
Autonomy Loops for Monitoring, Operational Data
Analytics, Feedback, and Response

in HPC Operations
Francieli Boito∥, Jim Brandt†, Valeria Cardellini

x
, Philip Carns∗, Florina M. Ciorba‡,

Hilary Egan
xviii

, Ahmed Eleliemy‡, Ann Gentile†, Thomas Gruber
xvi

, Jeff Hanson
xiv

, Utz-Uwe Haus
xxi

,
Kevin Huck§, Thomas Ilsche††, Thomas Jakobsche‡, Terry Jones

xiii
, Sven Karlsson∗∗, Abdullah Mueen

xvii
,

Michael Ott
xii

, Tapasya Patki
xix

, Ivy Peng
xx

, Krishnan Raghavan∗, Stephen Simms¶, Kathleen Shoga
xix

,
Michael Showerman

xv
, Devesh Tiwari

xi
, Torsten Wilde

xiv
, and Keiji Yamamoto‡‡

∥University of Bordeaux, CNRS, Bordeaux INP, INRIA, LaBRI, Talence, FR;
†Sandia National Laboratories, CA and NM, US;

x
University of Rome Tor Vergata, IT;

∗Argonne National Laboratory, IL, US; ‡University of Basel, Basel, CH;
xviii

National Renewable Energy Laboratory, CO, US;
xvi

Erlangen National High Performance Computing Center (NHR@FAU), DE;
xiv

Hewlett Packard Enterprise, DE and US;
xxi

Hewlett Packard Labs, EMEA Research Lab, CH;
§University of Oregon, Eugene, OR, US; ††Technische Universität Dresden, DE;

xiii
Oak Ridge National Laboratory, TN, US; ∗∗Technical University of Denmark, DK;

xvii
University of New Mexico, NM, US;

xii
Leibniz Supercomputing Centre, DE;

¶Lawrence Berkeley National Laboratory, CA, US;
xx

KTH Royal Institute of Technology, SE;
xix

Lawrence Livermore National Laboratory, CA, US;
xv

University of Illinois, IL, US;
xi

Northeastern University, MA, US; and ‡‡RIKEN R-CCS, JP
Email: ∥ francieli.zanon-boito@u-bordeaux.fr, † {brandt, gentile}@sandia.gov,

x
cardellini@ing.uniroma2.it,

∗ {carns, kraghavan}@mcs.anl.gov, ‡ {florina.ciorba, ahmed.eleliemy, thomas.jakobsche}@unibas.ch,
xviii

hilary.egan@nrel.gov,
xvi

thomas.gruber@fau.de,
xiv {jeff.hanson, torsten.wilde}@hpe.com,

xxi
uhaus@hpe.com,

§ khuck@cs.uoregon.edu, †† thomas.ilsche@tu-dresden.de,
xiii

trj@ornl.gov, ∗∗ svea@dtu.dk,
xvii

mueen@unm.edu,
xii

ott@lrz.de,
xix {patki1,shoga1}@llnl.gov,

xx
ivybopeng@kth.se, ¶ ssimms@lbl.gov,

xv
mung@illinois.edu,

xi
d.tiwari@northeastern.edu, and ‡‡keiji.yamamoto@riken.jp

Abstract

Many High Performance Computing (HPC) facilities have developed and deployed frameworks in support of continuous
monitoring and operational data analytics (MODA) to help improve efficiency and throughput. Because of the complexity and
scale of systems and workflows and the need for low-latency response to address dynamic circumstances, automated feedback and
response have the potential to be more effective than current human-in-the-loop approaches which are laborious and error prone.
Progress has been limited, however, by factors such as the lack of infrastructure and feedback hooks, and successful deployment is
often site- and case-specific. In this position paper we report on the outcomes and plans from a recent Dagstuhl Seminar, seeking
to carve a path for community progress in the development of autonomous feedback loops for MODA, based on the established
formalism of similar (MAPE-K) loops in autonomous computing and self-adaptive systems. By defining and developing such
loops for significant cases experienced across HPC sites, we seek to extract commonalities and develop conventions that will
facilitate interoperability and interchangeability with system hardware, software, and applications across different sites, and will
motivate vendors and others to provide telemetry interfaces and feedback hooks to enable community development and pervasive
deployment of MODA autonomy loops.

