
ar
X

iv
:2

20
7.

13
25

1v
1

 [
cs

.D
C

]
 2

7
Ju

l 2
02

2

Performance of an Astrophysical Radiation
Hydrodynamics Code under Scalable Vector

Extension Optimization

Dennis C. Smolarski
Department of Mathematics & Computer Science

Santa Clara University

Santa Clara, USA

dsmolarski@scu.edu

F. Douglas Swesty, Alan C. Calder
Department of Physics and Astronomy

Stony Brook University

Stony Brook, USA

{douglas.swesty, alan.calder}@stonybrook.edu

Abstract—We present results of a performance study of an
astrophysical radiation hydrodynamics code, V2D, on the Arm-
based A64FX processor developed by Fujitsu. The code solves
sparse linear systems, a task for which the A64FX architecture
should be well suited. We performed the performance analysis
study on Ookami, an Apollo 80 platform utilizing the A64FX
processor. We explored several compilers and performance anal-
ysis packages and found the code did not perform as expected
under scalable vector extension optimization, suggesting that a
“deeper dive” into analyzing the code is worthwhile. However, a
simple driver program that exercised basic sparse linear algebra
routines used by V2D did show significant speedup with the use of
the scalable vector extension optimization. We present the initial
results from the study which used V2D on a relatively simple test
problem that emphasized the repeated solution of sparse linear
systems.

Index Terms—high-performance computing, computer archi-
tecture, exascale, linear algebra, astrophysics

I. INTRODUCTION

A. Astrophysical Radiation Transport

Many astrophysical simulations require modeling the flow

of some form of radiation, either photons or neutrinos, through

gas. Modeling the flow of radiation requires the parallel,

implicit solution of a large, sparse, set of coupled linear

equations that describe the time evolution of the radiation

energy density across a spectrum of energies. In this paper

we investigate the computational performance of one such

simulation code, V2D [1], which models the flow of radiation

in the multigroup flux-limited diffusion approximation. V2D

uses a parallelized Krylov subspace algorithm to solve the

linear system of equations arising from the finite-difference

discretization of the underlying equations that describe the

diffusive evolution of the radiation energy density.

B. The Ookami Platform

Ookami [2] is a test bed supported by the United States

National Science Foundation (NSF). The platform is an HPE

Apollo 80 with 174 A64FX Fujitsu compute nodes, each

with 32GB high-bandwidth memory and a 512GB SSD. The

A64FX processors consist of four core memory groups each

with 12 cores, 64KB L1 cache, and 8MB L2 cache shared

between the cores and runs at 1.8 GHz. The processor uses

the Armv8.2–A Scalable Vector Extension (SVE) SIMD in-

struction set with 512 bit vector implementation. This allows

for vector lengths anywhere from 128–2048 bits and enables

vector length agnostic (VLA) programming. Ookami has an

Infiniband HDR100 fat tree interconnect with 200 gigabit

switches, and a high-performance Lustre file system provides

about 800 TB storage.

Ookami was the first open machine outside of Japan fea-

turing the A64FX processor, and the aim of the Ookami

project is to provide researchers with access to this state-of-

the-art scientific computing technology in order to explore it

and demonstrate its potential. The code, V2D, is one of the

application codes being ported and tuned for the machine.

More details on the system and the project can be found in

[3], [4]. Ookami is presently administered by Stony Brook

University and the University at Buffalo, but in October 2022

Ookami will be an XSEDE level 2 service provider [5].

C. The V2D Code

The V2D code uses finite-difference algorithms to solve the

equations of Eulerian hydrodynamics and multi-species flux-

limited diffusive radiation transport in two spatial dimensions.

