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Abstract—The diversity of workload requirements and in-
creasing hardware heterogeneity in emerging high performance
computing (HPC) systems motivate resource disaggregation.
Resource disaggregation allows compute and memory resources
to be allocated individually as required to each workload.
However, it is unclear how to efficiently realize this capability
and cost-effectively meet the stringent bandwidth and latency
requirements of HPC applications. To that end, we describe how
modern photonics can be co-designed with modern HPC racks
to implement flexible intra-rack resource disaggregation and
fully meet the bit error rate (BER) and high escape bandwidth
of all chip types in modern HPC racks. Our photonic-based
disaggregated rack provides an average application speedup
of 11% (46% maximum) for 25 CPU and 61% for 24 GPU
benchmarks compared to a similar system that instead uses
modern electronic switches for disaggregation. Using observed
resource usage from a production system, we estimate that
an iso-performance intra-rack disaggregated HPC system using
photonics would require 4× fewer memory modules and 2×
fewer NICs than a non-disaggregated baseline.

I. INTRODUCTION

Leading high performance computing (HPC) systems are
steadily embracing heterogeneity of compute and memory
resources to preserve performance scaling and reduce system
power [1], [2], [3]. This trend is already apparent with the
integration of GPUs [4], [5], [6] and is expected to continue
with fixed-function or reconfigurable accelerators such as field
programmable gate arrays (FPGAs) [7], [8], [9], [10], [11],
[12], [13], and heterogeneous memory [14]. Also, key HPC
workloads show considerable diversity in computational and
memory access patterns [15], [16].

This expectation of resource heterogeneity, workload di-
versity, and today’s method of allocating resources to ap-
plications in units of statically-configured nodes where ev-
ery node is identical and unused resources are left to idle
(referred to as “marooned resources”), raises the concern of
resource underutilization. Marooned resources increase capital
and operational costs without improving performance. This
has motivated resource disaggregation. Disaggregation refers
to decomposing servers into their constituent compute and
memory resources so that these can be allocated as required
according to the needs of each workload. Hyperscale datacen-

ters have embraced resource disaggregation and showed that it
significantly improves utilization of GPUs and memory [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].

Although file storage is routinely disaggregated in modern
systems [29], [15], [30], HPC has been slow to embrace disag-
gregation of compute and memory resources [31], [32] due to
the sensitivity of HPC workloads to bandwidth and latency that
cannot be met by current PCIe/CXL or Ethernet link technolo-
gies used in contemporary disaggregated architectures. Studies
showed that disaggregation only among resources in the same
rack (i.e., intra-rack resource disaggregation) in HPC could
reduce resources by 5.36% to 69.01% while avoiding the over-
head of full-system disaggregation [15]. However, the impact
of increased memory latency and specific architectural trade-
offs have not been explored. Thus, although disaggregation
using electronic networks has been demonstrated in hyperscale
datacenters [33], [22], [34], [26], minimizing adverse effects
to and addressing the stringent bandwidth density and latency
demands of HPC workloads requires a thorough investigation.

Our contributions are as follows. Firstly, we describe how
to use emerging photonic links and switches to design modern
and practical resource-disaggregated HPC racks based on an
existing GPU-accelerated HPE/Cray EX supercomputer [29].
Secondly, we show how state-of-the-art commercially avail-
able photonic components and advanced packaging multi chip
modules (MCMs) meet bit error rate (BER) requirements,
impose only a 5% power overhead, and deliver sufficient band-
width to satisfy the escape bandwidth of all chips in modern
HPC racks. Thirdly, we show how to use distributed indirect
routing and arrayed waveguide grating routers (AWGRs) [35],
[36] to satisfy all bandwidth requirements without the over-
head and latency for reconfiguration that spatial [37], [38]
and wave-selective [39] switches require. Furthermore, we
show that intra-rack disaggregation using emerging photon-
ics provides an average application speedup of 11% (46%
maximum) for 25 CPU and 61% for 24 GPU benchmarks
compared to a similar system that instead uses state-of-the-
art electronic switches. Finally, based on observed resource
usage, we estimate that a system based on state-of-the-art
photonics for resource disaggregation can have 4× fewer
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memory modules and 2× fewer NICs, thus 44% fewer overall
chips compared to a non-disaggregated system with the same
computational throughput.

II. RELATED WORK

Hyperscale datacenters predominantly focus on full-system
resource disaggregation where applications can allocate fine-
grain resources of different types, today typically graphical
processing units (GPUs) [17] and memory [18], [40], [21],
[23], [26], [28]. In such a system, resources of the same type
are typically placed in the same rack [33], [22], [34].

However, full-system, flexible, and fine-grain resource dis-
aggregation introduces significant overhead because of the
higher latency and lower bandwidth density of contemporary
hardware used to implement resource disaggregation – typi-
cally PCIe, 100Gig Ethernet, and eventually compute express
link (CXL) [41] over electronic links. This overhead does not
simply increase power and procurement costs. Instead, it adds
potentially substantial latency between key resources such
as central processing units (CPUs) and memory traditionally
exhibit latency-sensitive communication. The aforementioned
studies quote several orders of magnitude increase in network
and memory latency due to full-system resource disaggrega-
tion to improve resource utilization by 35% at most [42].
Another study found that application performance degrada-
tion depends on both network bandwidth and latency, but
can still reach 40% even with high bandwidth, low-latency
networks [43]. Work on SPEC and commercial benchmarks
also found an up to 27% application slowdown due to the
additional memory latency [44]. A study on Microsoft’s Azure
found a range of performance slowdowns up to 30% from
an extra 65 ns to access main memory [20]; a later study
reported a range of slowdowns with a mean of 10%, a higher
average, and a maximum of about 100% from an additional
142 ns. Software defined networks (SDNs) based on electrical
networks fare no better in terms of overhead [43], [45], [34].

