
To appear in the IEEE International Conference on Cluster Computing, 2023. This is an extended report.

Performance Characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

Krijn Doekemeijer∗1, Nick Tehrany∗1,2, Balakrishnan Chandrasekaran1, Matias Bjørling3, and Animesh Trivedi1
1Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

2Delft University of Technology, Delft, the Netherlands
3Western Digital, Copenhagen, Denmark

{k.doekemeijer, n.a.tehrany, b.chandrasekaran, a.trivedi}@vu.nl, matias.bjorling@wdc.com

Abstract—The recent emergence of NVMe flash devices with
Zoned Namespace support, ZNS SSDs, represents a significant
new advancement in flash storage. ZNS SSDs introduce a new
storage abstraction of append-only zones with a set of new I/O
(i.e., append) and management (zone state machine transition)
commands. With the new abstraction and commands, ZNS SSDs
offer more control to the host software stack than a non-zoned
SSD for flash management, which is known to be complex
(because of garbage collection, scheduling, block allocation,
parallelism management, overprovisioning). ZNS SSDs are, con-
sequently, gaining adoption in a variety of applications (e.g., file
systems, key-value stores, and databases), particularly latency-
sensitive big-data applications. Despite this enthusiasm, there has
yet to be a systematic characterization of ZNS SSD performance
with its zoned storage model abstractions and I/O operations.
This work addresses this crucial shortcoming. We report on the
performance features of a commercially available ZNS SSD (13
key observations), explain how these features can be incorpo-
rated into publicly available state-of-the-art ZNS emulators, and
recommend guidelines for ZNS SSD application developers. All
artifacts (code and data sets) of this study are publicly available
at https://github.com/stonet-research/NVMeBenchmarks.

Index Terms—Measurements, NVMe storage, Zoned Names-
pace Devices

I. INTRODUCTION

The emergence of fast flash storage in data centers, HPC,
and commodity computing has fundamentally effected changes
in every layer of the storage stack, and led to a series of new
developments such as a new host interface (NVM Express,
NVMe) [1], [2], [3], a high-performance block layer [4], [5],
[6], [7], new storage I/O abstractions [8], [9], [10], [11], [12],
[13], [14], and re/co-design of storage application stacks [15],
[16], [17], [18], [19], [20], [21]. Today, flash-based solid-
state drives (SSDs) can support very low latencies (i.e., a few
microseconds), and multi GiB/s bandwidth with millions of
I/O operations per second [22], [23], [24].

Despite these advancements, the conceptual model of a
storage device remains unchanged since the introduction of

*Equal contributions, joint first authors. Nick was with TU Delft during
this work.

hard disk drives (HDDs) more than half a century ago. A
storage device supports only two necessary operations: write
and read data in units of sectors (or blocks) [25]. Data can
be read from and written to anywhere on the device, hence
supporting random and sequential I/O operations. Though
this model works with conventional HDDs, it is not apt
for flash-based storage devices as flash internally does not
support overwriting data [26], [27], [28]. Flash devices offer
the illusion of “overwritable” storage via the flash translation
layer (FTL), a software component that runs within the device.
The FTL enables easy integration of flash devices (by allow-
ing them to masquerade as fast HDDs), albeit it introduces
unpredictability in performance [29], [30], [31], [32], [33],
[34] and complicates device lifetime management [35]. These
challenges are defined as the unwritten contracts of SSDs [26].
As data centers have largely transitioned to SSDs for fast,
reliable storage [36], [37], and modern big data applications
have high QoS demands [38], [39], there is a dire need to
address these unwritten contracts.

Researchers and practitioners advocate for open flash SSD
interfaces beyond block I/O [40] to address these challenges.
Examples include Open-Channel SSDs (OCSSD) [41], multi-
stream SSDs [9], and, more recently, Zoned Namespaces
(ZNS) [11]. The focus of this work is on NVMe devices that
support ZNS, which are commercially available today [42],
[43]. ZNS promises a low and stable tail latency [11] and
a high device longevity, and, hence, addresses the needs of
modern big-data workloads. There is, unsurprisingly, a rich
body of active and recent work on ZNS [44], [11], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56]. Despite
this enthusiasm, there has not been a systematic performance
and operational characterization of ZNS SSDs. The lack of
an extensive characterization of ZNS SSDs severely limits
the utilization and application of ZNS devices in big-data
workloads. In this work, we bridge this gap by presenting
the performance characterization of a commercially-available
NVMe ZNS device.

We complement this characterization of a physical device

1

ar
X

iv
:2

31
0.

19
09

4v
1 

 [
cs

.D
C

] 
 2

9 
O

ct
 2

02
3

https://clustercomp.org/2023/
https://github.com/stonet-research/NVMeBenchmarks


with an investigation of emulated ZNS devices, since they
are widely used in research [51], [57], [58], [55]. Emulated
devices enable researchers to explore the ZNS design space
without being constrained by device-specific characteristics.
Such unconstrained explorations are crucial since ZNS is a
new interface and the selection of available configurations in a
real SSD is, unsurprisingly, quite limited. The research validity
of all of these works hinge on an emulator’s ability to mimic
the performance characteristics of real hardware. In our in-
vestigation of the state-of-the-art emulators—FEMU [59] and
NVMeVirt [60]—we reveal limitations in ZNS performance
characterizations and discuss approaches to address them.

We summarize our key contributions as follows.
• We systematically characterize the performance (i.e.,

latency, bandwidth, and parallelism management) of a com-
mercially available NVMe ZNS device, including its append,
read, write, and zone management operations (i.e.,
finish and reset).
• We analyze the implications of interference from ZNS’s

unique reset and append operations on the read, write
and append I/O performance.

• We reveal limitations in the performance models of the
state-of-the-art ZNS emulators and discuss recommendations
to address them.

• We share key recommendations for ZNS application
developers using the insights from our characterizations.

• We publish our benchmarking software and data set at
https://github.com/stonet-research/NVMeBenchmarks for en-
couraging reproducible research.

II. BACKGROUND

In this section, we review the background on flash-based
storage and ZNS SSDs.

A. Flash storage

The storage area of flash-based devices is organized into
flash pages, which is the unit of addressing and I/O opera-
tions [61]. A typical flash page is 4–16 KiB, which is always
atomically written or programmed [27].

A flash page can not be overwritten; rather the page must be
erased before it can be written again. Flash SSDs, nevertheless,
provide an illusion of over-writable storage by storing data
(i.e., the overwrite) in a new (flash) page, while marking the
old (i.e., replaced) page as invalid or “garbage.” After these
garbage pages are eventually erased, the pages can be (re)used
for writing data.

Erasing a page is a complex and time-consuming operation
on flash storage. First, pages are physically grouped into
blocks, and erasures only work at the block level. Second,
since a block may contain both valid and garbage pages, valid
pages have to be copied to a new block prior to erasing the
old block. Third, pages always need to be sequentially written
to blocks, complicating data management as random writes
are not allowed. The erasing of a block and the associated
book-keeping tasks (e.g., tracking valid and garbage pages)
collectively constitute the garbage collection (GC) process

ClosedImplicit
Open

Empty

FullFinish
Zone

Close
Zone

Write
Open
Zone

Open
Zone

Open
Zone

Reset
Zone

Reset
Zone

Write

Write

Finish
Zone

Finish
Zone

Write

Reset
Zone

Explicit
Open

Write

Reset
Zone

Write
Active
Zones
Open
Zones

Figure 1: Simplified overview of the ZNS zone state machine

(Flash-based SSDs, Chapter-44, [25]). Such GC processes
may interfere with concurrent I/O operations and degrade
I/O performance, since the GC process and user-issued I/O
operations may need to access the same block or storage
area [62]. Further on, flash memory has limited lifetime
because it has a limited write or program/erase (P/E [63])
endurance. It is also prone to read-write disturbs that occur
when many reads are issued to the same blocks—they cause
data loss. Limited storage lifetime exacerbates GC and other
management (e.g., lifetime optimization) tasks [27], [64], [65],
[66], [67], [68].

The onus of hiding these complexities of flash SSD man-
agement from applications running on the host resides with
the flash translation layer (FTL), which is a part of the
device firmware. It provides, for instance, the familiar page-
addressable, any-address readable or writable storage me-
dia [69], [25]. Several prior work offer in-depth explanations
on flash drives and FTLs [70], [71], [72], [62], [27].

B. Devices with Zoned Namespace

The storage area in ZNS devices is divided into regions
known as zones. Zones themselves are divided into blocks,
which represent the fundamental unit of I/O operations—
the blocks are logically equivalent to pages in traditional
flash storage. Blocks are addressed using a logical block
address (LBA). Zones only support sequential writes, matching
the constraint of underlying flash pages, which can only
be programmed sequentially. To meet this sequential-write
constraint, within a zone, applications must issue page-write
requests to LBAs in increasing order. SSDs, however, schedule
I/O requests internally and may reorder them as required [7].
There can, hence, only be a single in-flight write request
per zone so that the re-orderings, if any, do not violate the
must-be-sequentially-written constraint of a zone. This design,
consequently, limits write concurrency in a zone to one.

ZNS introduces the append operation [45] to alleviate the
write concurrency limitation within a zone. The append
idea is similar to nameless writes [73], writes that are not
issued to an address, but return the address on completion.
Unlike the write operation, which accepts the target block
address, the append operation takes a zone starting LBA
(ZSLBA) along with the data. Once an append is completed,
the LBA is returned to the application. As a result it is safe
to reorder appends in a zone, which enables applications to
issue multiple outstanding append requests to the same zone.

2

https://github.com/stonet-research/NVMeBenchmarks


ZNS SSDs offer explicit control over their GC process
through the reset operation. A reset operation on a
zone informs the device that the data in the zone can be
discarded and the zone can be garbage collected. The reset
operation does not, nevertheless, immediately force a block
erasure [74]. The reset operation can be limited to FTL-
metadata-mapping manipulations, which indicate to the device
that the block can be erased later.

