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Abstract. Partitioning a graph into balanced blocks such that few edges run between blocks is a
key problem for large-scale distributed processing. A current trend for partitioning huge graphs are
streaming algorithms, which use low computational resources. In this work, we present a shared-memory
streaming multi-recursive partitioning scheme that performs recursive multi-sections on the fly without
knowing the overall input graph. Our approach has a considerably lower running time complexity in
comparison with state-of-the-art non-buffered one-pass partitioning algorithms. Moreover, if the topology
of a distributed system is known, it is possible to further optimize the communication costs by mapping
partitions onto processing elements. Our experiments indicate that our algorithm is both faster and
produces better process mappings than competing tools. In case of graph partitioning, our framework is
up to two orders of magnitude faster at the cost of 5% more cut edges compared to Fennel.

Keywords: graphs partitioning · streaming · process mapping · shared-memory parallelization.

1 Introduction

Graphs are a universal tool used to represent complex phenomena such as dependencies in databases,
communications in distributed algorithms, interactions in social networks, and so forth. With the ever-
increasing amount of data, processing large-scale graphs on distributed systems and databases becomes a
necessity for a wide range of applications. When processing a graph in parallel, each processing element (PE)
operates on some portion of it while distinct PEs communicate with each other through message-passing. To
make the parallel algorithm communication-efficient, graph partitioning is needed as a preprocessing step.
When the topology of the distributed system is known, a process mapping preprocessing is even more effective,
since it directly minimizes the total communication cost for the given topology. Moreover, network topologies
of modern parallel computers feature special properties that can be exploited by mapping algorithms. In
particular, a common property that is frequently exploited by process mapping algorithms [12, 31] is that
PEs are hierarchically organized into, e. g., islands, racks, nodes, GPUs, processors, cores with corresponding
communication links of similar quality. Partitioning and process mapping have proven to significantly speedup
parallel applications [3, 6] and hierarchical partitionings by itself are used in a wide-range of applications, for
example for distributed hybrid CPU and GPU training of graph neural networks on billion-scale graphs [41].

There has been a wide range of research on graph partitioning and process mapping [7, 11, 35]. Graph
partitioning and process mapping are NP-complete [14] and there can be no approximation algorithm with a
constant ratio for general graphs [10]. Thus, heuristics are used in practice. The most prominent results in
the area can be split in three groups of algorithms: distributed and parallel, in-memory, and streaming. From
these groups, only streaming algorithms can quickly partition huge graphs while using much less memory
than the total size of the graph. This is why streaming partitioning has become a major research trend
in the last years [4, 13, 21, 28, 37, 38]. The most popular streaming approach in literature is the one-pass
model [1], where nodes arrive one at a time including their neighborhood and then have to be assigned to
blocks. At the moment there is range of streaming algorithms operating in that model that are either very
? Partially supported by DFG grant SCHU 2567/1-2.

ar
X

iv
:2

20
2.

00
39

4v
1 

 [
cs

.D
S]

  1
 F

eb
 2

02
2



fast and don’t care for solution quality at all (such as Hashing [37]), or algorithms that are still fast, but
compute significantly better solutions than just random assignments (such as such Fennel [38]). Moreover,
to the best of our knowledge no streaming algorithm has yet been proposed or adapted to optimize for
process mapping objectives.

Contribution. We develop a shared-memory parallel streaming partitioning algorithm that performs
recursive multi-sections on the fly thereby enabling the computation of hierarchical partitionings using a
single pass over the input. If a hierarchy is not specified as an input, out approach can also be used as
a tool to solve the standard graph partitioning problem. Our approach has a considerably lower running
time complexity in comparison with state-of-the-art non-buffered one-pass partitioning algorithms that solve
this problem. Moreover, it opens a door to trade solution quality for execution speed by solving some of its
partitioning subproblems with faster algorithms. Our experiments show that on average, our algorithm is
134.4 times faster than Fennel at the cost of 5% more cut edges. In scalability tests, our algorithm is only 3
times slower than Hashing when running on 32 threads.

Moreover, if the hierarchical topology of a distributed system is known, we can adopt our scheme to
perform multi-sectioning along the specified hierarchy. Thereby our algorithms obtains good process mappings
using single pass through the input graph. On average, our algorithm computes 41% better process mappings
and is 55 times faster than Fennel which ignores the given hierarchy.

2 Preliminaries

2.1 Basic Concepts

Let G = (V = {0, . . . , n− 1}, E) be an undirected graph with no multiple or self edges, such that n = |V |,
m = |E|. Let c : V → R≥0 be a node-weight function, and let ω : E → R>0 be an edge-weight function.
We generalize c and ω functions to sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let

N(v) = {u : {v, u} ∈ E} denote the neighbors of v. A graph S = (V ′, E′) is said to be a subgraph of
G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). When E′ = E ∩ (V ′ × V ′), S is an induced subgraph. Let d(v)
be the degree of node v and ∆ be the maximum degree of G.

The graph partitioning problem (GP) consists of assigning each node of G to exactly one of k distinct
blocks respecting a balancing constraint in order to minimize the weight of the edges running between the
blocks, i.e. the (edge-cut). More precisely, GPP partitions V into k blocks V1,. . . ,Vk (i. e., V1 ∪ · · · ∪ Vk = V
and Vi ∩ Vj = ∅ for i 6= j), which is called a k-partition of G. The edge-cut of a k-partition consists of the
total weight of the edges crossing blocks, i. e.,

∑
i<j ω(Eij), in which Eij :=

{
{u, v} ∈ E : u ∈ Vi, v ∈ Vj

}
.

The balancing constraint demands that the sum of node weights in each block does not exceed a threshold
associated with some allowed imbalance ε. More specifically, ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax :=

⌈
(1 + ε) c(V )

k

⌉
.