Hybrid full-system photonic–electronic approaches have
also been proposed that rely on circuit switching [42]. A
few studies argue that intra-rack disaggregation [19], [40],
[25] or disaggregation among small groups of CPUs [26],
[28] suffice to recover most gains. Even the low latency and
high bandwidth density of modern photonics can only partially
satisfy the bandwidth, energy, and latency requirements of full
system disaggregation. This makes system-wide disaggrega-
tion impractical in many cases [33], [42], [24], [46].

Recent full system approaches in high performance comput-
ing (HPC) rely on optics to connect CPUs and memory, and
electronic switches for hard disk drives (HDDs) to increase
resource CPU utilization by 36.6% and memory 21.5% [32].
Another study argues that HPC systems can reduce resources
from 5.36% to 69.01% with intra-rack disaggregation and still
satisfy the worst-case average rack utilization [15]. Similar
to datacenters, intra-rack disaggregation in HPC promises the
lowest overhead and impact to applications [31], [19], [25].

Related work has researched other aspects necessary to
make resource disaggregation practical in a system, such as

job scheduling [47], [48], [49], [50], how the operating system
(OS) and runtime should adapt [51], [52], [53], page migration
policies and temporal imbalance [27], [28], programming
and code portability in heterogeneous systems [54], [48],
partitioning of application data [55], fault tolerance [56], how
to fairly compare the performance of different heterogeneous
systems [57], and the impact of heterogeneous resources to
application performance [58], [59], [14]. These are important
but out of scope topics for our study.

A. Under-utilization in Production Systems

We use NERSC’s Cori as an exemplar production HPC
system due to its diverse and open-science workload, while
recognizing workload requirements on other systems may
differ. In NERSC’s Cori, at a time before Perlmutter became
available and thus Cori was serving the full NERSC workload,
three quarters of the time, Haswell nodes use less than 17.4%
of memory capacity (50.1% for KNL nodes) and less than
0.46 GB/s of memory bandwidth [15]. These observations
are similar to observations made on LANL clusters [18] and
Alibaba machines that execute batch jobs. Likewise, half of
the time, Cori nodes use no more than half of their compute
cores and three quarters of the time 1.25% of available network
interface controller (NIC) bandwidth. Similarly, in Lawrence
Livermore National Laboratory clusters, approximately 75%
of the time, no more than 20% of memory capacity is
used [18]. Alibaba’s published data [60] show that memory is
underutilized similar to Cori, for machines that execute batch
jobs. Data from Google systems shows that task memory and
disk capacity is spread over three orders of magnitude and
typically underutilized [45]. Azure reports approximately 25%
of memory under-utilization [20], [26]. Datacenters have also
reported 28% to 55% CPU idle in the case of Google trace
data [61] and 20%–50% usually in Alibaba [60]. Early studies
also suggest GPU under-utilization [62], [63], [64].

III. PHOTONICS FOR RESOURCE DISAGGREGATION

Here we show that photonic links and switches today meet
the strict performance and error rate requirements to efficiently
implement intra-rack resource disaggregation in HPC.

A. Memory Technologies and Requirements

IO systems in HPC are already largely disaggregated over
conventional system-scale interconnects since the underlying
technologies (disk or SSD) are relatively high latency and
lower bandwidth [15], [65]. In contrast, memory technologies,
particularly high bandwidth memory (HBM) needed by GPUs,
are much higher bandwidth and much less tolerant of latency
and require much lower bit error rates (BERs). Given that
memory disaggregation imposes the most challenging con-
straints among other resources in today’s compute nodes, we
will use DDR and HBM memory technology to set our perfor-
mance target. A typical DDR4 memory has a response latency
of approximately 90 ns, and for HBM, the average response
latency is 90-140 ns [66]. Still, any added latency between the
CPU and memory from resource disaggregation may penalize



application performance, as we quantify later. Server-class
memories typically require BERs of less than 10−18 to achieve
tolerable failures in time (FIT) rates with conventional single-
error-correct/double-error-detect (SEC-DED) protection [67],
[68]. Forward error correction (FEC) can reduce the BER, but
with additional latency [69].

B. Optical Link Technologies

We consider a range of photonic link technologies that
include conventional 100 Gbps Ethernet physical interfaces
that represent the current baseline link technology for memory
disaggregation. We also introduce a range of cutting-edge
dense wavelength division multiplexing (DWDM) link tech-
nologies that are either demonstrated as research prototypes
or are commercially available. All photonic components come
from existing commercial technologies (100 Gbps, 400 Gbps,
Ayar TeraPhy) and some research prototypes from DARPA
PIPES (the 1-2 Tbps link technologies). These higher perfor-
mance link technologies must be co-packaged to achieve their
bandwidth density. These link technologies are summarized
in Table I. The technology for the optical links is depicted
in Fig. 1. Delivering multiple channels of laser light to the
package has been challenging to scale cost-effectively if each
“color” of light were to require a separate laser source. This
concern was alleviated by the emergence of quantum dot and
soliton comb laser sources that can produce hundreds of usable
light frequencies with wall-plug efficiencies of up to 41% [70].

C. Active Photonic MCMs

Many CPUs and GPUs do not have the necessary off-
chip bandwidth for full utilization of their compute resources
because operating their I/O pins at a higher bandwidth incurs a
power cost [71], [72]. Using emerging high-speed optical links
directly to the multi chip module (MCM), illustrated in Fig. 3,
provides to the order of 10× gains in escape bandwidth [31],
[73], [74], [75]. This is a necessary property to enable efficient
resource disaggregation as well as handle changing bandwidth
requirements of key applications such as machine learning that
drastically shifts bandwidth between inter-GPUs and off-chip
from inference to training.

MCMs with integrated photonics have been demonstrated
in both 2.5D and 3D interposer platforms [31], [76], [77],
[78]. They can use different die-to-die link standards, such
as UCIe. Active interposer platforms combine the photonic
integrated circuit (PIC) and interposer into a single integrated
substrate. The active interposer allows photonic components to
be fabricated and directly integrated with through silicon vias
(TSVs) and additional metal redistribution layers. Electronic
circuits are flip-chipped on top of active interposers using
copper pillars [79]. Further work has embedded photonic
switch fabrics within MCM platforms with a crosstalk sup-
pression and extinction ratio of >50dB and on-chip loss as low
<1.8dB [31]. This was further scaled up to support more than
100 ports with microring resonators using a scalable switch
fabric that combined switching in the space domain with

BW
(Gbps)

Energy
(pJ/bit)

Link
Gbps ×
Channels

#Links
(2 TB/s
escape)

Agg. Ws
(2 TB/s
escape)

Ref.

