparison sort and a global ALLTOALL in the case of
CombBLAS). In fact, even if we construct a DCSR (i.e., the
same type of data structure that CombBLAS uses) instead of

1x4 4x4 16x4
MPI processes

100

101

tim
e

pe
r n

nz
 (n

s)

Redist. sort
Redist. comm.
Mem. management
Local construct.
Local addition

Figure 7: Breakdown of insertion running time on real-world
graphs, for different numbers of compute nodes.

7

1x4 4x4 16x4
MPI processes

0.0

2.5

5.0

7.5

10.0
sp

ee
du

p
ov

er
 1

 n
od

e

(a) Strong scalability, 230 inser-
tions in total.

1x4 4x4 16x4
MPI processes

0

20

40

tim
e

pe
r n

nz
 (n

s)

(b) Weak scalability, 228 inser-
tions per MPI process.

Figure 8: Parallel scalability of insertions on synthetic R-MAT
graphs, for different numbers of compute nodes.

a dynamic matrix, we are still on average 1.15× faster than
CombBLAS, although CombBLAS constructs its DCSC data
structure faster on some instances.

b) Insertions: We now compare the performance of
inserting new non-zeros into the adjacency matrix, for our
implementation versus the state-of-the-art competitors. In this
experiment, we insert half of the non-zeros initially; this does
not contribute to the running time we measure. Afterwards,
we insert randomly chosen non-zeros from the remaining
half into the already existing matrix, by first constructing an
update matrix (in hypersparse layout for the competitors that
support it) and adding the update matrix to the adjacency
matrix (which uses a dynamic storage for our implementation).
Insertions are performed in batches of various sizes. The batch
size denotes the number of insertions that each MPI process
performs – i.e., the full update matrix has (batch size × p)-
many non-zeros. In our experiments, this results in between
65K to 8.3M non-zeros in each update matrix. We perform 10
batches per instance (such that up to 83M entries are inserted
into the already existing matrix).

Results are depicted in Figure 4. Since all competitors have
to use a static matrix data structure that they have to rebuild
after insertions, we outperform the competitors. In particular,
we outperform CombBLAS by 3.63× (for batch size 131072)
to 227.68× (for batch size 1024). As expected, our speedup
over CombBLAS decreases with the batch size; as update
matrices become denser, the cost of rebuilding the output
matrix amortizes more effectively. Compared to CTF, we are
always at least 55.15× faster, and compared to PETSc, we are
at least 460.83× faster.

c) Updates and Deletions: To evaluate updates and dele-
tions of the matrix, we proceed similarly to the insertion
experiment. However, for update and deletion experiments,
we insert the full adjacency matrix initially (and only draw
non-zeros for the update matrix from existing non-zeros of
the adjacency matrix). We note that PETSc does not support
an efficient way to mask non-zeros in matrices; thus, we do
not compare against PETSc for deletions.

The results are visualized in Figure 5a and 5b. Similarly to
the insertion case, we are 3.75× to 263.57× faster for updates
and 4.86× to 393.85× faster for deletions than CombBLAS.
Likewise, our algorithm performs updates at least 59.8×
faster than CTF and at least 477.11× faster than PETSc. For
deletions, we are always at least 101.43× faster than CTF.

1024 2048 4096 8192
batch size

0

100

200

300

tim
e

(s
)

our approach
CombBLAS 2.0
CTF 1.35
PETSc 3.17.1

Figure 9: Mean performance of dynamic SpGEMM, algebraic
case, on real-world graphs. Batch sizes are per MPI process,
i.e., update matrices have up to 524K non-zeros.

d) Parallel Scalability of Graph Updates: We evaluate
the scalability of insertions across different numbers of com-
pute nodes. We vary the number of compute nodes between 1,
4 and 16 (such that the process grid is square), while keeping
the OpenMP thread count constant at 6, and the number of
MPI processes per node constant at 4. Insertions are performed
in the same way as in the previous section, with the batch size
fixed to 131072. This can be seen as a weak scaling experiment
since nnz/p remains constant, where nnz denotes the number
of non-zeros in the update matrix.