Zones of a ZNS device have states (Fig. 1), which dictate
the allowed operations on a specific zone. Since each zone
operation (e.g., read, write, and append) consumes SSD
resources (e.g., internal buffers), there are limits on the number
of zones that can be concurrently opened and used. These
limits are defined as the maximum open zone limit and
maximum active zone limit, respectively. Applications must
abide by these constraints, and explicitly manage the zone
states and transitions. An application must, for instance, open
a zone before it accepts writes or appends. State transitions
can be internal to a device and implicit (e.g., a write to an
empty zone transitions it to an open zone in Fig. 1), or explicit
as a response to a user request.

ZNS offers several explicit zone management operations,
which include open, close and finish. We skip dis-
cussing the first two, whose names reveal their functionalities,
and focus on the last. The finish operation transforms an
open zone directly into a full zone. It releases all resources
attached to the zone (to stay within the maximum open zone
limit). Then, the device can either fill the zone with data or
mark the unused capacity with mapping (metadata) updates in
the “finished” zone (Fig. 1). Mapping updates would require
extra metadata to keep track of partially-filled zones. The
finish operation has implications for performance, and the
costs of this operation varies from one ZNS SSD implemen-
tation to another.

In summary, ZNS devices support a rich I/O interface that
includes operations beyond the simple read and write
operations of traditional flash storage. It is, therefore, crucial
to understand and characterize the performance of these op-
erations as they (and their state-machine transitions) are now
part of the Linux storage software stack.

C. Software support

ZNS devices are fully supported in Linux since kernel
version 5.9 [75]. Currently there is a limited number of
applications that use ZNS, and most that do, do not use all
functionalities (e.g., no finish or open). Evaluating these
applications would limit what ZNS properties we can measure
and, therefore, in our work we use synthetic benchmarks
to understand all of ZNS’ facets first. The results of our
benchmarks can then be used for application design. Here,
we briefly mention several prominent ZNS applications in
research to present an overview of what is currently avail-
able. Currently, applications have access to ZNS-friendly file
systems F2FS [76], Btrfs [77] and Ceph [78]. There is also
support for a swap system known as ZNSwap [49] and a RAID

TABLE I: Overview of the key insights

Category Insight

Append vs. write Write operations have up to 23% lower la-
tencies than append operations (§III-C)

Scalability Prefer intra-zone scalability (§III-D, §III-E)
Zone transitions Finish is the most expensive operation; it

takes up to hundreds of milliseconds (§III-E)
I/O interference NVMe ZNS offers 3× higher read throughput

under concurrent I/O operations than NVMe
(§III-F)

I/O & GC interference Reset latency increases by up to 78% under
concurrent I/O operations, but reset opera-
tions themselves have no effect on append,
read or write operations (§III-G)

system known as ZRAID [79] Lastly, KV-store RocksDB has
ZenFS as a ZNS-capable file system back-end [11].

III. EXPERIMENTS

In this paper, we characterize the performance and interfer-
ence properties of the Western Digital Ultrastar DC ZN540
SSD, a large-zone ZNS SSD, using a series of controlled
benchmarks. As of this writing, the number of commercially-
available ZNS SSDs is limited, therefore, we focus our efforts
on characterizing one SSD model and synthesize the perfor-
mance questions to ask when evaluating a ZNS SSD. Tab. I
summarizes our key findings.

A. Benchmarking setup

We use fio [80] for generating the workloads and bench-
marking the ZNS device. We also employ custom SPDK
benchmarks for benchmarking state transitions (§III-E) and
reset interference (§III-G), since fio does not support them.
We describe our benchmarking platform in detail in Tab. II.

We use two storage stacks for benchmarking: the Linux
kernel block layer and the SPDK stack. The Linux block
layer ships with the mq-deadline scheduler, which buffers
multiple write operations to a single zone, merges writes
to contiguous LBAs into one or multiple (larger) writes, and
sequentially issues the merged requests. Applications can,
hence, issue multiple write operations to a single zone.
The SPDK stack, in contrast, is a bare-bones storage stack
without any I/O scheduler. The rationale behind our storage
stack selection is twofold. First, no storage stack currently
supports all combinations of I/O and management operations
that we aim to benchmark. We cannot, for instance, issue and
benchmark append or zone management operations via fio
and the Linux I/O stack. In a similar vein, we are restricted
to issuing only one write per zone at a time with SPDK,
since it lacks an I/O scheduler. Second, the selection enables
us to compare the implications of state-of-the-practice—the
Linux stack—and that of the state-of-the-art—SPDK—for
ZNS application development.

We run experiments for 20 minutes and/or repeat them at
least three times for deriving robust statistics. We pin our
benchmarking code to the NUMA node containing the ZNS
device. For the Linux storage stack, we use the io uring

3

https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd#0TS2094


TABLE II: Details of the benchmarking environment

Component Configuration details

CPU Dual socket Intel(R) Xeon(R) Silver 4210
CPU @ 2.20GHz, 2 sockets, 10 cores/socket,
hyper-threading disabled, with Spectre and
Meltdown patches, intel_pstate=disable,
intel_idle.max_cstate=1

DRAM 256 GiB, DDR4
ZNS Western Digital Ultrastar DC ZN540 1TB

(zone size: 2,048 MiB; zone capacity: 1,077 MiB; total
number of zones: 904; max. active zones: 14)

NVMe Western Digital Ultrastar DC SN640 960 GB
Software Ubuntu (v22.04), kernel (v5.19, built from source), fio

(v3.32; #db7fc8d), SPDK (v22.09; #aed4ece), nvme-cli
tools (v2.0, #5a36bab)

engine with submission-queue polling enabled, following the
recommended settings [14].

B. Performance metrics

We briefly describe the metrics we use to evaluate the
performance of NVMe (ZNS) devices. Two indicators of I/O
operation performance are throughput (i.e., the number of
operations or bytes per second) and operation latency (i.e, the
time each operation takes). We measure ZNS throughput in
I/O operations completed per second, referred to as IOPS,
or in bytes written/read per second. We measure operation
latency from the moment a request is submitted on the NVMe
submission queue until a request is completed and visible on
the NVMe completion queue. It is possible to send requests
at a higher queue depth (QD)—QD measures the number of
requests that can be concurrently in flight. When the queue
depth is higher than 1, it is possible that multiple requests
are submitted, but not yet in a completed state. This has
implications for request latency as some requests will take
longer to complete than others. We always, hence, mention
the queue depth of an experiment.

C. append and write performance

append and write operations both write data to the
device, albeit they differ in their approach (refer §II-B). The
difference between append and write operations, funda-
mentally, lies in who is responsible for ensuring sequential
writes to a zone—host (in case of a write) or device (in case
of an append). Currently, there is no standard benchmark
to make an educated decision on what operation to use. We
perform, therefore, a quantitative analysis of the performance
of both operations and facilitate making an informed decision
about the use of these operations, taming the complexity and
determining the changes required in the storage stack (see file
system design for nameless writes [73]).

We evaluate write and append operations as follows.
First, we study them under varying LBA formats (format of the
NVMe namespace) with sector sizes 512 B and 4 KiB to verify
whether append and write operations are both affected by
the format. We then select the LBA format that results in the
lowest latency. Second, we investigate the implications of the
choice of I/O engine (i.e., io uring and SPDK) and scheduler

io uring
Write
[none]

io uring
Write

[mq-deadline]

SPDK
Write

SPDK
Append

0

10

20

30

40

50

L
a
te

n
cy

(µ
s)

512 B LBA format

4 KiB LBA format

(a) Request sizes:
512 B for 512 B LBA format;
4 KiB for 4 KiB LBA format

io uring
Write
[none]

io uring
Write

[mq-deadline]

SPDK
Write

SPDK
Append

0

10

20

30

40

50

L
a
te

n
cy

(µ
s)

512 B LBA format

4 KiB LBA format

(b) Request sizes:
4 KiB for writes;
8 KiB for appends

Figure 2: I/O latencies of append and write operations
(queue depth, QD=1)

(i.e., none and mq-deadline) on the performance of these
operations. This investigation helps to decide what engine to
use for ZNS and whether to use a host scheduler or appends.
Third, we evaluate the effect of request sizes on I/O latency.
The evaluations are single-threaded and synchronous (QD=1)
in order to evaluate the performance of requests in isolation.
While prior work demonstrates that request size affects write
latency on ZNS [44], we investigate if this observation is also
apparent for append latency.

Observation #1: The LBA format can have significant
impact on both write and append latencies. The LBA
format affects both append and write operations (Fig. 2a).
We show the operational latencies in microseconds along the
Y-axis (lower is better) and software stack combinations with
512 B and 4 KiB formats along the X-axis. We set the request
size to the same value as the block size of the respective
LBA format. Latencies of the operations with a 4 KiB LBA
consistently outperform that of a 512 B LBA, sometimes by
as much as a factor of two (Fig. 2a). This difference between
formats is highly dependent on the firmware, as firmware
might not be optimised for small I/O, but highlights that
it is important to consider what format to use for applica-
tions/benchmarks. Before running experiments we pick the
optimal format size. We, hence, use the 4 KiB LBA format
for all further experiments. We note, however, that the choice
of an optimal block size depends on the ZNS device: It may
be that the device was, for instance, explicitly optimized for
512 B accesses. We, therefore, need to consider what LBA
format to use for both write and append operations.

Observation #2: Using the SPDK storage stack results in
the lowest latencies. The Linux storage stack has, typically,
higher overheads than the SPDK stack [81], and we report that
it holds true for ZNS as well (see the 4 KiB format in Fig. 2a).
SPDK has the lowest latency overheads for single outstanding
I/O requests: write operations in SPDK (11.36µs) have
9.98% lower latency than that in the kernel without a scheduler
(12.62µs). The mq-deadline scheduler, furthermore, adds non-
negligible latency overheads (i.e., 1.85µs out of 14.47µs, or
12.81%). As the latency of raw flash storage access decreases,
the scheduler’s relative overheads will increase [82].