100 30 25× 4 160 480 [80],
[81]

400 30 100× 4 40 197 [82]
768 < 1 32× 24 21 14.4 [73]
1,024 0.45 16× 64 16 7.2 [83]
2,048 0.3 16× 128 8 4.8 [83]

TABLE I
A RANGE OF WDM PHOTONIC LINK TECHNOLOGIES.

wavelength-selectivity to implement fine-grain connectivity for
node disaggregation [39], [31].

1) Link Protocol: We adopt CXL as our link protocol [41].
CXL is an overlay on the PCIe-Gen6 physical layer; it in-
cludes guaranteed ordering of events and is a broadly adopted
industry standard with published specifications. However, we
do not rely on any features of any particular protocol. Thus,
alternatives such as UCIe also apply.

2) Link Propagation and Encoding/Decoding Latency:
The target reach for an intra-rack disaggregation solution
is approximately 1-4 meters. Given the speed of light c
and light propagating through optical material with an index
of refraction near r1.5, the effective latency of propagating
through an optical fiber at nominally 0.75c is approximately
5 ns per meter. Therefore, rack-scale resource disaggregation
adds 5-20 ns of latency, approximately less than 20% of the
typical DRAM latency. The link latency for SERDES and
photonic ring modulation is negligible. Intra-rack fiber lengths
up to 4 meters require no intervening optical electrical optical
(OEO) conversions.

3) Bit Error Rates and FEC: To achieve 10−18 BER
required for memory technologies, FEC [69] will likely be
required. Using the lightweight FEC scheme that is proposed
for CXL [41] and PCIe Gen6 [84] as an example, the all-
inclusive latency for FEC can be as low as 2 ns. Therefore,
for 200 Gbps, the serialization delay is 10 ns and the FEC
calculations add 2-3 ns. At 400 Gbps and above, the net
latency for FEC would be 5 ns plus 2-3 ns. Notably, this
approach to achieving these BER targets is achievable with
less than a 0.1% bandwidth loss.

In terms of impact on BER, this PCIe/CXL-like correction
scheme corrects all single bursts of up to 16 bits. Double
bursts will likely be mis-corrected, but the chance of a bad
flit decreases quadratically (e.g., a flit BER of 10−6 becomes
10−12 as you need two error bursts per flit to fail). Each
flit is protected with a strong 64-flit CRC such that the flit
FIT rate (CRC escapes) is significantly less than one part per
billion. Lastly, FEC escapes become link retransmissions and
the ASIC-to-ASIC connection sees close to zero errors. As a
result, emerging memory fabric protocols such as CXL, which
could be run over our evaluated physical links, are capable
of achieving a BER rate that meets the stringent memory
system requirements and minimizes performance loss due to
retransmission.



Fig. 1. Logical schematic of a DWDM link using ring resonators and a comb-laser source. Each ring is tuned to a different frequency of light and can be used
to modulate that specific wavelength of light (a channel). Comb laser sources provide a comb of frequencies of light to provide those wavelengths for encoding.
All encoded optical channels share the same optical fiber and are decoded using the rings on the receiving side to route channels to the photodetectors.
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Fig. 2. Overall physical structure of rack (also referred to as pod) scale resource disaggregation from photonically-connected MCMs up to the entire rack
scale. The conversion from CXL-over-fiber to HBM or NVM electrical protocol is implemented in the active interposer for the photonics MCM.

Fig. 3. Co-packaged optics are required for DWDM link technologies to
achieve the bandwidth density to operate at native memory bandwidths.

D. Optical Switch Technologies

Motivated by minimizing latency, our vision for a disag-
gregated rack is to have photonically-enabled MCMs that are
connected via an optical circuit switch, as shown in Fig. 2.
Compute and memory chips would be in the center of the
MCM and the edge of the MCM would contain co-packaged
optical silicon in-package photonics (SiPs). Switches with all-
optical paths include spatial- and wave-selective approaches,
shown in Table II.

1) Spatial Optical Switches: In recent years, the pri-
mary switching cells investigated are microelectromechanical
systems (MEMS) actuated couplers, Mach-Zehnder interfer-

Switch
Type

Radix Wave-
lengths
per
port

B/W per
channel
(wave-
length)

Insertion
Loss

Crosstalk

Mach-
Zehnder
based [85]

32× 32 1 439 Gbps 12.8 dB -26.6 dB

MEMS-
actuated [86]

240 ×
240

1 – 9.8 dB -70 dB

Microring
res-
onator [87],
[88]

8 × 8
(128 ×
128)

8
(128)

100
Gbps (42
Gbps)

5dB
(10dB)

(-35 dB)

Casc. AW-
GRs [89]

370 ×
370

370 25 Gbps 15 dB -35 dB

TABLE II
HIGH-RADIX CMOS-COMPATIBLE PHOTONIC SWITCHES.

ometers (MZIs), and microring resonators (MRRs). Taking
after their free-space counterpart, photonic MEMS-actuated
switches are broadband spatial switches that have demon-
strated radix scaling up to 240 × 240 [86]. Although they
typically offer low inter-channel crosstalk and low optical
losses, MEMS switching cells generally require high driving
voltages (greater than 20 V), making them less attractive for
co-integration with electronic drivers. Spatial switches can



also use mirrors [90], photonic integrated circuits [38], or
tiled planar silicon photonics [37]. MZI switches are more
friendly to co-integration compared to MEMS but have only
been shown to scale up to 32×32 [85]. This limit can be seen
as a consequence of the higher insertion-loss scaling resulting
from cascaded MZI cells and the susceptibility of popular MZI
topologies to first-order crosstalk.