Throughout this paper, a hierarchical partition is defined by S = a1 : a2 : ... : a`, were the total number of
blocks is given as k = Π`

i=1ai and S encodes that the partition is obtained by first partitioning the input into
a` blocks, then each block is partitioned into a`−1 blocks and so forth.

For process mapping applications of hierarchical partitions, assume that we have n processes and a topology
containing k PEs. Let C ∈ Rn×n denote the communication matrix and let D ∈ Rk×k denote the (implicit)
topology matrix or distance matrix. In particular, Ci,j represents the required amount of communication
between processes i and j, while Dx,y represents the cost of each communication between PEs x and y. Hence,
if processes i and j are respectively assigned to PEs x and y, or vice-versa, the communication cost between i
and j will be Ci,jDx,y. Throughout this work, we assume that C and D are symmetric – otherwise one can
create equivalent problems with symmetric inputs [9].

In particular, for process mapping applications tackled in this paper, we assume that topologies are
organized as homogeneous hierarchies. In this case S = a1 : a2 : ... : a` is a sequence describing the hierarchy
of a supercomputer. The sequence should be interpreted as each processor having a1 cores, each node a2
processors, each rack a3 nodes, and so forth, such that the total number of PEs is k = Π`

i=1ai. Without loss
of generality, we assume that ai ≥ 2,∀i ∈ {1, . . . , `}. Let D = d1 : d2 : . . . : d` be a sequence describing the
distance between PEs within each hierarchy level, meaning that the distance between two cores in the same
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processor is d1, the distance between two cores in the same node but in different processors is d2, the distance
between two cores in the same rack but in different nodes is d3, and so forth.

Throughout the paper, we assume that the input communication matrix is already given as a graph GC ,
i. e., no conversion of the matrix into a graph is necessary. More precisely, the graph representation is defined
as GC := ({1, . . . , n}, E[C]) where E[C] := {(u, v) | Cu,v 6= 0}. In other words, E[C] is the edge set of the
processes that need to communicate with each other. Note that the set contains forward and backward edges,
and that the weight of each edge in the graph equals the corresponding entry in the communication matrix C.

The process mapping problem consists of assigning the nodes of a communication graph to PEs in a
communication topology while respecting a balancing constraint (the same used for graph partitioning above)
in order to minimize the total communication cost. Let Π : {1, . . . , n} 7→ {1, . . . , k} be the function that
maps a node onto its PE. The objective of process mapping is to minimize J(C,D, Π) :=

∑
i,j Ci,jDΠ(i),Π(j).

Within the scope of this work, the number of nodes (processes) n in the communication graph is much larger
than the number of PEs k, which matches most real-world situations.

Streaming Model. Streaming algorithms usually follow a load-compute-store logic. Our focus in this paper
and the most used streaming model is the one-pass model. In this model, nodes are loaded one at a time
alongside with their adjacency lists, then some logic is applied to permanently assign them to blocks. This
logic can be as simple as a Hashing function or as complex as scoring all blocks based on some objective and
then assigning the node to the block with highest score. There are other streaming models such as the sliding
window [29] and the buffered streaming [13, 21]. More details are given in Section 2.2.

2.2 Related Work

There is a huge body of research on graph partitioning. The most prominent tools to partition (hyper)graphs
in memory include Metis [22], Scotch [30], KaHIP [33], KaMinPar [17], KaHyPar [34], Mt-KaHyPar [18], and
mt-KaHIP [2]. The readers are referred to [7, 11, 23, 32, 35, 39, 40] for extensive material and references.
Here, we focus on the results specifically related to the scope of this paper.

Process Mapping. Müller-Merbach [27] proposed a greedy construction method to perform the one-to-one
mapping of blocks onto PEs. This method was later improved by Glantz et al. [15] with an algorithm called
GreedyAllC. Heider [19] proposed a local search method to refine an already given mapping. To reduce
the runtime, Brandfass et al. [9] introduced a couple of modifications to speed up this local search, such
as only considering pairs of PEs that can reduce the objective or partitioning the search space into some
consecutive blocks and only performing swaps inside those blocks. Glantz et al. [16] proposed a one-to-one
mapping algorithm in which the hardware topology is an isometric subgraph of a hypercube and labeled
the nodes and the PEs with bit-strings in order to optimize the algorithm locality. Schulz and Träff [36],
proposed a top-down multi-section approach to map blocks to PEs when the communication topology is a
regular hierarchy. Then, the authors solved the process mapping problem in two steps by first partitioning
the graph with KaHIP [32], then applying its top-down algorithm followed by a local search similar to that
from [9]. Subsequently, Kirchbach et al. [25] modified the partitioning step to apply the KaHIP algorithm
in a recursive multi-section itself, which improved the solution quality even further. We give more details
about this type of algorithms in Section 3. Faraj et al. [12] proposed an algorithm which integrates graph
partitioning and process mapping, which considerably improved the mapping quality while also reducing
the running time. There are also specialized algorithms for process mapping, such as [24], which assumes
a Cartesian communication topology. There are publicly available tools which solve the process mapping
problem, such as Scotch [30] and KaHIP [25, 36]. Moreover, Predari et.al [31] released a distributed algorithm
to solve the process mapping problem. To the best of our knowledge, no work has yet solved process mapping
using a streaming model.

Streaming Partitioning. Stanton and Kliot [37] introduced graph partitioning in the streaming model and
proposed some heuristics to solve it. Their most prominent heuristic include the one-pass methods Hashing
and linear deterministic greedy (LDG). In their experiments, LDG had the best overall edge-cut. In this
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algorithm, node assignments prioritize blocks containing more neighbors and use a penalty multiplier to
control imbalance. Particularly, a node v is assigned to the block Vi that maximizes |Vi ∩N(v)| ∗ λ(i) with
λ(i) being a multiplicative penalty defined as (1− |Vi|

Lmax
). The intuition is that the penalty avoids to overload

blocks that are already very heavy. In case of ties on the objective function, LDG moves the node to the
block with fewer nodes. Overall, LDG partitions a graph in O(m+ nk) time. On the other hand, Hashing has
running time O(n) but produces a poor edge-cut.