It was designed primarily for the purpose of simulating core

collapse supernovae but has a wider applicability to many

radiation-hydrodynamic problems. Details related to the un-

derlying numerical methods can be found in [1]. Written

in Fortran-95, V2D employs MPI for domain-decomposed

parallelism and HDF5 for parallel input and output. The linear

system solver uses a restructured version of the BiCGSTAB [6]

algorithm, which gangs inner products to reduce the number

of parallel global reduction operations required per itera-

tion of the BiCGSTAB solver. Preconditioning of the linear

system is accomplished using a sparse approximate inverse

preconditioner [7]. Because of its prohibitive size, the sparse

linear system matrix is never stored and the Krylov subspace

methods are implemented in matrix-free form by application

of a finite-difference operator to column vectors that are stored

http://arxiv.org/abs/2207.13251v1

as Fortran arrays defined with the same spatial shape as the 2D

grid. This strategy also avoids the costly packing/unpacking of

data into some form of sparse matrix storage each time a linear

system must be solved. The V2D code has been generically

written to allow various coordinate systems and the x1 and

x2 spatial directions are always considered to be orthogonal.

The problem is domain decomposed using a Cartesian 2-D

spatial tile decomposition that is controlled by adjustable run-

time parameters NPRX1 and NPRX2 that control the tiles

in the x1 and x2 directions, respectively. Thus the process

topology may be varied to better apportion the load among

processors. Finally, we note that the calculations tested here

were performed in double precision arithmetic.

II. THE SVE OPTIMIZATION STUDY

A. The V2D Radiation Test Problem

The test diffusive radiation transport problem that we con-

sider in this paper involves the diffusion of a 2-D Gaussian

pulse of radiation [1] and does not involve hydrodynamic

evolution. This particular test problem was chosen for this

study because the principal computational effort is expended

in the solution of a large, sparse, memory-bandwidth-limited

linear system that describes the time evolution of the radiation

distribution. Solving this system should be a task for which

the Ookami architecture is ideally suited. The linear system,

as described below, consists of x1 × x2 × 2 coupled linear

equations, where the spatial dimensions are x1 = 200 and

x2 = 100 zones respectively, and the number of radiation

species is 2. We wish to emphasize that this is a small test

problem that we have chosen for a study of performance under

SVE optimization. In the work in this paper we make only

limited use of the parallel capability of V2D when we vary the

process topology to adjust the problem size on each processor.

While the aforementioned linear system is sparse, it has a

regular structure. If the matrix corresponding to this system

were actually stored, with a dictionary ordering it would form

a banded matrix with five bands. A portion of what the sparsity

pattern for this matrix would look like is depicted in Fig.

1. The figure only depicts the upper left 400 × 400 block

of the complete 40,000 × 40,000 matrix. On either side of

the diagonal are two adjacent diagonals with two outlying

diagonals spaced farther from the diagonal. The x1 parameter

indicates the distance of the two outlying diagonals from the

center diagonal.

The Krylov subspace algorithms employed by V2D re-

quire only matrix-vector multiplication operations (hereafter

Matvec), and not the matrix itself. Because the matrix would

arise from a second-order spatial finite-difference scheme for

the diffusion operator, we instead evaluate the Matvec oper-

ations by applying the diffusion operator in finite-difference

form to a vector to form a new resultant vector. For each

element of the vector there are relatively few floating-point

operations needed to evaluate the Matvec operation and thus

the Matvec operations are memory bandwidth limited.

The Krylov subspace algorithm we employ for the linear

system solution is the BiCGSTAB algorithm [6]. BiCGSTAB

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Fig. 1. The sparsity pattern of matrices used in the V2D code.

is an extension of the Conjugate Gradient (CG) method

(which is designed for a symmetric linear system of the form

Ax = b, where A would represent the system matrix) to those

cases where the system matrix A is non-symmetric. The time

evolution of the radiation energy density in this test problem

involves many repeated solutions of linear systems, one for

each timestep, thus causing the computational cost of the

simulation to be dominated by the sparse matrix operations

employed by the BiCGSTAB algorithm.