Index Terms

high performance computing, monitoring and operational data analytics, autonomy loops, MAPE-K

I. INTRODUCTION

Using monitoring data to extract actionable insights on system behaviors regarding facilities and building infrastructure, sys-
tem hardware, system software, and applications has been referred to as monitoring and operational data analytics (MODA) [1].
Many high performance computing (HPC) and data centers have developed and/or deployed data collection frameworks that
facilitate continuous and holistic monitoring and analysis (e.g., [2]–[14]) in support of MODA goals. While the monitoring
component of MODA is well established and deployed, the analysis part is still performed mostly by visual inspection,
and feedback typically involves a human in the loop [4], [5], [15] to make analysis-based responses. As HPC systems are
growing larger and ever more complex, manually analyzing high-dimensional time-series operational data becomes intractable

ar
X

iv
:2

40
1.

16
97

1v
1 

 [
cs

.D
C

] 
 3

0 
Ja

n 
20

24



without automation. Moreover, having a human in the loop limits the speed of response and consequently, the opportunities
for feedback-driven improvements.

Some HPC and data centers have started to work on automated feedback and response functionalities (e.g., [6]–[8], [16]–
[24]). However, these are often one-off approaches that are limited in the scope of data and responses and dependent on the
specifics of particular use cases, architectures, available actuators for responses, and so forth. It has become evident that closer
collaboration would enable the community to better leverage aggregate work and experience to maximize impact.

With this in mind, a cross-section of the HPC ecosystem gathered at Schloss Dagstuhl in April 2023 for a seminar on
“Driving HPC Operations With Holistic Monitoring and Operational Data Analytics” [25], with the goal of advancing the field
and establishing a community path forward. During the seminar, we converged on the high-level functionalities of monitoring,
analysis, feedback, and response to comprise MODA-specific autonomy loops, as illustrated in Fig. 1. Then, a set of important
use cases, across multiple sites, for autonomy loops were identified, which the group plans to develop as prototypes. Through
the prototypes, we intend to extract commonalities and develop conventions that will facilitate interoperability with system
hardware, software, applications, etc., across different sites. The use cases and established conventions will then be used to
motivate vendors and others to provide the necessary telemetry and feedback hooks.

In this paper we posit that bringing formalism to MODA autonomy loops will help the community build more generalized
interfaces, infrastructure, and interactivity approaches enabling reusable and more comprehensive (in terms of system, applica-
tions, and facility components and response opportunities) approaches to self-adaptivity in HPC systems. We intend to leverage
the formalism defined in the fields of autonomous computing and self-adaptive systems [26], in the form of MAPE-K loops:
Monitor, Analyze, Plan, and Execute over some Knowledge [27], because of the similarity to our concepts of monitoring,
analysis, feedback, and response. This would both enable a common context for thinking about the problem and allow us
to take advantage of the MAPE-K architectural design patterns. We provide background on the autonomy loop approach and
considerations to help identify opportunities for developing generalizable MAPE-K loops-based infrastructure and approaches
for MODA. We highlight details for a foundational case that we intend to tackle as a community.

Operational 
Data Analytics

Building 
Infrastructure

System 
Hardware

System 
Software

Applications

Feedback

Holistic 
Monitoring

Response

Sensors

Actuators
/

Hooks

Visualize

Diagnose

Forecast

Fig. 1: Vision of holistic monitoring and operational data analytics.