The challenge for scaling up the spatial approach is the
quantization of package and MCM escape bandwidth and
reduced configuration options. For example, at 768 Gbps (the
Ayar TeraPhy [73]), the number of fibers escaping the package
is 21, meaning the package can be connected only up to 21
different potential destinations using a spatial switch.

2) Wavelength Selective Optical Switches and AWGRs:
The inherent wavelength-selectivity of MRR switching cells
allows for the straightforward implementation of wavelength-
selective switching (WSS) topologies. This enables one to
establish all-to-all networks by leveraging wavelength-division
multiplexing (WDM). Currently, MRR-based switches with
the largest radix include the 8 × 8 crossbar [87] and switch-
and-select [91], but have been experimentally emulated to
include a 16× 16 Clos [92]. The metrics in [92] can be seen
to correlate very closely with the scaling proposed in [88],
making a practical case for the 128× 128 shown in Table II.

All-to-all networks via WDM signals can also be achieved
by arrayed waveguide grating routers (AWGRs) [35], [36],
[93], [94], [65]. As AWGRs are passive optical elements,
no reconfiguration is possible within the routing fabric itself.
Instead, fast wavelength-tunable lasers must be leveraged at
the transmitter of every node if it wishes to address a different
destination since AWGRs shuffle the light frequencies such
that one lambda goes to each endpoint from each source.
AWGRs enable us to implement an N ×N all-to-all topology
using just O(N) fibers (each carrying N frequencies of light).
In contrast, an implementation using copper would require
N2 wires. Although the cost of fast wavelength-tunable lasers
is still an ongoing research topic [95], AWGRs are mature,
commercially available, and well established in literature [96].

In AWGRs, only a limited number of ports can be prac-
tically supported due to the walk-off of passband center
frequencies from the carrier wavelength grid and the worse
crosstalk associated with a larger number of ports (N ). A
feasible implementation of AWGR-based optical switches with
a large N has been demonstrated utilizing cascaded small-size
AWGRs [89]. Specifically, N M×M AWGRs (front-AWGRs)
are interconnected with M N ×N AWGRs (rear-AWGRs) to
effectively act as an MN × MN AWGR. Each output port
of a front-AWGR is connected to an input port of a rear-
AWGR, where the interconnection pattern can be optimized
with knowledge of port-specific insertion losses to minimize
the worst-case end-to-end insertion loss. Further up-scaling
of the switch radix can be achieved by interconnecting small
K ×K delivery-coupling switchs (DC-switchs) with multiple
copies of the MN×MN AWGRs, yielding a KMN×KMN
switching capability. This architecture has been verified by
hardware prototypes of 270×270 and 1440×1440 [97], [98],
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Fig. 4. With an AWGR, source 1 has one wavelength directly connecting it
to source 3. For more bandwidth, it can route through another intermediate
source (indirect routing) chosen in a Valiant fashion [35], [101]. Here, the
link from 1 to 7 is available (green), but the link from 7 to 3 is not (red).
The chosen path is from 1 to 6 to 3 because both links are available.

showing ∼15 dB insertion loss and below −35 dB crosstalk
suppression. In order to accommodate the 350 MCMs of our
rack, a reasonable configuration is KMN = 3 × 12 × 11 =
396. This results in 370 ports and 370 wavelengths per port
(Table II). Since AWGRs typically have a 25 GHz optical
bandwidth if the wavelength grid is 50 GHz, with PAM4, we
assume 25 Gbps per wavelength [92], [99].

Wave-selective switches [39], [100] can steer any subset of
wavelengths to a given destination, not just all (spatial) or one
(AWGR). Dynamic programming methods can avoid sending
the same frequency of light from two different sources to the
same destination. Since this is a relatively new technology,
we constructed a model shown in Table II that projects the
performance of a larger radix switch comprised of smaller
demonstrated building blocks.

3) Reconfiguration Time: Spatial and wave-selective
switches typically require centralized scheduling [101] to
reach a steady globally optimal solution. The reconfiguration
time can range from tens of nanoseconds to tens of millisec-
onds. In production HPC systems, multi-node jobs start every
few seconds and last from minutes to hours [102], [15]. Also,
job resource usage and communication become predictable
early, do not change fast, and typically remain predictable
throughout a job’s execution time [15], [102], [103], [104].
Therefore, even milliseconds of reconfiguration time is ample.

IV. CONTROL LOGIC

Here we describe how we can perform indirect routing to
increase point-to-point bandwidth using only per-source logic.

A. Indirect routing in AWGRs

AWGRs dedicate exactly one wavelength between any
source–destination pair. If a source–destination pair requires
more bandwidth than what a single wavelength can satisfy,



sources can use indirect routing, an example of which is
shown in Fig. 4. Sources can split traffic to N intermediate
destinations in parallel in order to use the bandwidth of N
wavelengths. This does not consume additional power in the
photonic components assuming lasers are constantly powered.
Sources consider indirect paths only if the direct (single-
hop) bandwidth to their desired destination does not suffice.
A source considers indirect destinations for which the direct
bandwidth from the source is available and whose wavelength
from the intermediate hop to the desired final destination is
also available. Among potentially multiple candidates, sources
can choose one in a Valiant fashion [35], [101], [105]. This is
done on a per-flow basis in order to avoid out of order packet
delivery. This routing can be modeled as a well-established
allocation problem and implemented with a low latency and
area penalty [106], [107].

Indirect routing relies on sources knowing which other
sources attached to the same AWGR are utilizing their local
wavelengths in order to identify a productive intermediate
destination. For instance, in Fig. 4, source 1 should know
whether the wavelengths from 7 to 3 and 6 to 3 are occupied.
For that, we rely on piggybacking, where traffic between a
source–destination pair periodically includes the state of the
sources’ wavelengths as a way to broadcast the local state to
the rest of the sources attached to the same AWGR [108].
In the case of an N × N AWGR, each source uses N bits
to encode which of its N local wavelengths are occupied
with one-hot encoding; Even if we piggyback this information
multiple times a second, the bandwidth impact is negligible.
For instance, if we multiplex multiple flows into a wavelength
and therefore denote 8 bits per wavelength, the status vector
per source becomes just 256 × 8 = 2048bits = 256bytes.
If, due to stale information, sources pick an intermediate
destination whose direct wavelength to the final destination
is not available, the intermediate destination performs indi-
rect routing through a second intermediate destination. If no
messages would otherwise be exchanged between a pair, thus
presenting no opportunity for piggybacking, that pair can
exchange a separate control message.