4

https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd#0TS2094
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-sn640-nvme-ssd#0TS1849
https://github.com/axboe/fio/tree/db7fc8d864dc4fb607a0379333a0db60431bd649
https://github.com/spdk/spdk/tree/aed4ece93c659195d4b56399a181f41e00a7a25e
https://github.com/linux-nvme/nvme-cli/tree/5a36baba322e7979175ed9dfeede0a96e29efc37


4 8 16 32 64 128
Request size (KiB)

0

25

50

75

100

125

150

T
h

ro
u

g
p

u
t

(K
IO

P
S

)

(a) write

4 8 16 32 64 128
Request size (KiB)

0

25

50

75

100

125

150

T
h

ro
u

g
p

u
t

(K
IO

P
S

)

(b) append

Figure 3: SPDK I/O throughput in IOPS (QD=1)

Observation #3: Write and append throughput depends
on the request size. We plot the throughput (in terms of
thousands of I/O operations per second) of write (in Fig. 3a)
and append operations (in Fig. 3b) as a function of request
size (in KiB). We observe that write operations experience
the highest throughput in IOPS (i.e., 85 KIOPS) for request
sizes of 4 KiB and 8 KiB, whereas the performance of append
operations improves slightly—from 66 to 69 KIOPS—when
we double the request size. The throughput in bytes per
seconds is highest for large requests (e.g. >=32 KiB, calcu-
lated as request size × IOPS). Note that we issue requests
synchronously, hence, throughput is the inverse of request
latency. The impact of request size on performance, hence,
differs between append and write operations. That the
append throughput is lower than write throughput is not
inherent to the design of ZNS and dependent on the firmware.
It is expected that append throughput will increase for
newer ZNS devices. It is likely that the request size has an
impact because of zone parallelism (i.e., zones mapped to
multiple flash channels), similar to what is observed in [44].
We, therefore, recommend issuing large requests for maximal
throughput; for the ZNS device used in our evaluation, we
observe maximal throughput in IOPS with 4 KiB and 8 KiB for
write and append operations, respectively, and maximum
throughput in bytes for requests larger than 32 KiB.

Observation #4: write operations have lower I/O la-
tencies than append operations. Across all configurations
(Fig. 2a, Fig. 2b, Fig. 3a, Fig. 3b), we observe that the latency
of write operations is lower than that of append operations,
even if the request size is the same. In Fig. 2b, we use 4 KiB
write and 8 KiB append operations, since these request
sizes offered the lowest I/O latencies in prior experiments,
and retain them as such for both the 512 B and 4 KiB block-
size LBA formats. Our request sizes are now multiples of
the block size, and they show, hence, fewer overheads. We
achieve low write latencies of 11.36µs (4 KB with SPDK
write) and append latencies of 14.02µs (8 KiB with SPDK
append), and observe differences as large as 3.48µs (or
23.42%) between write and append operations.

Recommendation #1: Use write instead of append
operations for low I/O latencies (differences between them
can be as much as 23%), and use the SPDK storage stack
since it delivers the lowest I/O latencies.

D. Scalability: intra-zone versus inter-zone

A set of I/O requests such as read, write, and append
operations can be distributed over either a single zone (intra-
zone scalability) or multiple zones (inter-zone scalability). We
define the maximum number of in-flight requests for both
intra- and inter-zone as the concurrency level. Below, we
analyze both of these approaches.

We measure the scalability of random read, sequential
write, and sequential append operations in terms of IOPS
and bandwidth. In this setup, we always issue read and
append operations via SPDK, but we issue write opera-
tions via SPDK for measuring inter-zone scalability, and use
Linux with mq-deadline and io uring for measuring intra-zone
scalability. We use SPDK wherever possible in the evaluations
owing to its low overhead (Observation #2) and append
support. We rely on io uring for issuing multiple write
operations to the same zone, since SPDK (with no access
to schedulers) does not support this functionality. Intra-zone
benchmarks are single-threaded and inter-zone benchmarks
use one thread for each concurrent zone.

We measure the throughput of sequential write, append,
and random read operations using 4 KiB requests both within
a single (Fig. 4a) and across multiple zones (Fig. 4b). We
plot the throughput (in KIOPS) as a function of the level of
concurrency in the system—in terms of queue depth for intra-
zone and zones for inter-zone scalability measurements. Below
we discuss three primary observations; all of them reveal that
intra-zone parallelism fares better than inter-zone parallelism.

Observation #5: Intra-zone parallelism achieve higher
overall IOPS than inter-zone parallelism. We observe that
both read and write intra-zone operations (Fig. 4a) achieve
higher IOPS than inter-zone requests (Fig. 4b) as we increase
the level of concurrency.1 We also note that inter-zone scala-
bility is further constrained by the maximum open zone limit
(§II-B): The number of concurrent zones when issuing write
or append operations to multiple zones were, for instance,
limited to a maximum of 14 zones, which was the maximum
open zone limit for the device we evaluated. We prefer intra-
zone to inter-zone parallelism if applications require higher
scalability than permitted by the number of open zones.

Observation #6: The append throughput, however, is ag-
nostic to whether we use inter-zone or intra-zone requests. Ei-
ther scaling method offers similar throughput for append
operations. The append throughput (in Fig. 4a and Fig. 4b)
increases slightly until concurrency level 4 (∼132 KIOPS),
but does not improve afterwards. We hypothesize this limit
is the device limit—not fundamental to the implementation
or design of the ZNS device. That the write operations
exhibit only marginal increase, if any, in throughput beyond 4
concurrent zones supports our hypothesis. The results indicate
that distributing append operations across zones is a valid
scaling strategy too, albeit it wastes additional open zones.

1The write operations in Fig. 4a use io uring with the mq-deadline
scheduler, while the write operations in Fig. 4b use SPDK.

5



1 2 4 8 16 32 64
Queue depth [1 concurrent zone]

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
) Appends

Writes [mq-deadline]

Random reads

(a)

1 2 4 8 14 16
Concurrent zones [QD=1]

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
) Max active zones

Appends

Writes

Random reads

(b)

1 2 4 8
Concurrency level

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

t
(M

iB
/
s)

Appends 4KiB

Appends 8KiB

Appends 16KiB

Writes 4KiB

Writes 8KiB

Writes 16KiB

(c)

Figure 4: (a) Intra-zone scalability in IOPS for 4 KiB requests (variable QD, 1 zone/thread); (b) Inter-zone scalability in IOPS
for 4 KiB requests (QD 1, variable zones/threads); and (c) Inter-zone and intra-zone bandwidths using SPDK; concurrency
level is queue depth for append operations, and concurrent zones for writes

Observation #7: In a single zone read operations scale
the best (with queue depth), followed by write and append
operations. The append throughput reaches a maximum of
132 KIOPS at a queue depth of 4. The throughput of write
operations with mq-deadline, in contrast, reaches 293 KIOPS
at a queue depth of 32. However, the read throughput,
reaches 424 KIOPS at a queue depth of 128 (although not
shown in the figure). Until a queue depth of 4, within a single
zone, append operations outperforms write operations, but
at higher queue depths write operation outperforms append
operations. This drastic performance improvement of write
operations stems from the mq-deadline scheduler: The write
operations to a zone must be issued sequentially, and the
scheduler merges these sequential (4 KiB requests) into (fewer)
larger write operations, thereby delivering higher throughput
than those of the isolated write operations. At a queue depth
of 16, for instance, the fio benchmark reveals that 92.35% of
write operations were merged (into larger requests). The
write throughput saturating at 186 KIOPS in the inter-zone
scenario is reflective of the device performance, as merges
are absent in this scenario; the write throughput is still
higher than the inter- and intra-zone append throughput. Both
read and write operations may also benefit from hardware
acceleration, whereas the (first-generation of) append im-
plementations may require extra support from the firmware.
We, hence, expect append performance to improve as ZNS
devices mature. Based on these observations, we recommend
intra-zone parallelism for write operations (when using mq-
deadline) for small (i.e., 4 KiB) I/O requests.

Observation #8: For large (i.e., >=8 KiB) I/O requests,
the performance of intra-zone append and inter-zone write
operations reach the device limit and scale with concurrency
levels in a similar manner. We have already seen that request
size has a large impact on throughput for requests at a
concurrency level of one in §III-C. To further investigate the
relation between request size and higher concurrency levels,
we increase the request buffer size from 4 KiB to 8 KiB and
16 KiB (Fig. 4c), while retaining the setup intact as in prior
experiments. We issue append operations to a single zone

at variable queue depths and write operations concurrently
(i.e., multiple threads) to multiple zones at a queue depth of 1.
Inter-zone write operations initially offer better performance
than the intra-zone append operations (the former likely ben-
efits from optimized implementations), they converge quickly
to offering similar throughput. The small (i.e., 4 KiB) requests
fail to reach the device limit (∼1.2 GiB/s), achieving a maxi-
mum throughput of 726.74 MiB/s for write operations, while
the large (i.e., >=8 KiB) requests reach the limit when using
2–4 zones concurrently. Similar to §III-C we observe that
larger requests lead to higher throughput. append operations
scale poorly compared to write operations as they require
a higher level of concurrency to reach the device limit, and
use of multiple zones concurrently benefits write more than
append. Although not shown in the figure, when we use
high queue depths when we issue append operations to
multiple zones, performance degrades: We observe throughput
reductions of up to 20 MiB/s with a queue depth of 4 for
append operations issued to 4 zones concurrently. We urge
use of either intra-zone or inter-zone append operations, but
not both. For bandwidth-intensive workloads (i.e., with request
sizes of at least 8 KiB), we recommend intra-zone append
and inter-zone write operations.

Recommendation #2: Prefer intra-zone to inter-zone par-
allelism; the former is ideal for append and read opera-
tions, while the latter is best suited for write operations.
Issue I/O at large request sizes (i.e., >=8 KiB, close to
the internal block size), as larger requests scale better with
higher concurrency levels.

E. The Zone State Machine Transition Costs

ZNS offers several unique and novel management oper-
ations for interacting with zones, including open, close,
reset, and finish (refer §II and Fig. 1). These operations
are issued explicitly by an application, but little is known about
their performance implications. We also know little about
the performance cost of implicit zone transitions. Quantifying
the cost of these operations is, hence, crucial for designing
performance-sensitive applications such as schedulers, file sys-

6



0 <0.1 6.25 12.5 25 50 ∼100
Zone occupancy (%)

0

5

10

15

20
L

a
te

n
cy

(m
s)

Unfinished zones

Finished zones

(a)

0 <0.1 6.25 12.5 25 50 ∼100
Zone occupancy (%)

0

200

400

600

800

1000

L
a
te

n
cy

(m
s)

(b)

Figure 5: (a) reset latency of partially-occupied zones and
(b) finish latency of partially-occupied zones. The y-axis
range differs significantly between the plots—up to 20 ms in
(a) and 1,000 ms in (b).

tems, and key-value stores. We analyze the performance of im-
plicit and explicit operations, the cost of opening and closing
zones, and the costs of finish and reset operations. Since
fio does not evaluate or use all relevant state transitions, we
evaluate state-transition costs with custom SPDK benchmarks.