II. AUTONOMY LOOP CASE STUDY METHODOLOGY

MAPE-K refers to the architectural pattern using Monitor, Analyze, Plan, and Execute loops over some Knowledge, introduced
in the autonomic computing (AC) initiative by IBM [27] and used in self-adaptive systems [26]. The AC concept is based on
constant checking and optimization of system status through adaptive decisions. The AC reference model includes a managed
system, sensors, actuators, a managing system (utilizing MAPE), and Knowledge about the managed system and its environment
(where the latter is not under control). In our context a managed system is any HPC hardware or software system in which
sensors provide data about the HPC system, and actuators are response hooks in building infrastructure, system hardware,
system software, or applications. Monitor refers to the process of collecting data about an element of interest, for example,
an application. Analyze and Plan refer to analyzing the collected data and planning an appropriate response, for example,
checkpointing. Execute refers to carrying out the planned response through the use of response hooks. Knowledge is pervasive
in the components of the MAPE-K loop, as shown in the “classic” (leftmost) loop in Fig. 2. It can include, for example, progress



rate of an application compared with that of a previous run, as well as knowledge gained from assessing the effectiveness of
the Plan and Execute phases of previous loop iterations.

M

A P

EK

Sensors Actuators

Managing System

Managed System

Environment/Context

(a) Classical
MAPE-K loop

A P

M EM E …

Managed System Managed System

(b) master-worker MAPE-K loop

…M EA P

M E

Managed System

A P

M E

Managed System

A P

M E

Managed System

Managed System

A P

(c) Fully decentralized, coordinated
MAPE-K loop

…M E

Managed System

A P

M E

Managed System

A P

M EA P

Managed System

(d) Hierarchical MAPE-K loop

Fig. 2: Design Patterns for MAPE-K loops. Leveraging the MAPE-K formalism will facilitate application of the designs to
MODA autonomy loops.

Arbitrarily complex autonomous actions can be supported by different decentralized architectural design patterns for MAPE-
K loops [28], in which the MAPE functionalities can be realized by multiple components that coordinate with one another
in different ways. Some established patterns are illustrated in Fig. 2, which shows, from left to right, the master-worker, the
coordinated control, and the hierarchical control patterns1. The first decentralizes only Monitor and Execute; the centralized
Plan can achieve global objectives and guarantees but suffers from limited scalability, especially when managing a complex
system. The coordinated control pattern relies on fully decentralized MAPE loops that control different parts of the managed
system and have the potential of good scalability and robustness, but decentralized Plan policies may suffer from instability
and side-effects due to indirect interactions. In the hierarchical control pattern, decentralized MAPE loops are organized in
a hierarchy, with separation of concerns and time scales and aiming to improve scalability without compromising stability;
however, division of control is not trivial.

Previous works have demonstrated the potential for autonomy loops to improve efficiency in HPC operations. Examples
include throttling network or storage traffic in response to observed congestion or optimizing cache policies in response to
observed memory access patterns. Progress has been limited, however, by available data, hooks, and opportunities for generality.
To further such efforts, we seek to identify commonalities and conventions that could drive the development of widely reusable
and interoperable infrastructure for MODA autonomy loops, leveraging the MAPE-K formalism and architectures. A unified and
generalized approach to solutions would simplify integration of autonomy loop components and functionalities, supporting a
number of complex subsystems, and would avoid an approach involving a confusing mix of disparate solutions. Considerations
in determining designs for MODA cases would include access to monitored components and response options, response latency,
desire for separability of functionality, need for coordination, and scalability and robustness.

Beyond design and development, establishing autonomy loops within HPC software stacks and infrastructure will also depend
on satisfying concerns of security, trust, and validity. We therefore propose the following five key questions be considered in
approaching autonomy loop use cases to help identify opportunities for broader impact:

i) Can the autonomy loop be described in terms of high-level components with distinct responsibilities?
ii) What interfaces or data formats would enable those components to be interchangeable?

iii) What sort of open datasets would facilitate the use case?
iv) How would validation be performed and user and system administrator trust be earned in order to enable autonomous

actions?
v) How would practitioners be incentivized to engage and provide additional support (such as providing functionality and

hooks for data, feedback, and responses) and usage of the loops in production?