B. Spatial and Wave-Selective Switches

Spatial and wave-selective switches can use indirect routing
in tandem with reconfiguration. Indirect routing reduces the
need for reconfiguration, but intermediate destinations should
be chosen among destinations that already have a direct
connection with the final destination; otherwise, the inter-
mediate destination itself may trigger a reconfiguration. The
synergy between indirect routing and switch reconfiguration
was explored in [101]. Our proposed design based on AWGRs
avoids reconfiguration entirely (Section VI-A1).

V. DISAGGREGATED RACK DESIGN

For the rest of our study, we will model an HPC rack based
on a GPU-accelerated HPE/Cray EX Supercomputer [29]
where a rack contains 128 GPU-accelerated nodes. Each node
of our model system contains an AMD Milan CPU with

Chip type Chips per MCM MCMs per rack
CPU 14 10
GPU 3 171
NIC 203 3
HBM 4 128
DDR4 27 38
Total 350

TABLE III
THE NUMBER OF CHIPS OF EACH TYPE (CPU, GPU, NIC, HBM, OR

DDR4 MODULE) PER MCM AND MCMS IN A RACK ASSUMING 32 FIBERS
PER MCM, 64 WAVELENGTHS OF 25 GIGA BITS PER SECOND PER FIBER.
THE TARGET BER TO AND FROM MEMORY IS 10−18 (SECTION III-A).

eight memory controllers, each supporting a 3200MHz DDR4
module. Therefore, each CPU has 256 GB of memory with
a maximum bandwidth of 204.8 GBps. A compute node also
has four NVIDIA Ampere A100 GPUs. Each GPU supports
12 third generation NVLink links, each supporting 25 GBps
per direction. Each GPU also has 40 GB of co-located HBM
with a bandwidth of 1555.2 GBps. Each node also has four
31.5 GBps PCI Gen4 links to connect each GPU to the CPU.
The CPU also connects to four Slingshot 11 NICs with 200
Gbps per direction [109].

A. MCMs and Escape Bandwidth

We organize chips within each rack into an MCMs package.
For simplicity, we restrict all MCMs to have the same escape
bandwidth and we place chips of only the same type in MCMs.
We then make conservative assumptions for next generation
photonics that are entering the market today based on our
analysis of Section III. In particular, each MCM has 32 optical
fibers attached to it, a conservative assumption compared to
the five arrays of 24 fibers demonstrated in [110]. Each fiber
supports 64 wavelengths (channels) of 25 Gbps each for a
6400 GBps escape bandwidth per MCM. We vary the number
of chips per MCM such that each chip enjoys the same
escape bandwidth as in our baseline rack [29]. Therefore, our
photonic architecture does not restrict chip escape bandwidth.
Table III shows the number of chips per MCM and the total
number of MCMs containing chips of that type to satisfy chip
escape bandwidth. Each MCM contains a controller chip that
interfaces the native protocol of the disaggregated resource to
the CXL protocol over the photonic links. CXL’s overhead
and its associated FEC is included in our architecture model.

B. Optical Switches

The radix and wavelengths per port of optical switches
dictate the number of MCMs we can fully connect optically
with a single photonic switch as well as the amount of direct
(single-hop) bandwidth. From Section III-D, we pick state-of-
the-art representatives of wave-selective, cascaded AWGRs,
and spatial optical switches. Their parameters are shown
in Table IV. Even though spatial [86] and wave-selective
switches [39] are capable of 100 Gbps per wavelength, most
links available widely today do not support that (Table I). In
addition, we show that we can still satisfy bandwidth demands
with the conservative assumption of 25 Gbps per wavelength.



Switch type State of the art

Switch radix
Cascaded AWGRs [89] 370
Spatial [86] 240
Wave-Selective [39] 256

Gbps per wavelength All switches 25

Wavelengths per port
Cascaded AWGRs [89] 370
Spatial [86] 240
Wave-Selective [39] 256

TABLE IV
SWITCH CONFIGURATIONS FOR OUR STUDY.

Fig. 5. There are six parallel AWGRs that each MCM connects to. There are
at least five wavelengths (shown in red) between any particular MCM pair.

To connect our 350 MCMs using 370 × 370 AWGRs, we
can combine MCM fibers in five groups of six and connect
each group to one port of five parallel AWGRs. However, each
AWGR port would be required to handle 384 wavelengths.
To respect the per port 370 wavelength limitation of our
AWGR configuration but still satisfy the full escape bandwidth
of MCMs, we combine the remaining 14 wavelengths along
with the remaining two fibers per MCM (128 + 14 = 142
wavelengths total) that were left unconnected into an extra
parallel AWGR, for a total of six parallel AWGRs. We then
connect MCM fibers to AWGRs in a staggered manner such
that each MCM connects to each other MCM using at least five
25 Gbps direct-path wavelengths, for a direct MCM–MCM
bandwidth of 25× 5 = 125 Gbps. This is illustrated in Fig. 5.

For simplicity, because of their relative small difference and
because wave-selective switches can also achieve configura-
tions that spatial switches can, we treat both wave-selective
and spatial switches as 256 ports with 256 wavelengths per
port. Each MCM can connect to 2048

256 = 8 parallel switches.
However, because the radix of optical switches is lower than
the number of MCMs, we instantiate 11 optical switches and
connect MCMs in a staggered manner such that an optical
switch with an index I connects to MCMs that have an index
starting from (32 × I) mod 350 until (I + 255) mod 350.
This way, a small number of optical switch ports are left
unconnected to not exceed the 32 fibers per MCM. These ports
can support larger racks in the future. If the switches configure
appropriately, each MCM has at least three direct paths to any
other MCM. Each path has 256 wavelengths, thus, the direct
MCM bandwidth is 256× 3× 25 = 2304 Gbps.