Tsourakakis et al. [38] proposed Fennel, a one-pass partitioning heuristic based on the widely-known
clustering objective modularity [8]. Fennel assigns a node v to a block Vi, respecting a balancing threshold, in
order to maximize an expression of type |Vi ∩N(v)| − f(|Vi|), i. e., with an additive penalty. This expression
is an interpolation of two properties: attraction to blocks with many neighbors and repulsion from blocks
with many non-neighbors. When f(|Vi|) is a constant, the expression coincides with the first property. If
f(|Vi|) = |Vi|, the expression coincides with the second property. In particular, the authors defined the Fennel
objective with f(|Vi|) = α ∗ γ ∗ |Vi|γ−1, in which γ is a free parameter and α = mkγ−1

nγ . After a parameter
tuning made by the authors, Fennel uses γ = 3

2 , which provides α =
√
k m
n3/2 . As LDG, Fennel partitions a

graph in O(m+ nk) time.
Restreaming graph partitioning has been introduced by Nishimura and Ugander [28]. In this model, multiple

passes through the entire input are allowed, which enables iterative improvements. The authors proposed easily
implementable restreaming versions of LDG and Fennel: ReLDG and ReFennel, respectively. Awadelkarim
and Ugander [4] studied the effect of node ordering for streaming graph partitioning. The authors introduced
the notion of prioritized streaming, in which (re)streamed nodes are statically or dynamically reordered
based on some priority. The authors proposed a prioritized version of ReLDG, which uses multiplicative
weights of restreaming algorithms and adapts the ordering of the streaming process inspired by balanced
label propagation. Their experimental results consider a range of stream orders, where a dynamic ordering
based on their own metric ambivalence is the best regarding edge-cut, with a static ordering based on degree
being nearly as good.

Besides the one-pass model, other streaming models have also been used to solve graph partitioning.
Patwary et al. [29] proposed WStream, a greedy stream algorithm that keeps a sliding stream window.
Jafari et al. [21] proposed a shared-memory multilevel algorithm based on a buffered streaming model. Their
algorithm uses the one-pass algorithm LDG as the coarsening, initial partitioning, and the local search steps
of their multilevel scheme. Faraj and Schulz [13] proposed HeiStream, a high-quality multilevel algorithm
also based on a buffered streaming model. Their algorithm loads a chunk of nodes, builds a model, and then
partitions this model with a traditional multilevel algorithm coupled with an extended version of the Fennel
objective. Regarding high-quality streaming partitioning, HeiStream is the only algorithm whose complexity
is better than O(m+ nk). In particular, it is O(m+ n), but it is slower than LDG in practice for reasonable
values of k due to larger constant factors [13]. However, note that none of the streaming tools above solves
the process mapping problem.

3 Online Recursive Multi-Section

In this section, we describe our main algorithmic contribution. We describe the overall scheme and show how
it can be used to compute recursive multi-sections on the fly along a specified hierarchy. Moreover, we will
also show how this applies to the process mapping application. Lastly, we show how to adapt the algorithm
to solve standard the graph partitioning problem.

3.1 Overall Scheme

A successful offline algorithm to partition and map the nodes of a graph onto PEs is the recursive multi-
section [12, 25, 36]. This approach specializes the partitioning process for the case in which the communication
cost between two processes (nodes) highly depends on the hierarchy level shared by the PEs (blocks) in which
they are allocated. Recall that a hierarchy is represented by a string S = a1 : a2 : ... : a` which in the process
mapping application means that each processor has a1 cores, each node has a2 processors, each rack has a3
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Algorithm 1 Online Recursive Multi-Section
1: for u ∈ V (G) do
2: Load N(u)
3: X ← {V `

1 , . . . , V
`
a`}, V

∗ ← ∅
4: for i ∈ {`, . . . , 1} do
5: if i 6= ` then X ← sub-blocks of V ∗

6: V ∗ ← arg max
W∈X

{
score(W )

}
7: Assign vertex to sub-block V ∗

nodes, and so forth. The offline recursive multi-section works as follows. First, the whole graph is partitioned
in a` blocks. Then, the subgraph induced by each block of an ai-partition is recursively partitioned in ai−1
sub-blocks until the whole graph is partitioned in k =

∏`
i=1 ai blocks. This recursive approach have been

developed for process mapping and exploits the fact that the communication between PEs is cheaper through
lower layers of the communication hierarchy. It creates a hierarchy of partitioning sub-problems that directly
reflects the hierarchical topology of the system. This yields an improved process mapping in practice [12, 25].

Intuitively, for any given hierarchy S (independent of the application) recursive multi-section can be
implemented in the streaming model with ` successive passes of any one-pass partitioning algorithm over the
input graph. In the first pass, the whole graph is partitioned in a` blocks using a scoring function like Fennel
or LDG. In the second pass, the nodes previously assigned to each block are partitioned in a`−1 sub-blocks.
The same logic is propagated until the `th pass, when each node is finally assigned to a unique PE. Since
there are no assignments of nodes until the last pass over the graph, this is not an online algorithm. We make
this algorithm online by compressing all steps performed during the ` passes in a single pass, as follows. After
a node is loaded, assign it to one of the a` blocks {V `1 , . . . , V `a`} in layer `. Then, for each layer i < `, assign
the node to one of the ai sub-blocks of the block chosen in the previous step. After going through all layers,
the node is directly assigned to a PE, which makes this approach feasible for online execution. Algorithm 1
summarizes the structure of our online recursive multi-section. Here, score depends on the algorithm logic
used, e.g. Fennel or LDG, as well as other parameters that are specific to our multi-section algorithm. We
give more details in Section 3.2. Figure 1 illustrates how a node is assigned to a permanent block on the fly
using our online recursive multi-section. Note that it produces exactly the same result as the version with `
passes since it does not violate any data dependency. This is the case since each decision made in a given
pass of the multiple-pass version only relies on nodes previously streamed during that same pass.