Figure 6 depicts the results of this experiment. In particular,
the time per non-zero decreases with increasing numbers of
compute nodes, indicating that our algorithm does not yet hit
a scalability bottleneck on our cluster. Figure 7 shows that all
steps of our algorithm scale well with the number of compute
nodes. A large fraction of the running time consists of local
operations as opposed to communication.

e) Scalability on Synthetic Graphs: In Figure 8, we
present strong scaling and weak scaling results for insertions
into our data structure on synthetic R-MAT graphs. We use
the same R-MAT parameters as the Graph500 benchmark. In
the strong scaling experiment, each MPI process generates
230/p non-zeros according to the R-MAT model. In the weak
scaling experiment, each process generates 228 non-zeros. As
in our experiments on real-world graphs, we apply a (global)
permutation to the row/column indices to ensure that load is
evenly balanced across the process grid. We use a batch size
of 131072 entries and insert all entries into a dynamic matrix.
Our algorithm scales well with increasing numbers of MPI
processes: for 16 compute nodes, we achieve a strong speedup
of 10.85× over a single compute node. Likewise, in the weak
scaling model, our time per non-zero drastically decreases with
the number of compute nodes, indicating that our algorithm
does not hit an efficiency bottleneck in the configurations that
we tested.

C. Performance of Dynamic SpGEMM

We perform experiments on both dynamic SpGEMM algo-
rithms that are presented in Section V.

a) Algebraic case: This experiment repeatedly computes
C′ = A′B, where in each iteration we insert non-zeros

8

512 1024 2048 4096
batch size

0

50

100

150

200
tim

e
(s

)
our approach
CombBLAS 2.0
CTF 1.35
PETSc 3.17.1

Figure 10: Mean performance of dynamic SpGEMM, general
case, on real-world graphs. Batch sizes are per MPI process,
i.e., update matrices have up to 262K non-zeros.

into A′, while B is static. In particular, we initialize A′

to an empty matrix (i.e., the zero matrix) for each group.
B is initialized to the full adjacency matrix of the graph.
Initialization of B is not included in the measured runtime.
Afterwards, insertions are performed in batches, with batch
sizes between 1024 and 8192 vertices per MPI process. These
insertions equate to the expression A′ = A + A∗, where
A∗ is the matrix of insertions. We draw the insertions from
the adjacency matrix of the graph (i.e., drawing all possible
insertions would result in the computation of A2). Each
MPI process draws insertions individually, independently, and
uniformly at random. Furthermore, the method (and random
seed) to draw non-zeros is the same for our competitors and for
our approach. We perform 10 batches per instance, therefore
the total number of non-zeros in the left-hand side varies
between 655K and 5.2M (= number of batches per instance
× batch size × number of MPI processes). Batch sizes of
over 8192 produced result matrices that did not fit in the
RAM of our compute cluster, both for the competitors and
for our algorithm, hence they were excluded. We perform the
multiplication in the (+, ·) semiring, so we can utilize the
algorithm for algebraic updates presented in Section V-A. As
previously demonstrated, our algorithm reduces C′ = A′B to
C′ = C+A∗B, provided B is static. Our competitors compute
A∗B using their distributed SpGEMM algorithms and add the
result to C.

The experiment (results shown in Figure 9) demonstrates
that our algorithm is 3.41× (for a batch size of 8192) to
6.18× (for batch size 1024) faster than CombBLAS (which
is the best competitor in this experiment). We are also at
least 11.73× faster than CTF and at least 5.2× faster than
PETSc. As expected, the speedup decreases for increasing
batch sizes. In particular, for large batch sizes, update matrices
are not hypersparse on all instances anymore. In these cases,
our algorithm is expected to perform worse than SUMMA due
to its more complicated communication pattern.

b) General case: This experiment is performed using
the same setup as before, but using the general dynamic
SpGEMM algorithm described in Section V-B instead. We use
a (min,+) semiring to differentiate from the algebraic case.
To perform an equivalent operation using our competitors,

1x4 4x4 16x4
MPI processes

0

20

40

60

tim
e

pe
r n

nz
 (µ

s)

Figure 11: Weak scalability of dynamic SpGEMM (algebraic
case) on real-world graphs, for different numbers of compute
nodes. This experiment uses 81920 non-zeros per MPI process.

1x4 4x4 16x4
MPI processes

101

102

103

104

tim
e

pe
r n

nz
 (µ

s)

Send/Recv
Bcast
Local Mult.
Scatter
Reduce Scatter

Figure 12: Breakdown of dynamic SpGEMM (algebraic case)
running time on real-world graphs, for different numbers of
compute nodes.

it is no longer enough to compute just A∗B, we have to
recompute A′B from scratch (since insertions into the matrix
are incompatible with the min operator that the semiring uses
for addition). Unlike our other competitors, PETSc does not
support arbitrary semirings; thus, we continue to use the (+, ·)
semiring for PETSc in this experiment.