VI. EVALUATION

Having evaluated in Section III-C3 that photonic switches
satisfy BER requirements, we now analyze the impact of
photonic-based intra-rack resource disaggregation on band-
width, latency, and power.

A. Bandwidth Evaluation

We distinguish two cases based on Section V-B: (A) Six
parallel AWGRs and (B) 11 parallel wave-selective switches.

1) Available Bandwidth: Using either or both indirect rout-
ing and switch reconfiguration, any one particular MCM can
use its full escape bandwidth to reach a single destination
MCM. In case (A), all wavelengths escaping an MCM can
reach the same destination MCM using only indirect routing
(since AWGRs do not reconfigure). In case (B), the photonic
switch itself can reconfigure to route 768 wavelengths di-
rectly to a destination MCM; the other 2048 − 768 = 1280
wavelengths can be configured to route indirectly through
intermediate MCMs. Therefore, while both cases (A) and (B)
can provide the same source–destination bandwidth assuming
no contention, spatial and wave-selective switches have to
use a centralized scheduler that is prone to making imperfect
decisions and imposes power and latency overheads [111]. In
contrast, case (A) only uses distributed indirect routing that
avoids much of those overheads.

Based on profiling data of a production open-science HPC
system [15], the 125 Gbps direct bandwidth between MCMs
in case (A) suffices over 99.5% of the time between CPUs
and main memory (DDR4) and virtually all the time between
memory and NICs. In addition, the bandwidth of a single
AWGR wavelength of 25 Gbps suffices 97% of the time
between CPUs and memory as well as between memory and
NICs. This means that with a 97% probability, four of the five
wavelengths between memory–CPU or NIC–memory pairs are
available to use for indirect routing in case the direct 125 Gbps
bandwidth does not suffice between another memory–CPU or
NIC–memory pair. Therefore, the probability at any one time
that the direct bandwidth does not suffice for a number of
CPU–memory and NIC–memory pairs large enough such that
they cannot find unused bandwidth in other pairs to use with
indirect routing is negligible. To further reduce the probability,
congested pairs can use direct paths from CPUs to other CPUs
that communicate minimally and NICs to other NICs that
typically do not communicate [15]. Thus, case (A) satisfies
bandwidth between CPUs, NICs, and main memory (DDR4).

For GPUs, in case (A) with indirect routing, a single GPU
can use a total of 125 × 512 = 8000 GBps to access any
one HBM or more in case a GPU is allocated more than
one HBMs. This well satisfies the 1555.2 GBps that NVIDIA
Ampere A100 GPUs in our model rack [29] access HBM with
today, and leaves 8000 − 1555.2 = 6444.8 GBps unused per
GPU. In addition, in the worst case, an MCM containing three
GPUs will communicate at full bandwidth (12 NVLink links
of 25 GBps per each of the three GPU equals 900 GBps)
to other MCMs containing GPUs. Here, if all GPUs in the
rack act similarly, we cannot rely on indirect routing from



Fig. 6. Average and maximum slowdown for each benchmark suite and input set size. The slowdown is for an additional 35ns of latency between the LLC
and main memory from the additional photonic components. Left: in-order pipeline compute cores. Right: Out of order (OOO) compute cores.

a GPU through an intermediate GPU to reach a destination
GPU. The direct 125 Gbps bandwidth between GPU MCMs
does not suffice. Therefore, each GPU can use the 6444.8
GBps of unused bandwidth to and from HBMs for indirect
routing to sufficiently cover the 900 GBps bandwidth that
would otherwise use NVLink GPU–GPU links. This leaves
6444.8 − 900 = 5544.8 GBps per GPU that can support
direct HBM–HBM communication such as due to GPUDirect
RDMA, indirect routing for other MCMs, or simply increase
available bandwidth to memory. Notably, our analysis does not
use direct optical paths from GPUs to main memory (DDR4).
Future protocols may use these paths, or they can provide even
more indirect routing bandwidth.

Our analysis shows that case (A) with AWGRs more than
satisfies bandwidth demands and avoids the need for a sched-
uler to reconfigure spatial and wave-selective switches that
would otherwise add overhead and increase reaction time.

B. Latency Evaluation

For intra-rack disaggregation, we assume an additional
latency between MCMs of 35 ns, significantly less than
full system disaggregation. That additional latency covers 15
ns for electrical–optical–electrical conversion and 4 meters
of photonic propagation at 5 ns per meter, which covers
the round-trip distance of typical two-meter tall racks (Sec-
tion III-C2). The small impact of distance to latency with pho-
tonics practically makes MCMs within a rack equidistant; this
mitigates a traditional queuing delay versus locality tradeoff
in job scheduling [63] and reduces the need for hierarchical
memory [28], [27]. Indirect routing would increase latency
by a few extra ns, but the probability of routing indirectly is
low. Also, because 35 ns is orders of magnitude lower than
system-wide network latency, we do not consider the effect
of the additional 35 ns on inter-rack communication (such as
traditional MPI) through NICs.

1) CPU Evaluation: We experimentally quantify the impact
of the additional latency on application performance with in-
order pipelined and out-of-order (OOO) compute cores. In-
order cores provide clear insight into the impact of memory
latency because in-order cores do not mask latency, whereas
OOO cores are representative of modern systems. We use

full system simulation in Gem5 [112] of x86 compute cores
running an Ubuntu 18.4 guest OS. We configure the cache
hierarchy to match the CPUs of our model HPC rack [29].
We calculate the slowdown of application execution time
when we add 35 ns of latency between the LLC and main
memory, compared to a baseline system with no additional
latency to memory. Latency is the only potential source of
application slowdown since our architecture satisfies the full
escape bandwidth of each chip.