III. DRIVING GENERALIZATION THROUGH INITIAL CASE

We posit that a collaborative community approach to the development of MODA autonomy loops will further development,
adoption, and production deployment. To this end we have identified an initial set of specific use cases that could benefit from
use of autonomy loops and that target scenarios prevalent in production HPC. The diversity of cases is intended to enable
exploration of commonalities that could drive wider interoperability. The cases are as follows:

1) Maintenance: Responses to system maintenance events to ensure continuity of running jobs.
2) I/O QoS: Refinement of a storage system whose users receive QoS allocations through the use of MAPE-K loops of

decreasing size and increasing automation, from rough estimates over a research campaign to parametric alteration based

1We omit the Knowledge component and how it is used and shared by the MAPE components to focus on the interaction between MAPE loop components
and across MAPE loops and decrease the complexity. How Knowledge can be stored and exchanged among MAPE components paves the way for additional
patterns.



on profiling. The goal would be to adapt QoS parameters based on the current application performance and system I/O
load to decrease interference, reduce tail latency, and provide more consistent results for deadline dependent workflows.

3) OST: Response by an application, from continuous evaluation of storage back-end write performance, to close files using
a poorly performing OST object storage target (OST), that is, a storage volume of a parallel filesystem such as Lustre).
The application would then reopen them using different OSTs, or explicitly request to avoid that OST in a case where
the filesystem would allow it.

4) Misconfiguration: Detection of misconfiguration of user jobs such as unintended mismatch of threads to cores, underuti-
lization of CPUs or GPUs, or wrong library search paths. Depending on the type of misconfiguration, users could either be
informed about their mistake along with suggestions for better configurations, or the misconfiguration could be corrected
on the fly.

5) Scheduler: Modification of a job’s allocated run time based on continuous evaluation of its projected time to completion.
This would also be extended to enable the scheduler to signal an application to checkpoint based on the time needed to
write a checkpoint and the time remaining in an allocation.

We will initially focus on the Scheduler case to define and develop our first set of common components. The MAPE-K
autonomy loop is described here and illustrated in Fig. 3:

• Monitor progress of an application. This could be via markers that could be output by an application (e.g., simulation
time-step) or via progress information based on function calls or any application-relevant convergence criterion.

• Analyze the progress relative to representative historical application run times, which would need to be collected and
stored along with appropriate metadata. Given an application, a strategy is also required to map the application to a set
of measurements of behavioral characteristics to enable comparison against past and future runs.

• Plan action to be taken. This should take into account prior Knowledge of running time and progress rate (which might
have to be inferred from similar jobs with different input decks). This may also take into account system state and expected
changes due to projected changes in workload and associated resource utilization.

• Execute the determined response. Although the determined response may be to inform an application that it needs to
request a run time extension or even to make the request on behalf of an application, the scheduler may deny the request
or provide a shorter extension than requested.

• Assess the Knowledge about the success of the Plan and refine the Knowledge through subsequent Monitoring of the
job’s progress, iterating the MAPE-K loop. Note that this needs awareness of whether or not the request was honored by
the scheduler.

Analyze 
application 
progress

Applications

Plan

Monitor 
application 
progress

Execute

Markers

Hooks

Visualize

Diagnose

Prior
knowledge

(running time,
progress rate)

Fig. 3: Scheduler use case and its MAPE-K loop components.

The Scheduler case was chosen as the initial case for several reasons. First, we can gain insight into the variation of
progress markers and run time through experimentation. This data should be straightforward to obtain and will be foundational
to assessing the potential value of the work and developing the logic for the Plan.