B. Compilers and SVE Optimization

Our first task was to identify the prerequisites of V2D,

e.g., MPI [8], [9] and HDF5 [10], and determine how those

are accessed and configured on Ookami. We then tested

combinations of compilers and MPI implementations. As a

sample of results, those presented below indicate test runs

using the GNU (ver. 11.1.0), Fujitsu (ver. 4.5), and Cray (ver

21.03) compilers. Some compilers allowed the use of either

MVAPICH [11] or OpenMPI [12] and others only provided

one option for MPI.

C. Performance Monitoring

We compared the CPU times of simulations compiled with

different compilers, both with and without SVE optimization.

Because the craypat performance tool will only work with the

Cray compiler, the Linux perf stat command of the Linux

kernel performance monitor, with the -e duration_time

and -e cpu-cycles flags, was used to measure the time

of the simulations for the different compilers. This command

measures the entire CPU time of the process. Each configura-

tion (of the total number of processors used and the process

topology in the x1- and x2- directions, determining how the

linear system was partitioned) was run several times to confirm

the timing results.

In addition, for the fastest versions of the executable,

produced by the Cray compiler, the TAU software (developed

TABLE I
TIMES BY COMPILER

Np Direction Times by Compiler (seconds)

NX1 NX2 GNU Fujitsu Cray Cray
(opt) (no-opt)

1 1 1 363.91 252.31 181.26 262.57
10 10 1 43.85 31.76 24.20 32.35
20 20 1 26.80 19.79 16.78 20.66
20 10 2 25.74 19.66 15.73 19.93
20 5 4 25.42 18.85 15.39 19.79
25 25 1 24.62 17.24 15.65
40 40 1 25.30 13.97 19.12
40 20 2 22.88 12.96 17.37
40 10 4 21.91 13.04 17.16
50 50 1 30.10 13.05 25.56
50 25 2 29.26 12.09 24.07
50 10 5 27.55 11.40 23.51

at the University of Oregon [13]) was also used to verify the

times recorded from the runs. TAU’s ParaProf visualization

tool also enabled us to see which routines contributed most to

the total time without the need to add additional routine calls

in the software.

D. Results for SVE Optimization of V2D

Table I summarizes the results of using three different

compilers on Ookami to produce a V2D executable that solves

a linear system consisting of x1 × x2 × 2 equations, where

x1 = 200 and x2 = 100. The test problem time–evolves

the radiation energy density for 100 time steps. Each time

step requires the solution of three unique x1 × x2 × 2 linear

systems via the BiCGSTAB algorithm. Thus this test problem

establishes performance results for the solution of 300 linear

systems. As noted above, the times were clocked using the

Linux perf stat performance analysis command, which

was used to measure the duration of the execution, giving

values in seconds.

All the compilers available on Ookami are able to make use

of the SVE capabilities of the architecture. In the trials listed

in Table I, the SVE and optimization features were used, but

we also turned off the SVE and other optimization features on

some of the Cray trials for comparison purposes.

In Table I the values in the Np column refer to the total

number of processors used for a run, with the values in the

“Direction” NX1 column indicating the number of domain

decomposition tiles in the x1 direction and similarly for the

values in the NX2 column. Thus the product of the two

values equals the total number of processors requested. The

column labeled Cray (opt) indicates results obtained with an

executable compiled both with both -O3 optimization and

SVE optimization enabled. The last column, labeled “Cray

(no-opt)”, used an executable compiled with the Cray compiler

without either the -O3 optimization or SVE optimization

enabled.

E. Timing analysis

The timing information in Table I reveals that the Cray

and Fujitsu compilers produced substantially faster code than

the GNU compiler. The Cray compiler also produced slightly

faster code than the Fujitsu compiler when using 25 or fewer

processors.

The various trials using the Cray compiler with and without

SVE optimization reveal a reduction in CPU time with the

use of SVE optimization. Using PAPI analysis calls, we noted

speedup using SVE optimization in the routines that applied

the preconditioner to the system matrix, as well as when

using the dot product, vector addition, and combined vector

scaling/addition routines.