Fig. 1: Assigning a node over a grid of 256 blocks contained in a hierarchy S = 4 : 4 : 4 : 4 with online recursive
multi-section. In the first 4-partition (black), the node is assigned to the lower left block. In the following
4-partitions, it is assigned to the upper right sub-block (blue), its upper left sub-block (green), and finally its
upper left sub-block (purple), which is a block from the original partitioning problem.
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Note that the algorithm can be applied to compute any hierarchical partitioning and is not limited to the
process mapping application. However, as the offline multi-section, in case of the process mapping application
our online multi-section exploits the inherent structure of the hierarchical process mapping problem in two
ways: (i) its layout reproduces the hierarchical communication topology; (ii) the top-down order in which the
nodes are assigned to sub-blocks of previously assigned blocks reflects the order in which the communication
costs decrease in a communication topology. In other words, this top-down order reflects the need for primarily
avoiding cut edges among modules of higher layers in the communication hierarchy. We now analyze the
time and space complexity of our algorithm. When implementing the online multi-section algorithm, we
need to keep the weight of the complete hierarchy of blocks and sub-blocks in memory. That is necessary
since one-pass partitioning algorithms such as Fennel and LDG keep track of block weights in order to
compute their scores. Following from this fact, we show the space complexity of our algorithm in Lemma 1
and Theorem 1. Then, we derive the running time complexity of our algorithm in Theorem 2 and show an
important special case in Corollary 1.

Lemma 1. Online recursive multi-section needs O(k) space to store block weights throughout the algorithm.

Proof. By definition, the multi-section consists of ` layers such that a layer i ∈ {1, . . . , `} contains exactly∏`
r=i ar blocks whose weight we need to keep track of. As we define ar ≥ 2 ∀r, we can write

∏`
r=i ar ≤

(1/2i−1)
∏`
r=1 ar = (1/2i−1)k. Hence, the total amount of block weights that we need to keep track of is∑`

i=1

∏`
r=i ar ≤

∑`
i=1 (1/2

i−1)k ≤ 2k.

Theorem 1. Online recursive multi-section coupled with Fennel or LDG needs O(n+ k) memory.

Proof. Due to the hierarchical structure of multi-section, Fennel and LDG may keep track of a single block
assignment per node, which is enough to infer all its superblocks. Hence, the space complexity O(n + k)
directly follows from Lemma 1.

Theorem 2. Online recursive multi-section coupled with Fennel or LDG has time complexity O(m` +

n
∑`
i=1 ai).

Proof. The online recursive multi-section assigns each node u over ` layers. Using Fennel or LDG, the running
time to assign u in a given layer i is O(|N(u)|+ ai). Accounting for all layers and nodes, this sums up to
O(m`+ n

∑`
i=1 ai).

Corollary 1. Given a constant b ≥ 2, if ai = b, ∀i ∈ {1, . . . , `}, then online recursive multi-section coupled
with Fennel or LDG has time complexity O

(
(m+ n) log k

)
.

Proof. Based on the assumption, we derive the claimed bound from Theorem 2 by proving ` = O(log k) and∑`
i=1 ai = O(log k). The first part trivially holds since k =

∏`
i=1 ai = b` ⇒ ` = logb k. To prove the second

part, notice that
∑`
i=1 ai = b`. Since ` = logb k, it follows that k =

∏`
i=1 ai = b logb k = O(log k).

3.2 Partitioning Subproblems

Our multi-section algorithm implies a hierarchy of one-pass partitioning subproblems. These subproblems are
self contained one-pass partitioning problems, so they can be solved by any one-pass partitioning algorithm
in literature. In this section, we examine these subproblems based on the parameters of the some process
mapping problem. Consider all the partitioning subproblems contained in some layer i of our multi-section.
First, note that they are homogeneous, which means that they all receive as input an induced subgraph with
roughly the same number of nodes and edges and partition it among ai blocks. More specifically, a subproblem
in layer i partitions among ki = ai blocks and receives as input a graph containing roughly ni = n/

∏`
r=i+1ar

nodes and mi = m/
∏`
r=i+1ar edges. As a consequence, the size constraint Li of a block from subproblems in

layer i is Li = d(1 + ε)ni/kie ' Lmax

∏i−1
r=1 ar, which is simply the sum of capacities of all blocks from the

original problem contained in it. These variations in subproblem size have further implications depending on
the partitioning algorithm coupled with our scheme, as we show next.
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Fennel Mapping. Using Fennel in the online recursive multi-section requires attention to its constant α. Recall
that it is defined as α =

√
km/n3/2 for partitioning the whole graph into k blocks with vanilla Fennel. Using

this value of α for all partitioning subproblems contained in our multi-section is not a natural choice since we
intend to apply Fennel independently for each subproblem. Independently applying the definition of Fennel for
each partitioning subproblem contained in our multi-section implies ` different parameters αi, i ∈ {1, . . . , `},
for all multi-section layers. We derive the value of αi by applying the Fennel definition αi =

√
ki

mi
n
3/2
i

and

substituting the values of ki, mi, and ni which we have already discussed. It follows that αi = α√∏i−1
r=1 ar

.

LDG Mapping. Combining LDG with our multi-section is straightforward, since it directly uses the remaining
capacity of each block as a multiplicative penalty. Hence, we can configure LDG for a subproblem in layer i
by simply computing this penalty based on the block capacity Li, whose value we have already discussed.