Second, we can obtain reasonable initial functionality with a single “classical” autonomy loop per application with loosely
coupled implementations needed for the interactions between MAPE-K components. Interactions necessary for the Monitor
and Analyze phases could be simply done by having the application’s rank 0 drop time-steps periodically to a file or memory



region to then be used in the progress assessment. Thus the components performing the progress assessment and determining
the action do not have to be in the same process space as the application. Also, the components performing the Execute phase
for scheduler interaction only require the rights to invoke the scheduler to increase the wall time for the job. For typical HPC
schedulers, such as SLURM [29], this is an existing command-line functionality.

Third, a few simple measurable quantities can be used to forecast time to completion which will be used, in conjunction
with the remaining allocation time, to plan what action, if any, to take. These same quantities can also be used to assess the
effectiveness of the Plan (e.g., over/under-estimation of a change to time allocation).

Fourth, a clear path exists to explore extensibility of the design and interactions from the simple prototype. Including an
option for invoking asynchronous checkpointing would drive design of increasingly complex Plan and Knowledge components
and application interactions.

Exploring extensibility will be foundational for developing our other cases as well. The following examples describe such
relationships between the Scheduler case and our other four target cases: 1) the Maintenance case would use equivalent
application interaction as invoking asynchronous checkpointing, 2) the I/O QoS case would utilize the same capability for
storage/retrieval/comparison of behavioral attributes of an application (e.g., I/O bandwidth profile) along with application
interaction with extension to provide guidance on appropriate times to perform I/O, 3) the OST case would again utilize the
capability for storage/retrieval of behavioral attributes in order to have a reference for expected operation along with application
interaction to inform another response, and 4) the Misconfiguration case would likewise require storage/retrieval of behavioral
attributes and relationships to compare an application run with expectations along with application interaction and, potentially,
scheduler interaction.

The development process for the Scheduler use case will follow the questions in Section II:
i) The monitoring system will Monitor the application progress, potentially with help from the runtime system or instrumen-

tation of the application. A yet-to-be-developed service will Analyze the progress and Plan the intervention. The scheduler
will Execute the run-time extension.

ii) The actual interfaces will be determined during development, but tools and frameworks already exist that could be leveraged.
The relationships, listed above, between the Scheduler and other cases will help determine possibilities for common
interfaces and interoperability.

iii) We plan to release the exploratory datasets used to gain insight into the variation of progress markers and run-time variation
as open datasets.

iv) Validation of the run-time extension will be clear through comparison of the time extension with the actual application run
time. Trust by users and system administrators would require that other workloads and jobs were not adversely impacted
by the extension mechanism. This could be done by additional controls, such as limits on the number and overall time of
extensions for a single application, and evaluations such as run time overestimations that would have resulted in untaken
backfill opportunities.

v) Adopting an autonomy loop that increases their jobs’ execution success would incentivize users. Additional statistics, such
as increase in completed and decrease in resubmitted jobs, would incentivize administrators to deploy it. Success in the
Scheduler case could also motivate developers and users to implement hooks for a checkpointing response as well, since
a job would not be extended indefinitely.

IV. DESIGN CHANGES FOR AUTONOMOUS MODA

Autonomy loops are the “killer case” for the MODA community. The ability to continuously make and enact data-driven
decisions without requiring a human in the loop motivates the collection, analysis, and retention of holistic data at higher
fidelity than ever before. This will cause both changes in and opportunities for design strategies for MODA autonomy loops.

Increases in core counts have long been seen as providing an opportunity to co-locate analytics closer to compute resources.
However, this opportunity has not been widely realized. Our autonomy use cases target new and tighter interactions with
applications and system software both for gathering information and enacting response. Ideally, an established standardized set
of interfaces for each component type would make the components interchangeable and the loop(s) modular, however, different
requirements and associated implementations (e.g., latency, sampling rates, cardinality, high availability for monitoring) may
drive multiple interfaces and interactions. Therefore, interoperability and interchangeability are key design considerations. We
will support these by ensuring well-defined and documented interfaces for interactions we develop.