Observation #9: There is no performance difference be-
tween explicit and implicit zone open transitions, and the cost
of opening/closing is marginal. We can open zones either
explicitly with the open or implicitly by writing to them
(see Fig. 1). We measure the costs of opening a zone under
three different configurations: (1) explicitly using an open
operation, (2) implicitly with write, and (3) implicitly with
append. All write and append operations are issued at a
request size of 4 KiB, since we know its latency characteristics
(see Fig. 2b). After opening a zone, we fill it with either
append or write operations, and we check for any differ-
ence in latency performance between implicitly and explicitly
opened zones. We fill the zone to the second-last page, close
the zone, and measure the latency of the close operation.

Our experiments show that it takes about 9.56µs for open-
ing a zone and 11.01µs for closing it. The costs of the
close, append, and write operations appear agnostic to
how (i.e., implicitly or explicitly) we opened the zone. The
first write and append operation to an implicitly opened
zone, however, experiences some small (non-trivial) latency
overhead—2.02µs and 2.83µs, on average, for write and
append operations, respectively. To put in perspective, this
is an overhead of about 17.38% and 19.32% for 4 KiB write
and append operations respectively. These overheads are not
surprising since zones must still be opened before a write
(or an append) operation can be issued, even if the two
operations are merged into one larger operation. We observe
the costs of open and close operations to be marginal.

Observation #10: Zone occupancy (or utilization) has a
significant impact on the performance of both reset and
finish operations. Prior work demonstrates a positive
correlation between zone size and reset latency [74], and we
ask whether that correlation extends to zone occupancy (i.e.,
the count of written blocks in a zone) and applies to finish
operations as well. We issue reset operations on 3,000 zones

sequentially (over multiple runs) and change the occupancy of
zones through various levels—0% (empty), 1 page (minimal),
6.25%, 12.5%, 25%, 50% and 100%. We use sequential 4 KiB
write operations to fill a zone to the desired level. Once the
desired occupancy level is reached, we pause for a second
to let the device stabilize as write operations influence the
reset performance (we defer that discussion until §III-G).
We then issue either a reset operation to the zone, or
a finish operation followed by a reset operation. The
two approaches enable us to evaluate the latency of reset
operations on both unfinished and finished zones.

Our experiments reveal that zone occupancy has a sub-
stantial impact on reset’s performance (Fig. 5a): reset
operations incur an overhead of 11.60 ms on half-full zones
and 16.19 ms on full zones, which is three orders of magnitude
higher than write latencies (see §III-C). We posit that
reset operations may require metadata updates to unmap
the used pages in a zone. The trim operation on conventional
NVMe SSDs, which hints to the SSD that it can reclaim a
page, also incurs overheads due to metadata updates [49],
[83]. We also observe that the latency of reset operations on
zones depends on the zone being finished before it was reset.
Finished zones take, for instance, less time to be reset than
unfinished zones. Resetting a half-full zone takes, on average,
3.08 ms (26.58%) less time than resetting a zone that was first
finished. Regardless of occupancy, a zone finish operation
is, however, a very expensive operation.

We benchmark the performance of the finish operation
in a manner similar to how we evaluated the reset opera-
tion. An occupancy of less than 0.1% (in Fig. 5b) indicates
that we only filled one page, while ∼100% implies that
we filled all except for one; since the standard does not
permit us to issue a finish operation to a full or empty
zone. The finish latency, unlike that of reset operations,
decreases with occupancy (indeed linearly from < 0.1% to
25%). Average latency decreases by about 295 times—from
907.51 ms (almost one second!) to 3.07 ms—when we increase
occupancy from <0.1% to 100%. Hence, when we add the
costs of finishing and resetting a zone, the total cost
can reach up to hundreds of milliseconds more than that spent
in merely resetting the zone.

Recommendation #3: Avoid the finish operation (more
so than a reset), especially for partially written zones.
Minimize the number of zones that need to be finished,
hence, by leveraging intra-zone parallelism (thus, reducing
the number of active zones, supporting the recommendations
in §III-D).

F. I/O interference: write, append and read interference

Below, we evaluate the interference from write operations
(i.e., write and append) on read operations (i.e., read).
Applications typically use workloads characterized by a mix
of read and write operations, and it is crucial, hence, to
measure the interference caused by read and write operations
on each other. Latencies of read operations are, for instance,
affected significantly by interference from other read or

7



0 5 10 15 20
Time (minutes)

0

250

500

750

1000

1250

T
h

ro
u

g
h

p
u

t
(M

iB
/
s)

ZNS NVMe

NVMe

(a)

0 5 10 15 20
Time (minutes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
h

ro
u

g
h

p
u

t
(M

iB
/
s) ZNS NVMe

NVMe

(b)

Figure 6: (a) write throughput of concurrent workloads
issuing random write operations and (b) random read
throughput while concurrent workloads are issuing random
write operations. The Y-axis ranges differ substantially
between the plots—up to 1,300 MiB/s in (a) and just up to
3 MiB/s in (b).

write operations on flash storage [84]. Garbage collection
(GC) operations happening in the background on conventional
SSDs further exacerbate interference, resulting in long read
tail latencies. GC operations in ZNS, however, are triggered
explicitly by the host—a widespread hypothesis is that this
approach limits interference effects. In this section, we inves-
tigate this hypothesis.

We design an experiment in which we compare a conven-
tional NVMe SSD with a ZNS SSD, both SSDs have the same
hardware specifications. Fundamental in this evaluation is that
GC is triggered inside the FTL firmware on the conventional
SSD. Triggering GC is fundamental because GC is known to
affect the read throughput negatively. In ZNS the GC process
is managed by the software itself, and thus in this case the
benchmark is responsible for the GC.

We evaluate the impact of garbage collection on SSD
performance under diverse write workloads, controlled by
explicitly rate limiting the workload’s write bandwidths.

We base this limit on the peak ZNS NVMe and ordi-
nary NVMe SSD write bandwidth, which we measured to
be 1,155 MiB/s (see Fig. 4c). The write bandwidth is rate
limited to values of 0, 250 (i.e., ∼25%), 750 (i.e., ∼75%)
and 1,155 MiB/s (i.e., 100%) using fio. Concurrently we issue
random read operations and we measure the write and read
throughput over time. We sent write/append operations
with four threads; each thread issues 128 KiB requests at
a queue depth of 8. We pick this configuration as it puts
significant pressure on the SSD, forcing intensive GC. We use
random write operations on the conventional SSD, whereas
on ZNS we utilize append operations on a set of random
zones. Lastly, we issue read operations randomly at 4 KiB
request size and use one thread (separate from the write
threads).

Observation #11: ZNS devices offer more stable read
and write performance in the presence of concurrent write-
triggered garbage collections than ordinary NVMe de-
vices. We observe that ZNS does not have the same write/read
throughput fluctuations that we observe on the conventional
NVMe interface. This observation also confirms earlier ZNS

research on throughput stability for ZNS [11].
We report that both write and read throughput remains stable

in all rate-limiting configurations (not shown). This observa-
tion confirms earlier ZNS evaluations [44]. On conventional
SSDs, on the other hand, write and read throughput fluctuates
for all configurations with concurrent writes. Especially, when
write operations are rate limited to the peak bandwidth
(i.e., 1,115 MiB/s). We only plot this scenario in Fig. 6a and
Fig. 6b for write and read operations, respectively. On
the x-axis we plot the time in minutes and on the y-axis we
plot the throughput in MiB/s. The results are not surprising as
the SSD needs to issue garbage collection (GC) operations
in the background during write-heavy workloads, which
leads to performance drops, while ZNS does not need this
(as shown in Fig. 6a). write throughput fluctuates between
a few MiB/s up to 1,200 MiB/s. ZNS also performs GC
operations via reset, though the cost of resetting is ∼1%
of the cost of filling the zone. Fig. 6b shows the impact of
GC operations on random read latency (QD 32, 4 KiB). We
use QD 32 as the performance saturates in the experiment at
this point. read latency is affected significantly by concurrent
write operations and GC operations. Furthermore, when
write operations are rate limited to 1,115 MiB/s and read
operations are issued at queue depth 1, read latency at the
95th percentile increases to 299.89 ms for the conventional
SSD and 98.04 ms for the ZNS SSD (not shown in a figure).
To put it in perspective, when only read operations are issued,
the 95th percentile latencies are 81.41µs for both conventional
and ZNS, an increment by a factor of 1,000.

It is important to consider I/O interference when an applica-
tion needs to scale, even if the interference effects are stable.
For example, the observations made in §III-D do not consider
concurrent I/O. Achievable throughput becomes limited if
there is concurrent I/O. Intra-zone scalablity will, therefore,
saturate at lower queue depth and inter-zone scalability at
fewer concurrent zones. Coincidentally, an application that
uses high intra- or inter-zone scalability reduces the throughput
of other applications. Applications must hence take interfer-
ence effects into account to achieve QoS targets. In short,
inter- and intra-zone resources are shared between multiple
applications/threads.

Recommendation #4: Developers should measure the
peak read/write performance of ZNS devices, and provision
their application storage needs around them. There is no
need to account for performance fluctuations because of
GC operations.

G. Reset interference

We observe that the reset operations take tens of mil-
liseconds to complete (§III-E), provided that we execute them
in isolation. In real workloads or applications, however, it is
likely that we issue reset operations concurrently with other
I/O, e.g., as a separate garbage collection thread, and not in
isolation. In this section we evaluate the effects of concurrent
I/O on reset operations and the other way around. This

8



[None]
Interference

[Reads]
by:

[Writes][Appends]

0

10

20

30

40

P
-9

5
r
e
s
e
t

la
te

n
cy

(m
s)

Figure 7: Interference effect of read, write, and append
operations on the 95-percentile reset latency

evaluation is also important to support the observations made
in §III-F. We evaluate with a custom benchmark using SPDK.