We evaluate the impact to three benchmark suites: PAR-
SEC 3.1 [113], NAS parallel benchmarks 3.4.1 [114], and
Rodinia [115]. For PARSEC, we evaluate small, medium, and
large input sets. For NAS, we evaluate input sizes “A”, “B”,
and “C”. For Rodinia, we use the single default input set.
These benchmark suites have been widely used and contain a
large variety of computation kernels that are representative of
key HPC applications such as stencils, graph processing, linear
algebra, computational mathematics, grid, sorting, and many
others that have been observed to be important workloads in
NERSC systems [116]. Overall, we use 57 CPU benchmarks
for a broad representation. We use a single compute core to
better focus on the effect of the additional latency to memory.

Fig. 6 shows slowdown percentages for benchmarks across
our three suites for an in-order core on the left and an OOO
core on the right. As shown, NAS benchmarks are negligibly
affected by the increased latency from photonics. Rodinia
benchmarks have an average slowdown of 16% for both in-
order and OOO cores. Benchmark NW shows the largest
slowdown of approximately 79% for in-order cores and 55%
for OOO cores. For Parsec benchmarks with large inputs, the
average slowdown is 23% for in-order cores and 41% for
OOO cores. However, for medium inputs, those slowdowns
drop to 13% and 24%, respectively, because with medium
inputs more benchmarks have a working set that fits in the
LLC. The overall average slowdown for Parsec across input
sizes is 16% for in-order cores and 27% for OOO cores.
Across all benchmarks of the three suites and input sizes, the
average slowdown with in-order cores is 15% and with OOO
cores 22%. These slowdowns are considerably less than the
slowdowns quoted in past work for full-system disaggregation



(Section II).
Fig. 7 illustrates that the performance penalty correlates

with the LLC miss rate. In fact, for Parsec with large inputs,
the Pearson product-moment correlation coefficient is 0.89,
while for Rodinia 0.76. For all Parsec benchmarks with small,
medium, and large inputs, the coefficient is 0.822. While not
shown, OOO cores show a similar behavior partly because
they do not substantially change the LLC access patterns
or working set sizes. In fact, for Rodinia with OOO cores,
the correlation factor is 0.93, while for Parsec 0.75. All
these coefficients indicate a strong correlation. In addition to
LLC miss rate, the ratio of memory accesses to non-memory
instructions is a key factor to an application’s slowdown; OOO
cores de-emphasize this parameter slightly and stress the LLC
miss rate more, as mentioned above.

Furthermore, we notice that the cycles the LLC spends in a
miss increase by 50% to 150% across benchmarks for in-order
and OOO cores. We further confirm the importance of LLC
miss rates to performance by observing that streamcluster with
small and medium inputs has an LLC miss rate of less than
0.5% and a negligible slowdown. However, streamcluster with
large inputs has a working set that does not fit in the LLC,
causing an LLC miss rate of over 60% and thus a slowdown
of about 57%.

Focusing on the performance of individual benchmarks, for
in-order cores, only three benchmarks exceed a 25% slowdown
in each of Rodinia and Parsec (large) whereas for OOO
cores only two benchmarks in Rodinia and three in Parsec
(large). Therefore, the majority of benchmarks are impacted
lightly, even without mitigation strategies. For more affected
benchmarks, there is a range of mitigating hardware and
software techniques [117], [118], [119], [120]. Our results
motivate more memory latency-tolerant compute units for
resource-disaggregated systems.

2) Sensitivity to Latency: Thus far, we assumed 35 ns to
cover 4 meters, which is the worst-case intra-rack distance in
modern systems. Here, we assess whether improved photonics
or shorter rack distances with lower latencies would greatly
benefit application performance by comparing performance for
25 ns, 30 ns, and 35 ns. Results are shown in Fig. 8. For both
in-order and OOO cores, reducing the additional latency to 25
ns from 35 ns reduces application slowdown by about half.

3) GPU Evaluation: To evaluate the impact of the ad-
ditional latency between GPUs and HBM, we extend the
publicly available version of PPT-GPU [121] toolkit to account
for the additional latency between the main memory of the
GPU and the LLC. In our evaluation, we model one NVIDIA
A100 GPU [122] running a total of 24 applications with
1525 kernels from different benchmark suites. We run 11
applications from Rodinia [115] and ten applications from
Polybench [123]. Polybench applications are linear algebra
applications that stress the GPU cache and main memory.
Furthermore, we run AlexNet, GRU, and LSTM from the
Tango deep network [124] benchmark suite. We use the default
input sizes and configurations that came with the benchmarks,
detailed in [121]. We run applications using the “SASS” model

and extract memory and instruction traces for each application.
Fig. 9 shows the effect of different latencies on the per-

formance of our GPU benchmarks. We compare performance
in terms of the total predicted cycles. The average slowdown
across all 24 GPU applications is 5.35%. In addition, Fig. 10
shows that the slowdown (shown for 35 ns) has a strong
correlation with (i) the LLC miss rate and (ii) the percentage
of transactions the HBM receives over the total number of
instructions, indicated by a correlation factor of 0.87 and 0.79,
respectively. In contrast, it has no significant correlation with
the percentage of memory request instructions over the total
number of instructions because the caches filter a different
percentage of those requests.

4) CPU–GPU Comparison: We illustrate the difference in
memory latency tolerance of in-order CPUs, OOO CPUs, and
GPUs in Fig. 11 for the intersection of Rodinia benchmarks
that correctly complete on both CPUs and GPUs with their
default input sets. As shown, GPUs tolerate the additional 35
ns latency better with a maximum slowdown of 12%. This is
promising for resource disaggregation given the steady growth
of GPUs in HPC systems.

C. Power Overhead

We calculate the per-rack power overhead of our photonic
solution for 350 MCMs with 2048 escape wavelengths from
each MCM and 25 Gbps per wavelength. If we use demon-
strated comb laser transceiver pairs that consume approx-
imately 0.5 pJ/bit including laser power [125], [126], and
include the switches of Table II that consume in total for
all parallel switches no more than 1 kW, the total additional
power for all photonic components is approximately 11 kW.
Our analysis pessimistically assumes photonic components are
constantly on. Considering that the power consumption of an
A100 GPU is approximately 300 W, an AMD Milan CPU
250 W, and 512 GB of DDR4 memory in a single node
approximately 192 W, the power overhead for our photonic
solution is approximately 5%.