Increasing possibilities for low-latency actions will provide more motivation for in situ analytics and decision-making, and
hence storage in MODA designs. This will also drive more complex MAPE-K design patterns than first investigated in the
Scheduler case. Distributed autonomy, where each component has some decision-making capability and decision-executing
authority (as discussed in Section II), will be useful for robust and resilient operations. Agent-based models have shown
this in the context of distributed systems [30]. Resilience is essential in HPC systems where operations must persist through
component and subsystem failures.



Failure prediction and anomaly detection have long been MODA analysis goals. Our cases further analytics in continuous
performance characterizations and comparisons. Our storage architecture decisions will then increasingly consider metadata
representations for models, moving beyond traditional considerations of insert rates for raw time-series data.

Relatedly, our analyses will also be expanded to include determination of confidence in the models for decision-making
and assessment of the effectiveness of the Plan and Execute phases. Confidence measures are required as we move beyond
human-in-the-loop decision-making, particularly for safe operations of power and energy controls.

Note that autonomy loops in HPC operations do not have to replace the human-in-the-loop approach, and could complement
it. A human-on-the-loop approach would have the loop continue without waiting for user and administrator input, but sending
them notifications and explanation about decisions that allow for observing its effects when necessary [31]. The decision-making
would then also include execution of contingency plans for when the humans are absent.

The HPC domain should look to AI tools, algorithms, and generated models to help drive the automated decision process.
However, focus should be on careful selection of efficient models and modeling parameters that fit HPC data. For instance, the
present outlook in the AI community is the use of large models with millions of parameters. However, such models may not
be efficient when complex optimizations for real-time decisions must be made. In fact, the constantly evolving nature of the
environment requires continual/lifelong AI that can evolve rapidly with small overhead [32]. Moreover, precision requirements
must be built into these AI models, and the lack of interpretability and explainability must be addressed to get robust AI models.
Furthermore, use of AI for autonomous loops may impact resources allocated to applications. In summary, simply applying
the present AI tools and algorithms will not be sufficient and ample opportunities exist for further design and development.

V. CONCLUSION

In this position paper we have reported on the outcomes and paths forward from a recent Dagstuhl Seminar, seeking to
carve a path for community progress on the development of autonomous feedback loops for MODA, based on the established
formalism and architecture of MAPE-K loops in autonomous computing and self-adaptive systems.

We are presenting our position early in our work process in order to get input from the wider HPC community and to
engage collaborators interested in determining interfaces for HPC autonomy loop components and developing interoperable
and interchangeable components that utilize those interfaces.

Additionally, we seek to facilitate development by encouraging testbeds to be defined and made available to the community.
The main obstacle to exploration of autonomy loops is the fear of potentially intrusive changes to the system behavior, often
deemed unacceptable on production systems. Nevertheless, it may be possible to utilize stranded resources of HPC systems
that are being decommissioned for a limited time, or include experiments during bring-up or extended maintenance. However,
we believe that the best approach is to include MODA targets into the system definition itself. Such efforts will be propelled by
well-defined modularization of MAPE-K components and their associated APIs, so that individual components can be replaced
while preserving appropriate system boundaries, enabling appropriate auditing and trust levels. The OpenCUBE project [33]
is aiming to provide such opportunities, by defining a process to submit MAPE-K loop experiments to be executed on their
testbed system.

ACKNOWLEDGMENT

The authors thank Schloss Dagstuhl for hosting Seminar 23171 “Driving HPC Operations With Holistic Monitoring and
Operational Data Analytics.”

The work is jointly supported by the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 957407, DAPHNE).

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-851925).

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE- NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

This work was funded by the European Union under the Horizon Europe program’s OpenCUBE project, grant agreement
101092984.



REFERENCES

[1] A. Netti, W. Shin, M. Ott, T. Wilde, and N. Bates, “A conceptual framework for HPC operational data analytics,” in 2021 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2021, pp. 596–603.

[2] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed metric service: A scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” in SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, 2014, pp. 154–165.