In this benchmark we use two concurrent threads. We use
one thread solely for issuing reset operations on 100%
occupied zones and one for issuing either append, read, or
write operations. The intent is to ensure that there always
is concurrent I/O and to measure if the latency alters during
concurrent load. To prevent reset and read operations or
writes to the same addresses, we issue reset operations to
the first half (∼400 zones) of the device and read, write
and append operations to the second half. We issue write
and append operations sequentially, but read operations
randomly. We set the request size to 4 KiB. We finish the
experiment once there are no more zones to reset, and repeat
the experiment three times.

Observation #12: reset operations do not interfere with
read, write or append latency. We discover no significant
effect of reset operations on either append, write or
read. Such behavior is likely to happen when the reset op-
eration is limited to metadata operations on different resources
than are used by I/O. Note that such behavior can be device-
specific, but does give the impression that there is little need
for schedulers to account for reset when managing QoS for
read, write, or append.

Observation #13: read, write and append operations
interfere with the reset latency significantly. Contrary to the
previous observation, we do observe that append, write
and read operations influence reset latency. In Fig. 7
we plot this interference effect. On the X-axis we plot the
operation that runs concurrently with reset operations (if
any), and on the Y-axis we plot the 95th percentile tail
latency of reset operations. We can infer that the 95th per-
centile reset latency increases from 17.94 ms to 28.00 ms for
concurrent read operations (56.11% increase), 32.00 ms for
concurrent write operations (78.42% increase) and 31.48 ms
for concurrent append operations (75.50% increase). All
three I/O operations thus increase reset latency signifi-
cantly. Therefore, it is likely that there is a form of resource
contention, where I/O operations are prioritized over reset
operations inside of the ZNS device.

Recommendation #5: reset operations can be issued
concurrently with I/O operations like read, write and

append, since reset operations do not have an impact on
I/O latency. Further on, while reset latency itself does
increase significantly when they are issued concurrently
with other I/O operations, reset operations themselves
are issued at a large granularity (per-zone, 1 GiB), leading
to sporadic reset operations (minimum time between two
reset operations is: zone size / write bandwidth, on our
device about one second).

IV. OPEN CHALLENGES WITH ZNS EMULATION

So far we reported numbers for a specific device, the
ZN540. However, the actual ZNS design/implementation space
is large. Here, NVMe emulators can help: They have been used
in previous research [51], [57], [58], [55]. The use of emulators
can help verify observed trends and generalize our results.
We observe, however, that none of the available emulators
are ZNS-ready (yet). Emulators that are currently publicly
available for ZNS include FEMU [85] and NVMeVirt [60].
The more recent ConfZNS [86], which we discuss only briefly,
was not an open-source software at the time of our evaluations.
We only consider the design/implementation of the emulators
in this section and do not re-run the evaluations for the
emulators: As of this writing, we could not run all of our
evaluations in the emulators due to stablility or compatibility
issues in the emulators (e.g., SPDK not working). We assume
that as the software ecosystem stabilizes, these issues will
be resolved. The goal of this section is, therefore, to address
challenges in the design of emulators themselves.

We explain which of our ZNS performance observations the
available emulators FEMU and NVMeVirt are currently unable
to capture because of their design and explain what should be
changed to support them. We do not consider observations #1
(LBA format), #2 (SPDK has the lowest I/O latencies), and
#11 (ZNS is more stable than NVMe) to be relevant in this
section as they do not represent essential behavior to emulate
(e.g., not ZNS-specific).

FEMU currently makes no attempt at emulating ZNS SSD
request latency, and requests are, therefore, as fast as the
underlying hardware (i.e., CPU and DRAM) permits. The lack
of a latency model leads to various reproducibility challenges.
First, it is not possible to reproduce differences in I/O latency
behavior of append, write, and read operations, since
there is no inherent performance difference between these
operations. There is also no difference in intra- and inter-
zone scaling. As a result, FEMU fails to reproduce real-world
empirical observations #3, #4, #5, #6, #7, and #8. Similarly,
FEMU does not emulate zone transition latency, and as a result
FEMU fails to also reproduce #9, #10, #12, and #13. For ex-
ample, finish operations will become unrealistically fast as
they are limited to metadata operations in DRAM. Therefore,
FEMU, in its current state, cannot accurately reproduce any of
our real-world observations and, consequently, cannot be used
for evaluating the performance of real ZNS applications. We
recommend FEMU to take an approach similar to NVMeVirt,
as it has an explicit timing model. This timing model accounts

9

https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd#0TS2094


for channel and NAND latency, and distinguishes between
read and write latency.

NVMeVirt utilizes a latency model that is shown to be
reasonably accurate for ZNS devices [60]. However, currently
NVMeVirt uses the same latency model for both append and
write operations and, hence, cannot represent observation
#4 (append and write latency differ). This shortcoming
introduces similar issues for intra- and inter-zone scaling, as
append and write latencies are equal. This issue would
prevent #5 and #6 to be accurate. We argue that NVMeVirt
should use a different model for both operations. For example,
by using a different latency for append operations. Unfortu-
nately, NVMeVirt also does not represent zone management
operations correctly. It sets the latency of reset static and
equal to NAND erasure latency (multiple milliseconds), which
we have observed to not always be the case. Therefore, we opt
that it should also be possible to use a dynamic cost where the
latency depends on zone occupancy. A simple linear model
would suffice here. Notably, NVMeVirt does not emulate
timing for the other zone management operations at all. Since
the finish operation is shown to be expensive, we argue
that this operation should be implemented, preferably with a
model based on zone occupancy. As it stands NVMeVirt fails
to reproduce #9, #10, #12, and #13. In short, while NVMeVirt
is accurate for read and write operations, it requires more
refinement for append and zone transition operations to be
a more accurate model.

More recently, Song et al. released ConfZNS, a ZNS emu-
lator with an accurate latency model [86]. As of this writing,
the code was not open-source; we do not, hence, describe the
accuracy of this emulator in-depth and are unable to investigate
which observations can be reproduced. The timing model of
ConfZNS promises to lead to accurate latencies of write
operations for inter-zone and read operations for inter- and
intra-zone scalability, which should lead to results similar to
§III-D and is the first step towards designing accurate ZNS
emulators.

In short, while available open-source emulators have latency
models for write and read operations, no current emulator
has (or proposes) an accurate latency model for either append
operations or zone transitions. Emulators should consider
adopting both in order to be accurate.

V. RELATED WORK

A. On Zoned Namespace (ZNS) devices

There have been a number of (performance) characteriza-
tions for ZNS, but none consider the append operation, the
ZNS state transitions and the interference of ZNS operations.
Nevertheless, existing ZNS evaluations/implementations on
various other properties, such as zone isolation, do exist and
are complementary to this work. One of the early performance
studies is by Shin et al. [44], where they verified the perfor-
mance isolation properties of ZNS devices, and show that in-
creasing I/O size decreases I/O latency, confirming our claims
on interference and request size. Similar to our study, they
investigated inter-zone scalability and the impact of request

sizes. Bae et al. investigate the impact that zone size and ZNS
internal parallelism have on the host I/O performance [50].
They identify that large zone sizes are preferred as they offer
more opportunities to stripe and distribute I/O requests across
multiple parallel channels and flash dies. We show that this
is true for appends as well. However, large zones (in GiB/s)
are also said to have large zone reset latencies that can
significantly influence read latencies (pushing them to mil-
liseconds and seconds). In our results we have only observed
reset latencies in the milliseconds, but also showed that
the cost is not static and largely depends on zone occupancy.
We could not reproduce the effects of resets on read
latency. As a result of the aforementioned reset cost, Bae
et al. advocate using small zones [50]. To improve the device
performance and parallelism, the authors introduce a host-
side inference tool to identify zone parallelism mappings by
inter-zone interference measurements, and an accompanying
I/O scheduler that can do mapping-aware I/O scheduling.
Im et al. use small-zone SSD inter-zone parallelism for
RocksDB [87]. Their results on inter-zone parallelism confirm
our results and show similar trends for both small and large
zone SSDs. We limit our evaluation to a large zone SSD in this
evaluation. Jung et al. investigate various reset algorithms
and show a correlation between zone size and reset latency
[74]. Their work complements our findings on zone occupancy.

There is also a healthy amount of research on the ZNS spec-
ification and its new operations [11], [47], [55], [48]. Bjørling
et al. present a comprehensive work on ZNS devices itself
and discuss the design rationale and integration options [11].
The work also evaluates ZNS on the macro level, while we
evaluate ZNS on the micro level. ZNS’s unique append
operation is discussed here [45]. Purandare et al. discuss
the impact of ZNS devices on log-based data management
systems, specifically log-based file systems, key-value stores
(LSM tree), and database systems with logs [47]. They identify
the ZNS append operation as a unique operation to leverage
in the design of these systems. Despite much enthusiasm
regarding the ZNS append operation, to the best of our
knowledge, it has only been used in a handful of systems
such as TropoDB [88], BtrFS [77] and ZNSwap [49].

There is also ample research in the application domain.
Especially on the KV-store RocksDB and the ZenFS file
system-backend is prevalent [51], [52], [54], [51], [89], [52],
[87], [11]. ZNS application research has, as of now, mostly
focused on improving garbage collection algorithms and new
zone allocation policies. Such work can now also use the ob-
servations made in this device characterization. For example,
by accounting for finish latency and zone occupancy for
their garbage collection algorithms.

Naturally, this large body of work identifies that there is
a big interest in accommodating and adapting ZNS-capable
storage devices in the storage software stack. In all of these
previous works, there has been a selective performance bench-
marking and characterization using a mix of real-device [43],
emulators [85], [60], or hardware support [55]. In this work,
we primarily focus on aspects of performance of a commer-

10



cially available ZNS device. In this process we have verified
past published results as well as and reported new results.