Hybrid Mapping It is also possible to solve distinct subproblems with different partitioning algorithms.
This possibility opens a door to a trade-off when we mix a high-quality algorithm such as Fennel with a
fast algorithm such as Hashing. In particular, we can use Fennel to solve top-layer subproblems (whose
communication is more expensive) and Hashing to solve bottom-layer subproblems (whose communication is
cheaper). When we solve h (1 ≤ h ≤ `) upper layers of subproblems Fennel and the remaining ones with
Hashing, we produce an algorithm with the running time given in Theorem 3. Note that this hybridization is
faster than coupling the multi-section with Fennel only and slower than coupling it with Hashing only.

Theorem 3. Solving the h upper layers of the online recursive multi-section with Fennel and the remaining
ones with Hashing has overall time complexity O

(
mh+ n

∑`
i=`−h+1 ai

)
.

Proof. From Theorem 2, running the top h layers of the online multi-section with Fennel costs O
(
mh +

n
∑`
i=`−h+1 ai

)
. Asymptotically, this complexity is not changed when we include the complexity of solving

the remaining (`−h) layers with Hashing. This is the case since it suffices to apply a single Hashing operation
per node, which costs O(1).

Remapping. It is possible to iteratively improve a process mapping solution through multiple passes of our
online multi-section algorithm over the input graph. This can be achieved by coupling our algorithm with
restreaming algorithms such as ReFennel or ReLDG with the proper adaptations. However, remapping is
beyond the scope of this paper.

3.3 General Partitioning

The previous sections assume that some hierarchy is given. This hierarchy is then used as input for the online
recursive multi-section. In this section, we show how to partition a streamed graph into an arbitrary amount
of blocks using the online recursive multi-section when no explicit hierarchy is given. We do this by creating an
artificial hierarchy. We derive the complexity of the proposed approach and discuss its partitioning subproblems.

The recursive bisection is a successful offline approach to partition graphs into an arbitrary number k
of blocks. If k is a power of 2, the algorithm works as a recursive multi-section with log2 k layers of 2-way
partitioning subproblems. Otherwise, it is irregular and cannot be represented by a string S. Analogously,
we define an online recursive bisection to partition a graph on the fly when no hierarchy is given. Recall
that the whole hierarchy of blocks and sub-blocks has to be kept in memory throughout the execution of
the online recursive multi-section, hence the same requirement applies here. We build this hierarchy, which
we call multi-section tree, as a preliminary step for the streaming partitioning process. In Algorithm 2, we
define the procedure BuildHierarchy which recursively builds this multi-section tree for any value of k.
This procedure receives as input a parent block P for the multi-section tree as well as the endpoints kL and
kR of the range of blocks to be covered by the multi-section tree. In line 2, it terminates the recursion when
P is a leaf of the multi-section tree, which is true when kL = kR. Otherwise, it creates two sub-blocks for
P and inserts them as sons of P in the multi-section tree (line 3). Then, it splits the range {kL, . . . , kR} in
roughly equal parts and performs 2 recursive calls to itself.
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Algorithm 2 Create Blocks for Multi-Section Tree
Input
P : Parent block in the hierarchy
kL: Left endpoint of blocks covered by hierarchy
kR: Right endpoint of blocks covered by hierarchy

1: procedure BuildHierarchy(P, kL, kR)
2: if kL = kR then return
3: PL, PR ← Create sub-blocks for P
4: BuildHierarchy

(
PL, kL,

⌊
kL+kR

2

⌋)
5: BuildHierarchy

(
PR,

⌊
kL+kR

2

⌋
+ 1, kR

)

We further generalize the recursive bisection to recursive b-section for a base b. Given a base b ≥ 2, a
recursive b-section is a recursive multi-section associated with a multi-section tree in which blocks have up to
b sub-blocks. Algorithm 2 can be adapted to deal with b-section by creating min{b, kR − kL + 1} sub-blocks
in line 3 and, afterwards, making the same amount of recursive calls with proper parameters.

We create the multi-section tree by calling the command BuildHierarchy(∅, 1, k) at the cost of O(k).
Given a multi-section tree, we solve it by using Algorithm 1. Analogously to Lemma 1 and Theorem 1, it
is possible to prove that the online recursive b-section respectively stores O(k) blocks and needs O(n+ k)
memory when coupled with Fennel or LDG. Theorem 4 provides a running time bound.

Theorem 4. Online recursive b-section coupled with Fennel or LDG has time complexity O
(
(m+nb) logb k

)
.

Proof. The number of layers in the multi-section tree is up to dlogb ke. In other words, each node should be
assigned through up to 1 + logb k layers. Since all subproblems partition among up to b blocks, then the
running time to assign a node u over a layer is |N(u)|+ b. Accounting for all layers and nodes, this sums up
to (2m+ nb)(logb k + 1) = O

(
(m+ nb) logb k

)
.

Heterogeneous Partitioning. When k is not a power of b, the recursive b-section hierarchy may contain some
partitioning subproblems with heterogeneous blocks. We deal with this by computing the size constraint
of each block in the multi-section tree individually. For simplicity, we explain how to do this when b = 2
(recursive bisection), but this can be easily extended to an arbitrary b. For example when k = 5, the two
blocks in the first 2-way partitioning subproblem respectively cover 2 and 3 of the blocks from the original
5-way partitioning. Hence, these two blocks shall respectively have capacities 2Lmax and 3Lmax, where Lmax

is the size constraint of a block in the original k-way partitioning. Putting it in general terms, each block
from the multi-section tree created in line 3 of Algorithm 2 covers t = kR − kL + 1 blocks of the original
k-way partitioning. For simplicity, we use t to refer to this amount covered by a given block, and we use t1
and t2 to refer to the amounts covered by the two blocks of a partitioning subproblem. The size constraint of
a block is t× Lmax.