When using a single processor, the majority of time was

spent in the matrix-vector multiplications, approximately 141

seconds out of 181, with preconditioning taking about 14

additional seconds. We also make use of Arm’s MAP per-

formance analysis tool, which indicated that the three calls to

the BiCGSTAB routine each took approximately 31-33% of

the total time using a single processor.

When using 20 processors, in a 5×4 configuration, approx-

imately 7.5 seconds out of 15 were spent in the matrix-vector

multiplications at maximum per processor, with precondition-

ing taking about 0.8 seconds at maximum. As to be expected

with multiple processors, a significant amount of time was

taken by MPI calls.

Increasing the number of processors will decrease the

amount of time needed for the matrix-vector products, but

there is a point, varying with each compiler, at which the

increased time needed for inter-processor communication via

MPI calls does not lead to further overall reduction in time.

The variations exhibited in Table I between different compilers

can be attributed to the machine architecture used for vector

multiplications as well as the different ways the compilers

optimize the code.

These results were qualitatively as expected—optimization

with SVE produced a speedup. But the magnitudes of the

speedups observed with the Cray compiler were smaller than

what we expected for memory-bound linear system opera-

tions. We attributed this to the overall complexity of the

multi-physics V2D code. V2D was designed with abstracted

operators for linear algebra, but calls to these operators are

interspersed with calls to other physics routines and a simu-

lation exercises more than just the operators. Further analysis

is certainly needed.

F. Timing V2D matrix operations using PAPI

Because the use of SVE optimization did not produce the

speedup in V2D that we had hoped for, we therefore wrote

a simple single-processor driver program that exercised the

actual V2D routines that are utilized in the BiCGSTAB solver

without the added complications of the other V2D code. With

this driver program we then examined the CPU time utilized

for repeated computation of the linear algebra routines, both

with and without the SVE optimization enabled. We used a

linear system with 1000 equations and repeated operations

100,000 times. The CPU times spent in the linear-algebra

routines were obtained both from checking the hardware clock

TABLE II
LINEAR ALGEBRA ROUTINES TIMES

PAPI times (seconds)

Routine No-SVE SVE SVE/No-SVE

MATVEC 599 96 0.16
DPROD 132 24.3 0.18
DAXPY 206 53.8 0.26
DSCAL 153 47.7 0.31

DDAXPY 296 65 0.22

and by using PAPI software timers, but the differences between

the two were insignificant.

As Table II indicates, when these V2D sparse linear-algebra

routines were exercised using the driver program, a significant

speedup was realized with SVE optimization. Overall, the use

of SVE (with the Cray compiler) reduced the time spent in

these routines to approximately between 16% and 31% of the

time needed without SVE. (The times are given in seconds

in the following table.) MATVEC = Matrix Vector Product;

DPROD = Dot Product; DAXPY = computation of a · x+ y;

DSCAL = computation of c− d · y; DDAXPY = computation

of a · x+ b · y + z.

III. CONCLUSIONS AND FUTURE WORK

The principal conclusion, which in hindsight we realize is

fairly obvious, is that a complex multi-physics code, even

though it is dominated by memory bandwidth-limited sparse

linear algebra computations, will not necessarily demonstrate

the speedup expected with the use of SVE optimization.

However, testing just the memory bandwidth-limited sparse

linear algebra routines did reveal that they were able to

undergo significant speedup with SVE optimization. Because

V2D relies on these same routines for its implementation of

the BiCGSTAB algorithm, we need to do further work to

understand what is limiting the overall V2D code performance.

Future work will entail more detailed instrumentation of the

code to delineate the origins of the performance bottleneck.

As also noted, the times recorded when using the Fujitsu

compiler with more than 25 nodes were less than times

recorded with the Cray compiler. Further investigation with

a larger problem and more nodes comparing the Fujitsu and

Cray compilers is warranted, along with the use of other

compilers, such as Clang [14].