B. On Performance Characterization

Due to the black-box nature of flash SSDs, multiple past
studies have focused on empirical, stochastic, and analytical
modeling of their operational characteristics [33], [90], [91],
[92]. Such modeling is important for accurately predicting the
access latency of a flash SSD for performance provisioning
and QoS-oriented scheduling. Past works have extended HDD-
based blackbox analytical models to flash SSDs (e.g., linear, or
regression based) at a broader workload-level granularity [91],
[92]. SSDCheck studies the impact of write buffering and
garbage collection by implementing various representative
algorithms in SSD hardware, and verify/map their results to
multiple blackbox SSDs [33]. In comparison, our work is
focused on measurement-based study to establish the baseline
performance without deconstructing the ZNS internals.

The modeling and impact of garbage collection algorithms
have been one of the most studied areas with flash SSDs [93],
[94], [35], [95], [96], [97]. Hu et al. analytically model the
residual lifetime of a given SSD, in the presence of GC and
enterprise workload [95]. Pletka et al. present the details of
enterprise-grade latency, ECC, and GC flash algorithms [93].
Li et al. present a stochastic Markov chain model to model
the I/O dynamics of an SSD with concurrent I/O and GC
workloads [98]. Using this model, they design a randomized
greedy algorithm that can be tuned to operate close to the
optimal operational curve of the SSD. As write amplification,
wear-leveling and the choice of GC algorithm are inextrica-
bly linked, Verschoren and Houdt analyze (e.g., simulation,
and trace-based workloads) d-choice GC algorithms for their
impact on flash wear-leveling and device lifetime [94], [96].
Lange, Naor and Yadgar take a broad approach to SSD
performance modeling and consider the “SSD management”
problem that includes block allocation, wear leveling, write
amplification, and garbage collection from an algorithmic
perspective [35]. They report on a series of analytical models
which are verified with synthetic and trace-based workloads.

Before the emergence of ZNS devices, there has been
work on modeling SMR device operations [99]. Shafaei et
al. present an analytical model for a device-managed SMR
drive (unlike ZNS which is host managed) [100], [101]. Chen
et al. present one of the earliest systematic studies focused
on flash SSD performance characterization [102]. They iden-
tified various undocumented performance anomalies due to
flash fragmentation and establish a high correlation between
access pattern and flash performance (previously thought to
be unrelated). Jung and Kandemir provide a thorough and
detailed empirical evaluation of six SSDs for their read,
write, and trim (similar to the ZNS reset operation)
interference from background activities (GC and buffer flush)
performances [34]. Their results show unexpected influences
of reads on the device lifetime (P/E cycle) and the influence
of background activities on sustained SSD performance. In
their work, they also recommend exposing flash firmware API

to the host software, that ZNS does in a standard way. Our
work follows the same spirit for a new generation of flash
storage devices with unique operations.

VI. THREAT TO VALIDITY

Much of our results in this work confirm the expected
ZNS behavior that is hypothesized in ZNS’s development. The
confirmation of these results also opens up new directions
of research where much of the previously published work
on flash SSD is open for scrutiny—and perhaps can even
become obsolete [46]. Our experiments and benchmarks are
empirically driven, user-observed behavior for one specific
type of ZNS device. Such selective benchmarking has risks.
We have consulted and verified our observations with
Western Digital, the ZNS device manufacturer, for the
particular ZNS device that we have tested. However, we
are aware that it is challenging to generalize our findings as
many device internal details are confidential, and ZNS device
capabilities are expected to improve in the future. Nonetheless,
we believe that this paper makes strong contributions by
performing a first-of-its-kind systematic performance sweep of
a NVMe Flash Device with Zoned Namespaces, and providing
specific workable recommendations to the developers. In order
to ensure the long-term viability and repeatability of our
research we have open-sourced all the scripts, tools, and data
sets collected. We are also in the process of acquiring different
ZNS models to extend our study.

VII. CONCLUSION

Zoned Namespace-capable NVMe devices represent a sig-
nificant step in the evolution of flash hardware and software
stack. They offer a rich interface (introducing operations such
as append, finish, and reset) to the host software that
allows fine-grained control over managing the flash storage.
In this work, we systematically characterized the performance
of a commercially available ZNS-capable NVMe device. To
this end, we developed benchmarks and tools to characterize
the performance the new I/O operation (i.e., append) and
flash-management commands (i.e., finish, reset, open,
and close). We analyzed the impact of operation interfer-
ence (I/O and management) between conventional and ZNS-
capable NVMe devices. We present five recommendations to
ZNS application developers concerning append performance,
inter-zone and intra-zone scalability, the cost of management
operations, and I/O- and GC-level interference. We identify
shortcomings in the state-of-art ZNS emulators, which are
widely used in academic research, and outline the changes
that they require to ensure a high fidelity emulation. We
published all the artifacts of this study at https://github.
com/stonet-research/NVMeBenchmarks. We hope our results
and the publicly available artifacts encourage developers and
researchers to apply and evaluate our recommendations in a
wide variety of applications and expand this work with similar
characterizations of other ZNS devices.

11

https://github.com/stonet-research/NVMeBenchmarks
https://github.com/stonet-research/NVMeBenchmarks


ACKNOWLEDGMENT

This work is supported by a generous donation of NVMe
(ZNS) SSDs from Western Digital and the Dutch Research
Council (NWO) grant number OCENW.KLEIN.561. Krijn
Doekemeijer is funded by the VU PhD innovation program.
We want to thank the anonymous reviewers for their invaluable
feedback and the AtLarge team from the Vrije Universiteit
Amsterdam for their continued support.

REFERENCES

[1] NVMe Consortium, “Everything You Need to Know About
the NVMe® 2.0 Specifications and New Technical Proposals.”
https://nvmexpress.org/everything-you-need-to-know-about-the-
nvme-2-0-specifications-and-new-technical-proposals/, Accessed:
2023-Aug-16.

[2] D. H. Walker, “A Comparison of NVMe and AHCI.”
https://sata-io.org/sites/default/files/documents/NVMe%20and%
20AHCI %20 long .pdf, Accessed: 2023-Aug-16.

[3] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance Analysis of NVMe
SSDs and Their Implication on Real World Databases,” in Proceed-
ings of the 8th ACM International Systems and Storage Conference,
SYSTOR ’15, (New York, NY, USA), Association for Computing
Machinery, 2015.

[4] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux Block IO:
Introducing Multi-Queue SSD Access on Multi-Core Systems,” in 6th
International Systems and Storage Conference, SYSTOR 13, ACM,
2013.

[5] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong, “Asyn-
chronous I/O Stack: A Low-Latency Kernel I/O Stack for Ultra-Low
Latency SSDs,” in USENIX Annual Technical Conference, USENIX
ATC 19, USENIX Association, 2019.

[6] M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “Multi-Queue Fair
Queueing,” in Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, (USA), USENIX
Association, 2019.

[7] J. Woo, M. Ahn, G. Lee, and J. Jeong, “D2FQ: Device-Direct Fair
Queueing for NVMe SSDs,” in 19th USENIX Conference on File
and Storage Technologies, FAST 2021, February 23-25, 2021 (M. K.
Aguilera and G. Yadgar, eds.), USENIX Association, 2021.

[8] J. Yang, R. Pandurangan, C. Choi, and V. Balakrishnan, “AutoStream:
Automatic Stream Management for Multi-Streamed SSDs,” in Proceed-
ings of the 10th ACM International Systems and Storage Conference,
SYSTOR ’17, (New York, NY, USA), Association for Computing
Machinery, 2017.

[9] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-streamed
Solid-State Drive,” in 6th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 14), USENIX Association, 2014.

[10] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:
Software-Defined Flash for Web-Scale Internet Storage Systems,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’14, (New York, NY, USA), p. 471–484, Association for Computing
Machinery, 2014.

[11] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. L. Moal, G. R.
Ganger, and G. Amvrosiadis, “ZNS: Avoiding the Block Interface Tax
for Flash-based SSDs,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pp. 689–703, USENIX Association, July 2021.

[12] Jens Axboe, “Efficient IO with io uring, .” https://kernel.dk/io uring.
pdf, Accessed: 2023-Aug-16.

[13] Jonathan Corbet, “The Rapid Growth of Io uring.” https://lwn.net/
Articles/810414/, Accessed: 2023-Aug-16.

[14] D. Didona, J. Pfefferle, N. Ioannou, B. Metzler, and Animesh Trivedi,
“Understanding Modern Storage APIs: A Systematic Study of Libaio,
SPDK, and io uring,” in Proceedings of the 15th ACM International
Conference on Systems and Storage, SYSTOR ’22, (New York, NY,
USA), p. 120–127, Association for Computing Machinery, 2022.

[15] A. Trivedi, N. Ioannou, B. Metzler, P. Stuedi, J. Pfefferle, K. Kourtis,
I. Koltsidas, and T. R. Gross, “FlashNet: Flash/Network Stack Co-
Design,” ACM Trans. Storage, vol. 14, dec 2018.

[16] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A User-Space I/O
Framework for Application-Specific Optimization on NVMe SSDs,”
in Proceedings of the 8th USENIX Conference on Hot Topics in
Storage and File Systems, HotStorage’16, (USA), p. 41–45, USENIX
Association, 2016.

[17] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
Linux Storage Stack for Microsecond Latency and High Throughput,”
in 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pp. 113–128, USENIX Association, 2021.

[18] A. Papagiannis, G. Saloustros, M. Marazakis, and A. Bilas, “Iris: An
Optimized I/O Stack for Low-Latency Storage Devices,” SIGOPS Oper.
Syst. Rev., vol. 50, p. 3–11, Jan 2017.

[19] A. Tai, I. Smolyar, M. Wei, and D. Tsafrir, “Optimizing Storage
Performance with Calibrated Interrupts,” in 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21), pp. 129–
145, USENIX Association, July 2021.

[20] N. Tehrany, K. Doekemeijer, and A. Trivedi, “A Survey on the
Integration of NAND Flash Storage in the Design of File Systems and
the Host Storage Software Stack,” CoRR, vol. abs/2307.11866, 2023.

[21] K. Doekemeijer and A. Trivedi, “Key-Value Stores on Flash Storage
Devices: A Survey,” CoRR, vol. abs/2205.07975, 2022.

[22] J. Smart, “Optimizing Storage Performance for 4–5 Million
IOPs.” https://www.usenix.org/conference/vault19/presentation/smart,
Feb 2020. Accessed: 2023-Aug-16.