When a subproblem has blocks with heterogeneous size constraints, the used partitioning algorithm has to
cope with it. We adapt Fennel to address this issue by increasing (decreasing) the constant α used to compute
the score of a specific block when its size constraint is lower (higher) than the other block from the same
subproblem. Recall that α depends on the numbers of nodes, edges and blocks for a specific subproblem. A
subproblem receives as input an induced subgraph with roughly t1+t2

k of the nodes and edges from the original
k-way partitioning. We redefine the number of blocks as t1+t2

t1
for the first block and t1+t2

t2
for the second block

of a subproblem. This value equals 2 for both blocks when t1 = t2. Nevertheless, if t1 6= t2, this value is larger
(smaller) than 2 for the block with smaller (larger) size constraint. Summing up, the value of α for a given
block will be

√
t times smaller than the value α from the original k-way partitioning problem. Consequently,

the Fennel penalty function for imbalance will be more weighted for blocks with lower capacity, which tackles
the heterogeneous balancing issue. For LDG, a natural adaptation for heterogeneous blocks arises from its
very definition, since it directly uses the remaining capacity of each block as a multiplicative penalty.
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3.4 Shared-Memory Parallelization

Since the online recursive multi-section is a vertex-centric algorithm, we can parallelize it by independently
splitting the nodes of the graph among threads. More specifically, it can be achieved with OpenMP by
parallelizing the for loop in line 1 of Algorithm 1. This parallelization requires the nodes from the input
graph to be concurrently loaded by distinct threads alongside with their neighborhoods, which is a reasonable
assumption in many practical environments. Regarding data consistency, the only source of concern are the
block weights, whose values can be concurrently read and incremented by multiple threads. This is important
because an inconsistency could compromise the load balance between blocks. We ensure writing consistency by
making the incrementation an atomic operation. Potentially, a block can still be overloaded if multiple threads
decide to assign a node to it at the same time. Since this is very unlikely, we do not use any synchronization
to keep it from happening. Finally, there is no relevant concern about the consistency of assigning nodes to
blocks, since it is written by a single thread and can be read by multiple threads.

4 Experimental Evaluation

Methodology. We performed our implementations inside the KaHIP framework (using C++) and compiled
them using gcc 9.3 with full optimization turned on (-O3 flag). Since no official versions of Fennel, LDG, and
Hashing are available in public repositories, we implemented them in our framework. Our implementations
of these algorithms reproduce the results presented in the respective papers and are optimized for running
time as much as possible. We have used a machine with one sixteen-core Intel Xeon Silver 4216 processor
running at 2.1 GHz, 100 GB of main memory, 16 MB of L2-Cache, and 22 MB of L3-Cache running Ubuntu
20.04.1. The machine can handle 32 threads with hyperthreading. Unless otherwise mentioned we stream
the input directly from the internal memory to obtain clear running time comparisons. However, note that
the algorithm could also be run streaming the graph from hard disk. We perform two types of experiments:
experiments for the process mapping objective (with given hierarchies as specified below) and standard graph
partitioning. Unless otherwise mentioned, we use the following configurations for process mapping experiments:
D = 1 : 10 : 100, S = 4 : 16 : r, with r ∈ {1, 2, 3, . . . , 128}. Hence, k = 64r. This is the same configuration
used in previous studies [12, 25, 36]. Analogously, we use k = 64s, s ∈ {1, 2, 3, . . . , 128} for partitioning
experiments unless mentioned otherwise. We allow a fixed imbalance of 3% for all experiments (and all
algorithms) since this is a frequently used value in the partitioning literature. All partitions computed by all
algorithms were balanced. Depending on the focus of the experiment, we measure running time, edge-cut,
and/or the mapping communication cost J . We perform ten repetitions per algorithm and instance using
random seeds for initialization, and we compute the arithmetic average of the computed objective functions
and running time per instance. When further averaging over multiple instances, we use the geometric mean in
order to give every instance the same influence on the final score. Unless mentioned otherwise, we average all
results of each algorithm grouped by k. Given a result of an algorithm A, we express its value σA (which can
be objective or running time) as improvement over an algorithm B, computed as

(
σB
σA
− 1
)
∗ 100%; We also

present performance profiles which relate the running time (quality) of a group of algorithms to the fastest
(best) one on a per-instance basis (rather than grouped by k). The x-axis shows a factor τ while the y-axis
shows the percentage of instances for which A has up to τ times the running time (quality) of the fastest
(best) algorithm.

Instances. We selected graphs from various sources to test our algorithm. Most of the considered graphs were
used for benchmark in previous works on graph partitioning. The graphs wiki-Talk and web-Google, as well as
most networks of co-purchasing, roads, social, web, autonomous systems, citations, circuits, similarity, meshes,
and miscellaneous are publicly available either in [26]. Prior to our experiments, we converted these graphs
to a vertex-stream format while removing parallel edges, self loops, and directions, and assigning unitary
weight to all nodes and edges. We also use graphs such as eu-2005 and in-2004, which are available at the
10th DIMACS Implementation Challenge website [5]. Finally, we include some artificial random graphs. We
use the name rggX for random geometric graph with 2X nodes where nodes represent random points in the
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Graph n m Type
Test Set