The results for this experiment are depicted in Figure 10.
Our findings show that – depending on the batch size – our
algorithm is 2.39× to 4.57× faster than CombBLAS, the best
competitor in this experiment. Additionally, we are always at
least 14.58× faster than CTF and at least 6.9× faster than
PETSc. While our competitors communicate all non-zeros of
the left-hand side, our algorithm can avoid this using our
Bloom filter for entries that do not contribute to the result.
As the matrix becomes denser, the probability that a non-zero
does not contribute to the result decreases. Hence for larger
batch sizes it is expected to be more efficient to simply transfer
all non-zeros, because the overhead of a Bloom filter is less
economical.

c) Parallel Scalability of Dynamic SpGEMM: To test
the scalability of our algorithm, we perform the SpGEMM
experiment with algebraic updates on a varying number of
MPI processes. We change the number of compute nodes
between 1, 4 and 16, while keeping the OpenMP thread count
constant at 6, and the number of MPI processes per node
constant at 4, as with previous experiments. We excluded
instances PayDomain, wikipedia, webbase, uk2005, friendster,
and twitter for these experiments as the number of non-zeros
generated by the SpGEMM did not fit into the RAM of a single
compute node. The batch size in this experiment is fixed to
8192.

9

Figure 11 shows the relative runtime for different numbers
of MPI processes. The time that our algorithm takes per non-
zero decreases with the number of MPI processes, indicating
that we do not yet hit a performance bottleneck on our cluster.
The findings in Figure 11 are supported by Figure 12. Local
multiplication, reduce/scatter and initial send/receive rounds
scale well with the number of compute nodes. However, broad-
casting matrices takes a larger fraction of the overall running
time for higher numbers of compute nodes (as expected).

VIII. CONCLUSIONS

In this paper we proposed a data structure for dynamic
sparse graphs/matrices distributed over MPI processes. This
data structure allows for fast updates and redistribution. With
this data structure and an adapted communication mechanism,
we designed a dynamic SpGEMM algorithm that usually
performs several times faster in practice than the static state of
the art. Future work could investigate replacing the SUMMA
algorithm in the 3D SpGEMM by Azad et al. [21] by our
algorithm to obtain a new dynamic one with further improved
communication volume.

Acknowledgments: This work is partially supported by
German Research Foundation (DFG) grant GR 5745/1-1
(DyANE) and DFG grant ME 3619/4-1 (ALMACOM).

REFERENCES

[1] K. Stüben, “A review of algebraic multigrid,” in Numerical Analysis:
Historical Developments in the 20th Century, C. Brezinski and
L. Wuytack, Eds. Amsterdam: Elsevier, 2001, pp. 331–359.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B978044450617750015X

[2] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. A.
Robinett, and S. Samsi, “Sparse deep neural network graph challenge,”
in 2019 IEEE High Performance Extreme Computing Conference, HPEC
2019, Waltham, MA, USA, September 24-26, 2019. IEEE, 2019, pp.
1–7. [Online]. Available: https://doi.org/10.1109/HPEC.2019.8916336

[3] S. Van Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp.
121–141, 2008. [Online]. Available: https://doi.org/10.1137/040608635

[4] A. Yaşar, S. Rajamanickam, M. Wolf, J. Berry, and Ü. V. Çatalyürek,
“Fast triangle counting using cilk,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–7.

[5] J. Kepner and J. R. Gilbert, Eds., Graph Algorithms in the Language
of Linear Algebra, ser. Software, environments, tools. SIAM, 2011,
vol. 22.

[6] J. Kepner, P. Aaltonen, D. A. Bader, A. Buluç, F. Franchetti, J. R.
Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke,
S. McMillan, C. Yang, J. D. Owens, M. Zalewski, T. G. Mattson, and
J. E. Moreira, “Mathematical foundations of the graphblas,” in 2016
IEEE High Performance Extreme Computing Conference, HPEC 2016,
Waltham, MA, USA, September 13-15, 2016. IEEE, 2016, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/HPEC.2016.7761646

[7] J. Gao, W. Ji, Z. Tan, and Y. Zhao, “A systematic survey of general
sparse matrix-matrix multiplication,” CoRR, vol. abs/2002.11273, 2020.
[Online]. Available: https://arxiv.org/abs/2002.11273

[8] T. G. Mattson, C. Yang, S. McMillan, A. Buluç, and J. E. Moreira,
“Graphblas C API: ideas for future versions of the specification,” in
2017 IEEE High Performance Extreme Computing Conference, HPEC
2017, Waltham, MA, USA, September 12-14, 2017. IEEE, 2017, pp.
1–6. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091095