ACKNOWLEDGMENT

The authors would like to thank Stony Brook Research

Computing and Cyberinfrastructure, and the Institute for Ad-

vanced Computational Science at Stony Brook University for

access to the innovative high-performance Ookami computing

system, which was made possible by a $5M National Science

Foundation grant (#1927880). This research was supported in

part by the US Department of Energy (DOE) under grant

DE-FG02-87ER40317. The authors gratefully acknowledge

the Ookami support team and the other users who cheerfully

answered questions and offered assistance during this study.

Without their invaluable help this work would have been

extremely difficult, if not impossible.

REFERENCES

[1] F. D. Swesty and E. S. Myra, “A Numerical Algorithm for Modeling
Multigroup Neutrino-Radiation Hydrodynamics in Two Spatial Dimen-
sions,” Astrophysical Journal Supplement Series, vol. 181, no. 1, pp.
1–52, Mar. 2009.

[2] Ookami. [Online]. Available:
https://www.stonybrook.edu/commcms/ookami/

[3] A. Burford, A. Calder, D. Carlson, B. Chapman, F. Coskun, T. Curtis,
C. Feldman, R. Harrison, Y. Kang, B. Michalowicz, E. Raut,
E. Siegmann, D. Wood, R. DeLeon, M. Jones, N. Simakov, J. White,
and D. Oryspayev, “Ookami: Deployment and initial experiences,” in
Practice and Experience in Advanced Research Computing, ser. PEARC
’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3437359.3465578

[4] E. Siegmann, A. Calder, C. Feldman, and R. J. Harrison, “Educating
hpc users in the use of advanced computing technology,” in 2021

IEEE/ACM Ninth Workshop on Education for High Performance Com-

puting (EduHPC), 2021, pp. 16–23.
[5] Ookami allocations available & upcoming we-

binar to learn more. [Online]. Available:
https://www.xsede.org/news/user-news/-/news/item/13698

[6] H. A. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems,” SIAM J. Sci.

Stat. Comput., vol. 13, pp. 631–644, 1992.
[7] F. D. Swesty, D. C. Smolarski, and P. E. Saylor, “A comparison of

algorithms for the efficient solution of the linear systems arising from
multi-group flux-limited diffusion problems,” The Astrophysical Journal

Supplement Series, vol. 153, pp. 369–387, 2004.
[8] M. S. Forum. (1994-2021) Mpi standardization fo-

rum website. https://www.mpi-forum.org/. [Online]. Available:
https://www.mpi-forum.org/

[9] J. Dongarra, S. Otto, M. Snir, and D. Walker, “An introduction to the
mpi standard,” 1995.

[10] (2006) The hdf5 library & file format. [Online]. Available:
https://www.hdfgroup.org/solutions/hdf5/

[11] [Online]. Available: https://mvapich.cse.ohio-state.edu/faq/#cite
[12] [Online]. Available: https://www.open-mpi.org/papers/
[13] [Online]. Available: https://www.cs.uoregon.edu/research/tau/home.php
[14] [Online]. Available: https://clang.llvm.org/

https://www.stonybrook.edu/commcms/ookami/
https://doi.org/10.1145/3437359.3465578
https://www.xsede.org/news/user-news/-/news/item/13698
https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://www.hdfgroup.org/solutions/hdf5/
https://mvapich.cse.ohio-state.edu/faq/#cite
https://www.open-mpi.org/papers/
https://www.cs.uoregon.edu/research/tau/home.php
https://clang.llvm.org/

	I Introduction
	I-A Astrophysical Radiation Transport
	I-B The Ookami Platform
	I-C The V2D Code

	II The SVE Optimization Study
	II-A The V2D Radiation Test Problem
	II-B Compilers and SVE Optimization
	II-C Performance Monitoring
	II-D Results for SVE Optimization of V2D
	II-E Timing analysis
	II-F Timing V2D matrix operations using PAPI

	III Conclusions and Future Work
	References