Dubcova1 16 129 118 440 Meshes
hcircuit 105 676 203 734 Circuit
coAuthorsDBLP 299 067 977 676 Citations
Web-NotreDame 325 729 1 090 108 Web
Dblp-2010 326 186 807 700 Citations
ML_Laplace 377 002 13 656 485 Meshes
coPapersCiteseer 434 102 16 036 720 Citations
coPapersDBLP 540 486 15 245 729 Citations
Amazon-2008 735 323 3 523 472 Similarity
eu-2005 862 664 16 138 468 Web
web-Google 916 428 4 322 051 Web
ca-hollywood-2009 1 087 562 1 541 514 Roads
Flan_1565 1 564 794 57 920 625 Meshes
Ljournal-2008 1 957 027 2 760 388 Social
HV15R 2 017 169 162 357 569 Meshes
Bump_2911 2 911 419 62 409 240 Meshes
del21 2 097 152 6 291 408 Artificial
rgg21 2 097 152 14 487 995 Artificial
FullChip 2 987 012 11 817 567 Circuit
soc-orkut-dir 3 072 441 117 185 083 Social
patents 3 750 822 14 970 766 Citations
cit-Patents 3 774 768 16 518 947 Citations
soc-LiveJournal1 4 847 571 42 851 237 Social
circuit5M 5 558 326 26 983 926 Circuit
italy-osm 6 686 493 7 013 978 Roads
great-britain-osm 7 733 822 8 156 517 Roads

Table 1: Graphs for experiments.

unit square and edges connect nodes whose Euclidean distance is below 0.55
√
lnn/n. We use the name delX

for a graph based on a Delaunay triangulation of 2X random points in the unit square [20]. Basic properties
of the graphs under consideration can be found in Table 1. For our experiments, we split the graphs in two
disjoint sets. In all experiments, we stream the graphs with the natural given order of the nodes.

Parameter Tuning. We performed extensive tuning experiments using the graphs disjoint from the graphs in
Table 1. Instead, we briefly summarize the main results. The online multi-section produces on average 3.89%
better mapping and 0.19% better edge-cut when coupled with Fennel than when coupled with LDG. Hence,
we use Fennel as our scoring function. Computing adapted values of α for each partitioning subproblem is
superior than using the default value of α of the original k-way partitioning. Particularly, it is on average
3.1% faster while producing 9.7% better mapping and cutting roughly the same amount of edges. Hence,
our algorithm uses adapted α values. When no communication hierarchy is given, using the base b = 4 to
build the multi-section tree is the fastest configuration overall. Using b = 4, our algorithm is 16.7% faster
and cuts 3.2% fewer edges than using b = 2. Hence, our algorithm uses base b = 4. Using hashing on lower
levels of the multi-section tree increases has a higher impact on the edge cut than on the process mapping
objective. As expected, running time is also additionally decreased in both cases. For example, solving 67% of
the bottom layers of the multi-section with Hashing produces the following results on average in comparison
to the non-hybrid configuration: 2.3 times more cut edges, 27.5% higher mapping objective, and 31.1% less
running time compared to vanilla streaming multisection. Hence, we conclude that the approach yields a
nice trade-off between solution quality and running time, but do not perform further experiments. From now
on, we refer to our online multi-section algorithm as OMS when a communication hierarchy is given and
nh-OMS otherwise.
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4.1 State-of-the-Art

In this section, we show experiments in which we compare the online recursive multi-section against the current
state-of-the-art. Except when mentioned otherwise, these experiments involve all the graphs from Table 1.
We identify Fennel and LDG as the state-of-the-art of non-buffered one-pass stream partitioning algorithms
which aim at minimizing edge-cut. Since Fennel generates better solutions on average than LDG [38], we focus
our experiments on Fennel without loss of generality. We also include Hashing as a competitor, since it is the
fastest algorithm for streaming partitioning. To the best of our knowledge, there are no streaming partitioning
algorithms specifically designed for process mapping. For comparison purposes, we ran experiments with
internal-memory tools, i.e. we compare to the fastest version of the integrated multi-level algorithm proposed
in [12], which we refer to as IntMap. In addition, we compare our results against KaMinPar [17], a very fast
internal-memory algorithm that is orders of magnitudes faster than mt-Metis in terms of running time and
produces comparable cuts while also enforcing balance (in contrast to mt-Metis). In particular, the purpose
of runing IntMap and KaMinPar is to provide a reference of streaming algorithms in comparision to internal
memory algorithms. We set a timeout of 30 minutes for an algorithm to partition a graph, after which the
execution is interrupted. The only algorithm which exceeded this time limit for some instances was IntMap.
Hence, we exclude this algorithm from the plots.

Solution Quality (Process Mapping). We start by looking at the mapping quality produced by OMS. In
Figure2a, we plot the average mapping improvement over Hashing. KaMinPar produces the best mapping
overall, with an average improvement of 1117% over Hashing. Among the instances IntMap could solve, it
improves on average 7.6% over KaMinPar. IntMap produces the best overall mapping in 67% of the cases it
could solve. Note that this is in line with previous works in the area of graph partitioning, i.e. streaming
algorithms typically compute worse solutions than internal memory algorithms that always have access to
the whole graph. OMS has an average improvement of 257.8% over Hashing, while Fennel improves 153%
on average over Hashing. In a direct comparison, OMS produces on average 41% better mappings than
Fennel. In Figure 2d, we plot the mapping performance profile. In the plot, KaMinPar produces the best
overall mapping for all instances instances. We conclude that OMS produces the best mapping among the
streaming competitors.

Solution Quality (Edge-Cut). Next we look at the edge-cut of nh-OMS. In Figure 2b, we plot the edge-cut
improvement over Hashing. KaMinPar produces the best overall edge-cut, with an average improvement of
3024% over Hashing. IntMap cuts 20% more edges on average than KaMinPar for the instances it solved.
Among the streaming algorithms, Fennel and nh-OMS produce improvements of respectively 130.5% and
118.2% on average over Hashing. In a direct comparison, nh-OMS cuts on average 5% more edges than Fennel.
In Figure 2e, we plot the edge-cut performance profile. KaMinPar produces the smallest edge-cut for all
instances. Among the streaming algorithms, Fennel is slightly better than nh-OMS and both are distinctly
better than Hashing.