[3] A. Netti, M. Müller, A. Auweter, C. Guillen, M. Ott, D. Tafani, and M. Schulz, “From facility to application sensor data: Modular, continuous and
holistic monitoring with DCDB,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1–27.

[4] J. Li, G. Ali, N. Nguyen, J. Hass, A. Sill, T. Dang, and Y. Chen, “Monster: An out-of-the-box monitoring tool for high performance computing systems,”
in 2020 IEEE International Conference on Cluster Computing, ser. CLUSTER ’20, 2020, pp. 119–129.

[5] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms, Z. Nault, and P. Carns, “UMAMI: A recipe for generating meaningful metrics
through holistic I/O performance analysis,” in Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems, ser. PDSW-DISCS ’17. New York, NY, USA: ACM, 2017, pp. 55––60.

[6] E. Arima, A. I. Comprés, and M. Schulz, “On the convergence of malleability and the HPC PowerStack: Exploiting dynamism in over-provisioned and
power-constrained HPC systems,” in High Performance Computing. ISC High Performance 2022 International Workshops. Springer, 2022, pp. 206–217.

[7] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end I/O monitoring on a leading
supercomputer,” in 16th USENIX Symposium on Networked Systems Design and Implementation, ser. NSDI ’19. Boston, MA: USENIX Association,
2019, pp. 379–394.

[8] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O performance of HPC applications with autotuning,” ACM Trans. Parallel Comput., vol. 5,
no. 4, 2019.

[9] N. Bourassa, W. Johnson, J. Broughton, D. M. Carter, S. Joy, R. Vitti, and P. Brandt, “Operational data analytics: Optimizing the national energy research
scientific computing center cooling systems,” in Proceedings of the 48th International Conference on Parallel Processing: Workshops, 2019, pp. 1–7.

[10] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thompson, and M. Wong, “Resource monitoring and management with OVIS to enable HPC in
cloud computing environments,” in 2009 IEEE International Symposium on Parallel & Distributed Processing, 2009, pp. 1–8.

[11] O. Aaziz, B. Allan, J. Brandt, J. Cook, K. Devine, J. Elliott, A. Gentile, S. Hammond, B. Kelley, L. Lopatina, S. Moore, S. Olivier, K. Pedretti,
D. Poliakoff, R. Pawlowski, P. Regier, M. Schmitz, B. Schwaller, V. Surjadidjaja, M. S. Swan, N. Tucker, T. Tucker, C. Vaughan, and S. Walton,
“Integrated system and application continuous performance monitoring and analysis capability,” Sandia report, 9 2021. [Online]. Available:
https://www.osti.gov/biblio/1819812

[12] R. Izadpanah, N. Naksinehaboon, J. Brandt, A. Gentile, and D. Dechev, “Integrating low-latency analysis into HPC system monitoring,” in Proceedings
of the 47th International Conference on Parallel Processing, ser. ICPP ’18. New York, NY, USA: ACM, 2018.

[13] J. Brandt, D. DeBonis, A. Gentile, J. Lujan, C. Martin, D. Martinez, S. Olivier, K. Pedretti, N. Taerat, and R. Velarde, “Enabling advanced operational
analysis through multi-subsystem data integration on Trinity,” in Proc. Cray Users Group, 2015.

[14] J. Eitzinger, T. Gruber, A. Afzal, T. Zeiser, and G. Wellein, “ClusterCockpit — a web application for job-specific performance monitoring,” in 2019
IEEE International Conference on Cluster Computing, ser. CLUSTER ’19. IEEE, 2019, pp. 1–7.

[15] M. Isakov, E. d. Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. B. Ross, and M. A. Kinsy, “HPC I/O throughput bottleneck analysis with explainable
local models,” in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1–13.

[16] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman, M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable I/O-aware
job scheduling for burst buffer enabled HPC clusters,” in Proceedings of the 25th ACM International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’16. New York, NY, USA: ACM, 2016, pp. 69–80.