[23] J. Kariuki, “What? 80 Million I/O Per Second with a Stan-
dard 2U Intel® Xeon® System!.” https://spdk.io/news/2021/05/06/
nvme-80m-iops/, May 2021. Accessed: 2023-Aug-16.

[24] Jens Axboe, “That’s it. 10M IOPS, one physical core..” https://twitter.
com/axboe/status/1452689372395053062, Accessed: 2023-Aug-16.

[25] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces. North Charleston, SC, USA: CreateSpace Indepen-
dent Publishing Platform, 2018.

[26] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“The Unwritten Contract of Solid State Drives,” in Proceedings of
the Twelfth European Conference on Computer Systems, EuroSys
’17, (New York, NY, USA), p. 127–144, Association for Computing
Machinery, 2017.

[27] N. Li, M. Hao, H. Li, X. Lin, T. Emami, and H. S. Gunawi, “Fantastic
SSD Internals and How to Learn and Use Them,” in Proceedings of the
15th ACM International Conference on Systems and Storage, SYSTOR
’22, (New York, NY, USA), p. 72–84, Association for Computing
Machinery, 2022.

[28] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design Tradeoffs for SSD Performance,” in Proceedings
of the USENIX 2008 Annual Technical Conference, ATC’08, (Boston,
Massachusetts), pp. 57–70, 2008.

[29] L. Bouganim, B. Jónsson, and P. Bonnet, “uFLIP: Understanding
Flash IO Patterns,” in Fourth Biennial Conference on Innovative Data
Systems Research, CIDR 2009, Asilomar, CA, USA, January 4-7, 2009,
Online Proceedings, www.cidrdb.org, 2009.

[30] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, and H. S.
Gunawi, “LinnOS: Predictability on Unpredictable Flash Storage with
a Light Neural Network,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 173–190, USENIX
Association, Nov. 2020.

[31] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien, and
H. S. Gunawi, “Tiny-Tail Flash: Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs,” ACM Trans. Storage,
vol. 13, oct 2017.

[32] J. Kim, K. Lim, Y.-D. Jung, S. Lee, C. Min, and S. H. Noh, “Alleviating
Garbage Collection Interference through Spatial Separation in All Flash
Arrays,” in Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, (USA), p. 799–812,
USENIX Association, 2019.

[33] J. Kim, K. Choi, W. Lee, and J. Kim, “Performance Modeling and
Practical Use Cases for Black-Box SSDs,” ACM Trans. Storage,
vol. 17, jun 2021.

[34] M. Jung and M. Kandemir, “Revisiting Widely Held SSD Expectations
and Rethinking System-Level Implications,” in Proceedings of the ACM
SIGMETRICS/International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’13, (New York, NY, USA),
p. 203–216, Association for Computing Machinery, 2013.

12

https://nvmexpress.org/everything-you-need-to-know-about-the-nvme-2-0-specifications-and-new-technical-proposals/
https://nvmexpress.org/everything-you-need-to-know-about-the-nvme-2-0-specifications-and-new-technical-proposals/
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://www.usenix.org/conference/vault19/presentation/smart
https://spdk.io/news/2021/05/06/nvme-80m-iops/
https://spdk.io/news/2021/05/06/nvme-80m-iops/
https://twitter.com/axboe/status/1452689372395053062
https://twitter.com/axboe/status/1452689372395053062


[35] T. Lange, J. S. Naor, and G. Yadgar, “Offline and Online Algorithms
for SSD Management,” Proc. ACM Meas. Anal. Comput. Syst., vol. 5,
dec 2021.

[36] D. G. Andersen and S. Swanson, “Rethinking Flash in the Data Center,”
IEEE micro, vol. 30, no. 04, 2010.

[37] S. Han, P. P. Lee, F. Xu, Y. Liu, C. He, and J. Liu, “An In-Depth
Study of Correlated Failures in Production SSD-Based Data Centers,”
in FAST, pp. 417–429, 2021.

[38] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of
the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[39] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi,
and D. Didona, “SILK: Preventing Latency Spikes in Log-Structured
Merge Key-Value Stores,” in USENIX Annual Technical Conference,
pp. 753–766, 2019.

[40] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan, “The Necessary
Death of the Block Device Interface,” in Sixth Biennial Conference on
Innovative Data Systems Research, CIDR 2013, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings, www.cidrdb.org, 2013.

[41] M. Bjørling, J. González, and P. Bonnet, “LightNVM: The Linux
Open-Channel SSD Subsystem,” in Proceedings of the 15th Usenix
Conference on File and Storage Technologies, FAST’17, (Santa clara,
CA, USA), p. 359–373, 2017.

[42] Samsung, “Samsung Introduces Its First ZNS SSD With
Maximized User Capacity and Enhanced Lifespan.”
https://news.samsung.com/global/samsung-introduces-its-first-
zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan,
Accessed: 2023-Aug-16.

[43] Western Digital, “Ultrastar DC ZN540.” https://www.
westerndigital.com/products/internal-drives/data-center-drives/
ultrastar-dc-zn540-nvme-ssd, Accessed: 2023-Aug-16.

[44] H. Shin, M. Oh, G. Choi, and J. Choi, “Exploring Performance
Characteristics of ZNS SSDs: Observation and Implication,” in 9th
Non-Volatile Memory Systems and Applications Symposium, NVMSA
2020, Seoul, South Korea, August 19-21, 2020, pp. 1–5, IEEE, 2020.

[45] M. Bjørling, “Zone Append: A New Way of Writing to Zoned Stor-
age.” https://www.usenix.org/conference/vault20/presentation/bjorling,
Feb 2020. Accessed: 2023-Aug-16.

[46] T. Stavrinos, D. S. Berger, E. Katz-Bassett, and W. Lloyd, “Don’t
Be a Blockhead: Zoned Namespaces Make Work on Conventional
SSDs Obsolete,” in Proceedings of the Workshop on Hot Topics in
Operating Systems, HotOS ’21, (New York, NY, USA), Association
for Computing Machinery, 2021.

[47] D. R. Purandare, P. Wilcox, H. Litz, and S. Finkelstein, “Append is
Near: Log-based Data Management on ZNS SSDs,” in 12th Conference
on Innovative Data Systems Research, CIDR 2022, Chaminade, CA,
USA, January 9-12, 2022, www.cidrdb.org, 2022.

[48] U. Maheshwari, “From Blocks to Rocks: A Natural Extension of Zoned
Namespaces,” in Proceedings of the 13th ACM Workshop on Hot Topics
in Storage and File Systems, HotStorage ’21, (New York, NY, USA),
p. 21–27, Association for Computing Machinery, 2021.

[49] S. Bergman, N. Cassel, M. Bjørling, and M. Silberstein, “ZNSwap:
un-Block your Swap,” in 2022 USENIX Annual Technical Conference,
USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022 (J. Schindler
and N. Zilberman, eds.), pp. 1–18, USENIX Association, 2022.

[50] H. Bae, J. Kim, M. Kwon, and M. Jung, “What You Can’t Forget:
Exploiting Parallelism for Zoned Namespaces,” in Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems,
HotStorage ’22, (New York, NY, USA), p. 79–85, Association for
Computing Machinery, 2022.

[51] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-Aware
Zone Allocation for LSM Based Key-Value Store on ZNS SSDs,”
in Proceedings of the 14th ACM Workshop on Hot Topics in Storage
and File Systems, HotStorage ’22, (New York, NY, USA), p. 93–99,
Association for Computing Machinery, 2022.

[52] Western Digital, “ZenFS: RocksDB Storage Backend for ZNS SSDs
and SMR HDDs.” https://github.com/westerndigitalcorporation/zenfs,
Accessed: 2023-Aug-16.

[53] Y. Zhang, T. Yao, J. Wan, and C. Xie, “Building GC-Free Key-Value
Store on HM-SMR Drives with ZoneFS,” ACM Trans. Storage, vol. 18,
aug 2022.

[54] J. Jung and D. Shin, “Lifetime-Leveling LSM-Tree Compaction for
ZNS SSD,” in Proceedings of the 14th ACM Workshop on Hot Topics
in Storage and File Systems, HotStorage ’22, (New York, NY, USA),
p. 100–105, Association for Computing Machinery, 2022.

[55] K. Han, H. Gwak, D. Shin, and J. Hwang, “ZNS+: Advanced Zoned
Namespace Interface for Supporting In-Storage Zone Compaction,” in
15th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2021, July 14-16, 2021 (A. D. Brown and J. R. Lorch,
eds.), pp. 147–162, USENIX Association, 2021.

[56] M. Oh, S. Yoo, J. Choi, J. Park, and C.-E. Choi, “ZenFS+: Nurturing
Performance and Isolation to ZenFS,” IEEE Access, vol. 11, pp. 26344–
26357, 2023.

[57] R. Liu, Z. Tan, Y. Shen, L. Long, and D. Liu, “Fair-ZNS: Enhancing
Fairness in ZNS SSDs through Self-balancing I/O Scheduling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[58] G. Oh, J. Yang, and S. Ahn, “Efficient Key-Value Data Placement for
ZNS SSD,” Applied Sciences, vol. 11, no. 24, p. 11842, 2021.

[59] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and
H. S. Gunawi, “The CASE of FEMU: Cheap, Accurate, Scalable and
Extensible Flash Emulator,” in 16th USENIX Conference on File and
Storage Technologies (FAST 18), pp. 83–90, 2018.

[60] S.-H. Kim, J. Shim, E. Lee, S. Jeong, I. Kang, and J.-S. Kim,
“NVMeVirt: A Versatile Software-defined Virtual NVMe Device,” in
Proceedings of the 21st USENIX Conference on File and Storage
Technologies (USENIX FAST), (Santa Clara, CA), February 2023.

[61] M. Cornwell, “Anatomy of a Solid-State Drive,” Communications of
the ACM, vol. 55, no. 12, pp. 59–63, 2012.

[62] M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H. Chang,
and T.-W. Kuo, “Garbage Collection and Wear Leveling for Flash
Memory: Past and future,” in 2014 International Conference on Smart
Computing, pp. 66–73, IEEE, 2014.