[9] M. Winter, D. Mlakar, R. Zayer, H. Seidel, and M. Steinberger,
“Adaptive sparse matrix-matrix multiplication on the GPU,” in
Proceedings of the 24th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2019, Washington, DC,
USA, February 16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds.
ACM, 2019, pp. 68–81. [Online]. Available: https://doi.org/10.1145/
3293883.3295701

[10] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “High-
performance sparse matrix-matrix products on intel KNL and multicore
architectures,” in The 47th International Conference on Parallel
Processing, ICPP 2018, Workshop Proceedings, Eugene, OR, USA,
August 13-16, 2018. ACM, 2018, pp. 34:1–34:10. [Online]. Available:
https://doi.org/10.1145/3229710.3229720

[11] Z. Gu, J. Moreira, D. Edelsohn, and A. Azad, “Bandwidth optimized
parallel algorithms for sparse matrix-matrix multiplication using
propagation blocking,” in SPAA ’20: 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, C. Scheideler and M. Spear, Eds. ACM, 2020, pp.
293–303. [Online]. Available: https://doi.org/10.1145/3350755.3400216

[12] J. A. Ellis and S. Rajamanickam, “Scalable inference for sparse
deep neural networks using kokkos kernels,” in 2019 IEEE High
Performance Extreme Computing Conference, HPEC 2019, Waltham,
MA, USA, September 24-26, 2019. IEEE, 2019, pp. 1–7. [Online].
Available: https://doi.org/10.1109/HPEC.2019.8916378

[13] Z. Xie, G. Tan, W. Liu, and N. Sun, “A pattern-based spgemm
library for multi-core and many-core architectures,” IEEE Trans.
Parallel Distributed Syst., vol. 33, no. 1, pp. 159–175, 2022. [Online].
Available: https://doi.org/10.1109/TPDS.2021.3090328

[14] A. Azad, O. Selvitopi, M. T. Hussain, J. Gilbert, and A. Buluc, “Com-
binatorial blas 2.0: Scaling combinatorial algorithms on distributed-
memory systems,” IEEE Trans. Parallel and Distributed Systems, pp.
1–1, 2021.

[15] T. Trilinos Project Team, The Trilinos Project Website.
[16] E. Solomonik, D. Matthews, J. R. Hammond, J. F.

Stanton, and J. Demmel, “A massively parallel tensor
contraction framework for coupled-cluster computations,” Journal
of Parallel and Distributed Computing, vol. 74, no. 12, pp.
3176–3190, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S074373151400104X

[17] T. Brandes, E. Schricker, and T. Soddemann, “The LAMA approach
for writing portable applications on heterogenous architectures,” in
Scientific Computing and Algorithms in Industrial Simulations, Projects
and Products of Fraunhofer SCAI, M. Griebel, A. Schüller, and M. A.
Schweitzer, Eds. Springer, 2017, pp. 181–198. [Online]. Available:
https://doi.org/10.1007/978-3-319-62458-7 9

[18] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[19] A. Buluç, J. R. Gilbert, and V. B. Shah, “Implementing sparse matrices
for graph algorithms,” in Graph Algorithms in the Language of Linear
Algebra, ser. Software, environments, tools, J. Kepner and J. R.
Gilbert, Eds. SIAM, 2011, vol. 22, pp. 287–313. [Online]. Available:
https://doi.org/10.1137/1.9780898719918.ch13

[20] A. Buluç and J. R. Gilbert, “New ideas in sparse matrix matrix
multiplication,” in Graph Algorithms in the Language of Linear
Algebra, ser. Software, environments, tools, J. Kepner and J. R.
Gilbert, Eds. SIAM, 2011, vol. 22, pp. 315–337. [Online]. Available:
https://doi.org/10.1137/1.9780898719918.ch14

[21] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016. [Online]. Available:
https://doi.org/10.1137/15M104253X

[22] A. Buluç and K. Madduri, “Graph partitioning for scalable distributed
graph computations,” in Graph Partitioning and Graph Clustering, 10th
DIMACS Implementation Challenge Workshop, Georgia Institute of
Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings, ser.
Contemporary Mathematics, D. A. Bader, H. Meyerhenke, P. Sanders,
and D. Wagner, Eds., vol. 588. American Mathematical Society, 2012,
pp. 83–102. [Online]. Available: http://www.ams.org/books/conm/588/
11709

[23] H. Jin, N. Wang, D. Yu, Q.-S. Hua, X. Shi, and X. Xie, “Core main-
tenance in dynamic graphs: A parallel approach based on matching,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 11,
pp. 2416–2428, 2018.