[17] G. Ali, S. Bhalachandra, N. J. Wright, M. Side, and Y. Chen, “Optimal GPU frequency selection using multi-objective approaches for hpc systems,” in
2022 IEEE High Performance Extreme Computing Conference, ser. HPEC ’22, 2022, pp. 1–7.

[18] F. Chowdhury, F. Di Natale, A. Moody, K. Mohror, and W. Yu, “DFMan: A graph-based optimization of dataflow scheduling on high-performance
computing systems,” in 2022 IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS ’22, 2022, pp. 368–378.

[19] H. Shahzad, A. Sanaullah, S. Arora, R. Munafo, X. Yao, U. Drepper, and M. Herbordt, “Reinforcement learning strategies for compiler optimization in
high level synthesis,” in 2022 IEEE/ACM 8th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), 2022, pp. 13–22.

[20] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible framework for
program autotuning,” in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, 2014, pp. 303–316.

[21] M. R. Wyatt, S. Herbein, K. Shoga, T. Gamblin, and M. Taufer, “CanarIO: Sounding the alarm on IO-related performance degradation,” in 2020 IEEE
International Parallel and Distributed Processing Symposium, ser. IPDPS ’20, 2020, pp. 73–83.

[22] Z. Qiao, Q. Liu, N. Podhorszki, S. Klasky, and J. Chen, “Taming I/O variation on QoS-less HPC storage: What can applications do?” in SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2020.

[23] A. Patke, S. Jha, H. Qiu, J. Brandt, A. Gentile, J. Greenseid, Z. Kalbarczyk, and R. K. Iyer, “Delay sensitivity-driven congestion mitigation for HPC
systems,” in Proceedings of the ACM International Conference on Supercomputing, ser. ICS ’21. New York, NY, USA: ACM, 2021, pp. 342––353.

[24] J. Brandt, K. Devine, A. Gentile, and K. Pedretti, “Demonstrating improved application performance using dynamic monitoring and task mapping,” in
2014 IEEE International Conference on Cluster Computing, ser. CLUSTER ’14, 2014, pp. 408–415.

[25] “Driving HPC operations with holistic monitoring and operational data analytics (Dagstuhl Seminar 231710.” [Online]. Available: https:
//www.dagstuhl.de/23171

[26] D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective. John Wiley & Sons, Inc., 2020.
[27] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.
[28] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese, and K. Göschka, “On patterns for decentralized

control in self-adaptive systems,” in Software Engineering for Self-Adaptive Systems II, ser. LNCS. Springer, 2013, vol. 7475, pp. 76–107.
[29] SchedMD, “SLURM workload manager.” [Online]. Available: https://slurm.schedmd.com/overview.html
[30] D. Ackley and D. Cannon, “Pursue robust indefinite scalability,” in 13th Workshop on Hot Topics in Operating Systems (HotOS XIII). USENIX, 2011.
[31] N. Li, S. Adepu, E. Kang, and D. Garlan, “Explanations for human-on-the-loop: A probabilistic model checking approach,” in Proceedings of the

IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS ’20. New York, NY, USA:
ACM, 2020, p. 181–187.

[32] O. Gheibi and D. Weyns, “Lifelong self-adaptation: Self-adaptation meets lifelong machine learning,” in Proceedings of the 17th Symposium on Software
Engineering for Adaptive and Self-Managing Systems, ser. SEAMS ’22. New York, NY, USA: ACM, 2022, p. 1–12.

[33] OpenCUBE, “Open-source cloud-based services on EPI systems,” https://horizon-opencube.eu/.

https://www.osti.gov/biblio/1819812
https://www.dagstuhl.de/23171
https://www.dagstuhl.de/23171
https://slurm.schedmd.com/overview.html
https://horizon-opencube.eu/

	Introduction
	Autonomy Loop Case Study Methodology
	Driving Generalization Through Initial Case
	Design Changes for Autonomous MODA
	Conclusion
	References