[63] S. Yamada, Y. Hiura, T. Yamane, K. Amemiya, Y. Ohshima, and
K. Yoshikawa, “Degradation Mechanism of Flash EEPROM Program-
ming After Program/Erase Cycles,” in Proceedings of IEEE Interna-
tional Electron Devices Meeting, pp. 23–26, IEEE, 1993.

[64] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 521–526, EDA Consortium, 2012.

[65] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage
Distribution in MLC NAND Flash Memory: Characterization, Anal-
ysis, and Modeling,” in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1285–1290, EDA Consortium,
2013.

[66] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention
in MLC NAND Flash Memory: Characterization, Optimization, and
Recovery,” in IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 551–563, IEEE, 2015.

[67] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC
NAND Flash Memory: Characterization, Mitigation, and Recovery,”
in 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 438–449, 2015.

[68] C.-Y. Liu, Y.-M. Chang, and Y.-H. Chang, “Read Leveling for Flash
Storage Systems,” in Proceedings of the 8th ACM International Systems
and Storage Conference, pp. 1–10, 2015.

[69] D. Ma, J. Feng, and G. Li, “A Survey of Address Translation Tech-
nologies for Flash Memories,” ACM Comput. Surv., vol. 46, jan 2014.

[70] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
Flash Memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502,
2003.

[71] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND flash memories.
Springer Science & Business Media, 2010.

[72] S. Aritome, NAND flash memory technologies. John Wiley & Sons,
2015.

[73] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “De-Indirection for Flash-Based SSDs with Nameless
Writes,” in Proceedings of the 10th USENIX Conference on File and
Storage Technologies, FAST’12, (USA), p. 1, USENIX Association,
2012.

[74] S. Jung, S. Lee, J. Han, and Y. Kim, “Preemptive Zone Reset Design
within Zoned Namespace SSD Firmware,” Electronics, vol. 12, no. 4,
p. 798, 2023.

[75] Western Digital, “Zoned Storage Devices.” https://zonedstorage.io/
docs/introduction/zoned-storage, Feb 2022. Accessed: 2023-Aug-16.

[76] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho, “F2FS: A New File System
for Flash Storage,” in Proceedings of the 13th USENIX Conference on

13

https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.usenix.org/conference/vault20/presentation/bjorling
https://github.com/westerndigitalcorporation/zenfs
https://zonedstorage.io/docs/introduction/zoned-storage
https://zonedstorage.io/docs/introduction/zoned-storage


File and Storage Technologies, FAST’15, (USA), p. 273–286, USENIX
Association, 2015.

[77] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree
Filesystem,” ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1–
32, 2013.

[78] J. Y. Ha and H. Y. Yeom, “zCeph: Achieving High Performance On
Storage System Using Small Zoned ZNS SSD,” in Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing, pp. 1342–1351,
2023.

[79] T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. R.
Ganger, G. Amvrosiadis, and M. Bjørling, “RAIZN: Redundant Array
of Independent Zoned Namespaces,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pp. 660–673, 2023.

[80] Jens Axboe, “Fio.” https://github.com/axboe/fio, Accessed: 2023-Aug-
16.

[81] D. Didona, J. Pfefferle, N. Ioannou, B. Metzler, and A. Trivedi,
“Understanding Modern Storage APIs: A Systematic Study of Libaio,
SPDK, and Io uring,” in Proceedings of the 15th ACM International
Conference on Systems and Storage, pp. 120–127, 2022.

[82] Z. Ren and A. Trivedi, “Performance Characterization of Modern
Storage Stacks: POSIX I/O, libaio, SPDK, and io uring,” Proceedings
of the Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems, 2023.

[83] C. Hyun, J. Choi, D. Lee, and S. H. Noh, “To TRIM or not to TRIM:
Judicious triming for solid state drives,” in Poster presentation in the
23rd ACM Symposium on Operating Systems Principles, SIGOPS ’11,
ACM, 2011.

[84] A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash
= Local Flash,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, (Xi’an, China), pp. 345–359, ACM,
2017.

[85] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The Case of FEMU: Cheap, Accurate, Scalable and Extensi-
ble Flash Emulator,” in Proceedings of the 16th USENIX Conference on
File and Storage Technologies, FAST’18, (USA), p. 83–90, USENIX
Association, 2018.

[86] I. Song, M. Oh, B. S. J. Kim, S. Yoo, J. Lee, and J. Choi, “ConfZNS:
A Novel Emulator for Exploring Design Space of ZNS SSDs,” in
Proceedings of the 16th ACM International Conference on Systems
and Storage, pp. 71–82, 2023.

[87] M. Im, K. Kang, and H. Yeom, “Accelerating RocksDB for Small-
Zone ZNS SSDs by Parallel I/O Mechanism,” in Proceedings of the
23rd International Middleware Conference Industrial Track, pp. 15–21,
2022.

[88] K. Doekemeijer, “TropoDB.” https://github.com/atlarge-research/
tropodb, Accessed: 2023-Aug-16.

[89] G. Choi, K. Lee, M. Oh, J. Choi, J. Jhin, and Y. Oh, “A New LSM-Style
Garbage Collection Scheme for ZNS SSDs,” in Proceedings of the
12th USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’20, (USA), USENIX Association, 2020.

[90] J. Kim, J. Kim, P. Park, J. Kim, and J. Kim, “SSD Performance
Modeling Using Bottleneck Analysis,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 80–83, 2018.

[91] S. Li and H. H. Huang, “Black-Box Performance Modeling for Solid-
State Drives,” in 2010 IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
pp. 391–393, 2010.

[92] H. H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance Modeling
and Analysis of Flash-based Storage Devices,” in 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–
11, 2011.

[93] R. Pletka, I. Koltsidas, N. Ioannou, S. Tomić, N. Papandreou, T. Parnell,
H. Pozidis, A. Fry, and T. Fisher, “Management of Next-Generation
NAND Flash to Achieve Enterprise-Level Endurance and Latency
Targets,” ACM Trans. Storage, vol. 14, dec 2018.

[94] R. Verschoren and B. V. Houdt, “On the Endurance of the D-Choices
Garbage Collection Algorithm for Flash-Based SSDs,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 4, jul 2019.

[95] J. Hu, H. Jiang, and P. Manden, “Understanding Performance Anoma-
lies of SSDs and Their Impact in Enterprise Application Environment,”
in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’12, (New York, NY, USA), p. 415–416,
Association for Computing Machinery, 2012.

[96] B. Van Houdt, “A Mean Field Model for a Class of Garbage Collection
Algorithms in Flash-Based Solid State Drives,” in Proceedings of
the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’13, (New York, NY,
USA), p. 191–202, Association for Computing Machinery, 2013.

[97] Y. Yang, V. Misra, and D. Rubenstein, “On the Optimality of Greedy
Garbage Collection for SSDs,” SIGMETRICS Perform. Eval. Rev.,
vol. 43, p. 63–65, sep 2015.

[98] Y. Li, P. P. Lee, and J. C. Lui, “Stochastic Modeling of Large-
Scale Solid-State Storage Systems: Analysis, Design Tradeoffs and
Optimization,” in Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’13, (New York, NY, USA), p. 179–190, Association
for Computing Machinery, 2013.

[99] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight—A Window on
Shingled Disk Operation,” ACM Trans. Storage, vol. 11, oct 2015.

[100] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Model-
ing Drive-Managed SMR Performance,” ACM Trans. Storage, vol. 13,
dec 2017.

[101] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Mod-
eling SMR Drive Performance,” in Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Science, SIGMETRICS ’16, (New York, NY, USA),
p. 389–390, Association for Computing Machinery, 2016.

[102] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory Based Solid State
Drives,” in Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
’09, (New York, NY, USA), p. 181–192, Association for Computing
Machinery, 2009.

14

https://github.com/axboe/fio
https://github.com/atlarge-research/tropodb
https://github.com/atlarge-research/tropodb


APPENDIX

There is one additional result we did not present in our
main contributions as it’s impact is lower. This result is related
to request latency at higher queue depths for append and
write operations, a scenario which will be common in real-
life workloads. We chose to include it in the Appendix to aid
further research.

In Fig. 8 we plot the effect of higher queue depth for both
append and write latencies. In the plot, on the x-axis the
throughput (higher is better) is plotted and on the y-axis the
request latency (lower is better). The experiment setup as the
same as used for Fig. 4a. write operations are send with
io uring to a single zone and use the mq-deadline scheduler,
and append operations are send with SPDK. We observe that
as the queue depth increases, both the latency and throughput
increase. However, the latency of write operations increases
significantly more than append operations until a certain
threshold. Past this threshold (4 for all block sizes), the latency
trends are the same. From these results, we can recommend
two things: (1) append operations should only be send at low
queue depth to get the best latency; (2) intra-zone scalability
with append operations is preferred over write operations
as it leads to lower latency.

15



0 100 200 300
Througput (KIOPS)

0

50

100

150

200

250

la
te

n
cy

(m
ic

ro
s)

qd=1
qd=2

qd=4
qd=8

qd=16

qd=32

qd=64

qd=1 qd=2
qd=4

qd=8

qd=16

Writes [mq-deadline]

Appends

(a)

0 100 200 300
Througput (KIOPS)

0

50

100

150

200

250

la
te

n
cy

(m
ic

ro
s)

qd=1
qd=2

qd=4

qd=1qd=2

qd=4

qd=8

qd=16Writes [mq-deadline]

Appends

(b)

0 100 200 300
Througput (KIOPS)

0

50

100

150

200

250

la
te

n
cy

(m
ic

ro
s)

qd=1

qd=2

qd=4

qd=8 Writes [mq-deadline]

Appends

(c)

Figure 8: append and write throughput/latency at various queue depths: (a) 4KiB Requests; (b) 16KiB Requests; and (c)
32KiB Requests; concurrency level is queue depth for append operations, and concurrent zones for writes.

16


	Introduction
	Background
	Flash storage
	Devices with Zoned Namespace
	Software support

	Experiments
	Benchmarking setup
	Performance metrics
	append and write performance
	Scalability: intra-zone versus inter-zone
	The Zone State Machine Transition Costs
	I/O interference: write, append and read interference
	Reset interference

	Open challenges with ZNS emulation
	Related Work
	On Zoned Namespace (ZNS) devices
	On Performance Characterization

	Threat to Validity
	Conclusion
	References
	Appendix