Running Time. We now investigate the running time of OMS and nh-OMS. In Figure 2c, we plot the
speedup over Fennel. On average, Hashing is 1301 times faster than Fennel, while nh-OMS and OMS are
respectively 133 and 55.4 times faster than Fennel. In a direct comparison, Hashing is on average 9.7 times
faster than nh-OMS and 23.4 times faster than OMS. KaMinPar comes next with an average speedup of
5.3 over Fennel. In a direct comparison, nh-OMS and OMS are respectively 25.1 and 10.5 times faster than
KaMinPar. KaMinPar is on average 2.5 times faster than IntMap for the instances IntMap could solve. In
Figure 2f, we plot the running time performance profile. Note that the running time of nh-OMS is at most 16
times slower than Hashing for 100% of the experiments, which is in accordance with Theorem 4. As the third
fastest algorithm, OMS is considerably faster than all the other competitors, including Fennel.

Memory Requirements. We now look at the memory requirements of the different algorithms. We measured
this on three graphs of our collection. In this case, we run stream graphs directly from disk for the streaming
algorithms. Besides being the fastest algorithm, Hashing needs the least memory overall. For soc-orkut-dir,
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Fig. 2: Comparison against the state-of-the-art. Higher is better.

HV15R, and soc-LiveJournal1, it respectively needs 17MB, 13MB, and 24MB. OMS, nh-OMS, and Fennel have
comparable consumption, all of which using 19MB, 14MB, and 25MB for the mentioned graphs, respectively.
Finally, KaMinPar respectively uses 4.1GB, 4.1GB, and 1.8GB, while IntMap respectively uses 34GB, 12GB,
and 10GB.

4.2 Scalability

Now we evaluate the scalability of our online recursive multi-section algorithm. As in Section 4.1, we refer to
our algorithm as OMS when a process mapping communication hierarchy is given and nh-OMS otherwise.
As competitors, we include KaMinPar, Fennel, and Hashing. For a fair comparison against Fennel and
Hashing, we implemented them with the same parallelization scheme of our algorithm, i. e., a vertex-centric
parallelization. We do not include IntMap [12] in these experiments since it cannot run in parallel. For these
experiments, we selected the 12 graphs from the Test Set Table 2 which have at least 2 000 000 nodes and
partitioned them into k = 8192 blocks using all algorithms.

In Figure 3, we plot speedup and running time versus number of threads for the graphs soc-orkut-dir,
HV15R, and soc-LiveJournal1. In Table 2, we plot the average running time in seconds and speedup over all
graphs as a function of the number of threads. For all graphs, Hashing presents the worst scalability, with
speedups smaller than 1. Although Hashing is theoretically an embarrassingly parallel algorithm, it has two

Threads Hashing nh-OMS OMS Fennel KaMinPar
RT SU RT SU RT SU RT SU RT SU

1 0.49 1.0 4.8 1.0 10.7 1.0 673.6 1.0 36.9 1.0
2 0.72 0.7 4.6 1.1 6.4 1.7 346.3 1.9 19.3 1.9
4 0.70 0.7 3.6 1.3 3.9 2.7 184.6 3.6 10.5 3.5
8 0.72 0.7 3.0 1.6 2.6 4.1 96.3 7.0 5.8 6.4
16 0.75 0.7 2.5 1.9 2.3 4.7 54.0 12.5 3.5 10.5
32 0.46 1.1 1.7 2.8 1.3 8.2 44.2 15.2 3.1 11.9

Table 2: Average running time in seconds (RT) and average speedup (SU) for k = 8192.
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Fig. 3: Speedup and time comparison for k = 8192. Higher is better for speedup. Lower is better for time.

limitations: (i) it is extremely fast, hence the overhead of the parallelization is too large in comparison to the
overall running time and (ii) it neither reuses data nor accesses sequential positions in memory, so there are
almost no cache hits. On the other hand, Fennel presents the best scalability. Differently than Hashing, it is
rather slow but reuses data, e. g., the assignments of previous nodes to blocks, and goes through the array of
blocks in order to compute their score. Following Fennel, KaMinPar has the second best scalability which
roughly reproduces the behavior reported in [17]. The algorithms OMS and hr-OMS have an intermediary
scalability between KaMinPar and Hashing. This is explained by their characteristics, which are intermediary
between Fennel and Hashing. Note that OMS is more scalable than nh-OMS. This happens because OMS
goes through and scores several blocks in one of the partitioning subproblems contained in the multi-section
hierarchy, which favors cache hits, whereas nh-OMS partitioning subproblems have at most 4 blocks. For 32
threads, the average running time of OMS is within a factor 3 of the running time of Hashing.

5 Conclusion
We proposed, analyzed, and engineered all the details of an online recursive multi-section algorithm to
compute hierarchical partitionings of graphs. The complexity analysis shows that our algorithm is superior to
current state-of-the-art one-pass streaming algorithms to partition graphs on the fly into a large number of
blocks while also implicitly optimizing process mapping objectives. To the best of our knowledge, this is the
first streaming process mapping algorithm in literature. We present extensive experimental results in which
we tune our algorithm, explore its parameters, compare it against the previous state-of-the-art, and show
that we can speed it up even further with a multi-threaded parallelization. Experiments have shown that our
algorithm is up to two orders of magnitude faster than the previous state of-the-art of streaming partitioning
while producing solutions with better communication cost and slightly worse edge-cut. On the other hand,
our algorithm is only 3 times slower than Hashing when running on 32 threads while computing significantly
better results. While our algorithm is already useful for a wide-range of applications that need (hierarchical)
partitions very fast, in future work, we plan to parallelize the algorithm in the distributed memory model and
want to port it to GPUs. Moreover, given the good results, we plan to publicly our algorithm release soon.
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