[24] E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe, “Faster
betweenness centrality updates in evolving networks,” in 16th
International Symposium on Experimental Algorithms, SEA 2017,
June 21-23, 2017, London, UK, ser. LIPIcs, C. S. Iliopoulos, S. P.
Pissis, S. J. Puglisi, and R. Raman, Eds., vol. 75. Schloss Dagstuhl

10

https://www.sciencedirect.com/science/article/pii/B978044450617750015X
https://www.sciencedirect.com/science/article/pii/B978044450617750015X
https://doi.org/10.1109/HPEC.2019.8916336
https://doi.org/10.1137/040608635
https://doi.org/10.1109/HPEC.2016.7761646
https://arxiv.org/abs/2002.11273
https://doi.org/10.1109/HPEC.2017.8091095
https://doi.org/10.1145/3293883.3295701
https://doi.org/10.1145/3293883.3295701
https://doi.org/10.1145/3229710.3229720
https://doi.org/10.1145/3350755.3400216
https://doi.org/10.1109/HPEC.2019.8916378
https://doi.org/10.1109/TPDS.2021.3090328
https://www.sciencedirect.com/science/article/pii/S074373151400104X
https://doi.org/10.1007/978-3-319-62458-7_9
https://doi.org/10.1137/1.9780898719918.ch13
https://doi.org/10.1137/1.9780898719918.ch14
https://doi.org/10.1137/15M104253X
http://www.ams.org/books/conm/588/11709
http://www.ams.org/books/conm/588/11709

- Leibniz-Zentrum für Informatik, 2017, pp. 23:1–23:16. [Online].
Available: https://doi.org/10.4230/LIPIcs.SEA.2017.23

[25] A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and
H. Meyerhenke, “Scalable katz ranking computation in large static
and dynamic graphs,” in 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, ser.
LIPIcs, Y. Azar, H. Bast, and G. Herman, Eds., vol. 112. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 42:1–42:14.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ESA.2018.42

[26] E. J. Riedy, “Updating pagerank for streaming graphs,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May 23-27,
2016. IEEE Computer Society, 2016, pp. 877–884. [Online]. Available:
https://doi.org/10.1109/IPDPSW.2016.22

[27] A. van der Grinten, M. Predari, and F. Willich, “A fast data structure
for dynamic graphs based on hash-indexed adjacency blocks,” Technical
report and code available at http://github.com/hu-macsy/dhb., 2022.

[28] A. Buluç and J. R. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IPDPS. IEEE, 2008, pp. 1–11.

[29] E. Solomonik and T. Hoefler, “Sparse tensor algebra as a parallel

programming model,” CoRR, vol. abs/1512.00066, 2015.
[30] M. D. Schatz, R. A. van de Geijn, and J. Poulson, “Parallel matrix

multiplication: A systematic journey,” SIAM J. Sci. Comput., vol. 38,
no. 6, 2016. [Online]. Available: https://doi.org/10.1137/140993478

[31] A. Azad, A. Buluç, and J. R. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in IPDPS Workshops. IEEE
Computer Society, 2015, pp. 804–811.

[32] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3,
p. 250–269, Sep. 1978. [Online]. Available: https://doi.org/10.1145/
355791.355796

[33] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM J. Matrix Anal. Appl, vol. 13, pp.
333–356, 1992.

[34] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[35] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: https://networkrepository.com

11

https://doi.org/10.4230/LIPIcs.SEA.2017.23
https://doi.org/10.4230/LIPIcs.ESA.2018.42
https://doi.org/10.1109/IPDPSW.2016.22
http://github.com/hu-macsy/dhb
https://doi.org/10.1137/140993478
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/355791.355796
http://snap.stanford.edu/data
https://networkrepository.com

	I Introduction
	II Related Work
	III Preliminaries and Notation
	IV Data Structures for Dynamic Distributed Graphs
	IV-A Dynamic Updates
	IV-B Distribution of Update Matrices across MPI Processes

	V Dynamic Distributed SpGEMM
	V-A Algorithm for Algebraic Updates
	V-B Algorithm for General Updates
	V-C Handling Transposition

	VI Implementation Details
	VI-A Algebraic SpGEMM
	VI-B General SpGEMM

	VII Experiments
	VII-A Experimental Setup
	VII-B Performance of Data Structures for Dynamic Distributed Graphs
	VII-C Performance of Dynamic SpGEMM

	VIII Conclusions
	References