D. Comparison With Electronic Switches

The electronic SERDES signaling rate per wire is only 112
Gbps for a short reach. Also, typical CXL or PCIe signaling
rates top out at 35 GHz/wire. In fact, as SERDES rates
increase, the distance that those signals can reach reduces to
even a few millimeters due to the resistance and capacitance
of copper wires. Photonics break the reach limitations of
copper and, with co-packaging, can achieve 4 Tbps per mm
of shoreline on the chip die.

Focusing on electronic switches, Rosetta [127] and Infini-
band [128] have a measured per hop latency of no less than
approximately 200 ns. Emerging PCIe Gen5 switches add just
10 ns per hop [129], but only support 100 lanes per switch.
To fully connect our disaggregated rack, we consider a two-
level tree network with four hops (the top level is composed
of an internal two-hop subnetwork). These four hops will be
in addition to the 35 ns we previously evaluated for FEC
and propagation (propagation delay is comparable between



Fig. 7. Slowdown of Parsec benchmarks with large inputs (left) and Rodinia benchmarks (right) for in-order cores. In addition, each benchmark’s average
LLC miss rate is shown. Benchmarks with larger miss rates produce higher slowdowns.

Fig. 8. Slowdown for 25 ns, 30 ns, 35 ns of additional LLC-memory latency for in order (left) and OOO cores (right).

Fig. 9. Slowdown for 25 ns, 30 ns, and 35 ns of additional LLC–memory
latency for different GPU benchmarks.

copper and photonic for intra-rack distances), since our pho-
tonic solution uses switches with negligible traversal latency.
Therefore, the additional latency for disaggregation in the PCIe
case becomes 85 ns compared to 35 ns for our photonic
architecture. Finally, we also consider the latency through one
hop of an Anton 3 network, which is approximately 90 ns

Fig. 10. Slowdown for 35 ns, LLC miss rate, and memory (HBM) transactions
over total instructions per GPU benchmark.

by average [130], though scaling up to match our rack size
would require multiple hops. These latencies are optimistic
thus favorable for electronic switches considering that recent
small-group prototypes using CXL report a minimum of 142
ns latency [26]. Scheduler decisions or congestion can cause



Fig. 11. Slowdown for CPU and GPU Rodinia benchmarks.

Fig. 12. Speedup of a system that uses emerging photonics to implement
intra-rack resource disaggregation that adds 35 ns of additional latency to
and from memory compared to a similar system that uses modern electronic
switches and adds 85 ns of memory latency instead.

higher worst-case (tail) latencies that may further penalize
application performance. This assumes that we connect only
one lane per endpoint, which carries 32 Gbps for PCIe Gen5
and 29 Gbps for Anton 3. This is multiple times less than the
per-chip bandwidth of our photonic architecture.

Fig. 12 shows the speedup of a system that implements
intra-rack disaggregation with emerging photonics with an
additional 35 ns latency to and from DDR4 and HBM memory
compared to a similar system that uses modern electronic
switches instead. 85 ns is currently the lowest latency for
electronic switches and corresponds to a four-hop PCIe Gen5
network or a single-hop Anton 3 network. As shown, for CPU
benchmarks, if we only take into account “medium” from
PARSEC to avoid counting PARSEC benchmarks three times,
the average speedup for in-order cores is 9% and the maximum
41%. For OOO compute cores, the average is 15% and the
maximum 45%. We notice that electronic switches increase
the LLC’s total miss cycles by approximately 100% to 150%.
For GPUs, the average and maximum are both 61%. These
results show that the reduced latency of photonics compared
to electronic switches has a significant application impact,
making disaggregation with photonics more attractive.

E. Iso-Performance Comparison

Based on our performance evaluations, we estimate that
in order to preserve system-wide average computational
throughput as our baseline GPU-accelerated HPE/Cray EX
system [29], our photonically-disaggregated system requires
6% more GPUs and 15% more CPUs, assuming in-order
CPUs which is the worst case. However, intra-rack resource
disaggregation allows our rack to have an average 4× fewer
memory modules and 2× fewer NICs [15]. Combining the
two effects, our disaggregated rack has 1075 total modules
compared to 1920 in the equal-performance baseline system,
an approximately 44% reduction. With such a reduction, the
reduced overhead for power distribution and cooling more than
compensates for the negligible power increase from photonics.
Alternatively, we can preserve all rack resources and instead
add 128 of a combination of CPUs and GPUs (with their
HBMs), which is only an approximately 7% chip increase
compared to a rack of the baseline system. Doing so doubles
computational throughput.

VII. DISCUSSION

Our study highlights that more latency-tolerant CPUs [131]
and GPUs [132] would make resource disaggregation more
attractive. This insight is also important for systems with
compute accelerators and field programmable gate arrays
(FPGAs). FPGAs can better tolerate memory latency by
customizing their compute logic [133], prefetching [134],
multithreading [135], and burst scheduling [136]. Accelera-
tors can use customized prefetching [137], [138] and other
techniques [139], [140], [141].

While Perlmutter is a top HPC system, other systems should
repeat our analysis to design their disaggregation hardware.
Chips with higher escape bandwidths motivate fewer chips
per MCM and more parallel AWGRs, but do not increase
chip-to-chip photonic latency. The diversity of bottlenecks
in HPC applications is a motivating argument for resource
disaggregation that provides the ability to change the balance
of node resources and thus support the diversity of scenarios
that are typically present in a mixed-workload system.

VIII. CONCLUSION

We discuss a resource-disaggregated HPC rack that uses
modern photonic links and switches to meet BER and band-
width requirements of HPC applications, has just a 5% power
overhead, uses distributed indirect routing, is faster than an
equivalent architecture with electronic switches, and allows
an iso-performance system to have 44% fewer chips.
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