
Contention-free Complete Exchange Algorithm on Clusters*

Anthony T.C. Tam and Cho-Li Wang
Department of Computer Science and Information Systems

University of Hong Kong
{atctam, clwang} @ csis. hku. hk

Abstract
To construct a large commodity clustec a hierarchical

network is generally adopted for connecting the host mu-
chines, where a Gigabit backbone switch connects a few
commodity switches with uplinks to achieve scaled bisec-
tional bandwidth. This type of interconnection usually re-
sults in link contention and has congestion developed at
the uplink ports. Moreover, the non-detenninistic delays
on scheduling communication events in clusters accelerate
the building up of congestion amongst these uplink ports,
which lead to severe packets drop and hinder the overall
performance. In this paper, we focus on the practical design
of high-speed complete exchange algorithm on a commod-
ity cluster interconnected by a hierarchical Ethemet-based
network. By exploiting some architectural characteristics of
the interconnection in optimizing the performunce of a com-
plete exchange algorithm, we introduce a congestion con-
trol mechanism - global windowing that monitors and reg-
ulates the trafic load, together with a permutation scheme
- reorder scheme that effectively alleviates the congestion
problem. We evaluate our algorithm and compare its per-
formance with other algorithms in a PC cluster connected
by various types of switches, including Gigabit Ethernet,
input-buffered and shared-memory Fast Ethernet switches.

1. Introduction

Commodity supercomputing is one of the targets in
building clusters. Being as one form of message pass-
ing machines, the performance of clusters depends largely
on the performance of the interconnection network. With
the introduction of low-latency communication support [3,
4, 91, software overheads induced in communication have
been significantly reduced. This allows applications to push
data faster into the network, as well as users have more con-
trol on scheduling communication events.

*This research was supported by Hong Kong RGC grant 10201701 and
HKU CRGC grant 10203009 .

However, having the capability to drive the network
in higher speed does not guarantee to achieve good per-
formance. Contention problems can happen in host node,
network link and switch, which adversely affect the overall
performance. Node contention happens when multiple data
packets are contended for the receive channel of a node,
while link contention occurs when two or more packets
share a communication link. And switch contention is in-
duced by the unbalance of traffic flow through the switch,
which results in overflow of the switch buffer.

Complete exchange, also named as all-to-all personal-
ized communication, is a typical example of showing how
contention problems are crucial to the overall performance.
This is a collective operation that takes place with a set of
processes, and each process has a distinct set of data to
transmit to every other process in the system. A common
approach to avoid contention loss is to design a commu-
nication schedule that prevents building up of congestion,
which results in packet drop. However, some contention-
free schedules demand on using a tightly synchronized
scheme [2, 121, which brings on another type of overheads,
the synchronization overhead. In cluster environment, due
to the distributed nature, it is difficult to impose such a lock-
step schedule. For example, cluster node has its own local
clock and process scheduler, and there is no coordination in
scheduling those communication events. In addition, most
of the synchronization operation is implemented by soft-
ware means. Thus, this further impedes on normal data
communication and contends for network resources.

In this paper, we propose an efficient communica-
tion schedule for running the complete exchange opera-
tion on clusters, which are interconnected by a hierarchical
Ethernet-based network. The key feature of this communi-
cation scheme is the proactive approach in handling conges-
tion. We try to avoid contention in the first place by having
a communication schedule which prevents contention at the
node and switch. If congestion does develop, the communi-
cation scheme regulates the traffic to avoid further building
up of congestion.

This congestion control scheme is different from tra-

57
0-7695-0896-O/OO $10.00 0 2000 IEEE

ditional congestion control schemes. Conventional mech-
anisms for controlling congestion are based on end-to-end
windowing schemes [8], however, they are not suitable for
collective operations in high-speed networks. First, they are
usually reactive schemes. They probe for congestion sig-
nals, such as packet loss and timeout signals, and respond
by recovering the loss and regulating the traffic load to avoid
further loss. Inevitably, packets are lost and performance
suffers. Second, the feedback information from the network
is usually outdated due to the propagation delay, and hence,
any reactive action taken may be too late. Third, end-to-end
windowing only provides isolated information on individ-
ual connection. It lacks in a global picture of the network,
such as the number of traffic sources and the communica-
tion pattern in used. However, in cluster computing, the
traffic pattern is predictable in the case of collective opera-
tions on a bounded-size enclosed network.

Our complete exchange algorithm on hierarchical net-
work is derived from an algorithm, which is developed on
a theoretical non-blocking network [111. By introducing a
global windowing concept to all participating nodes, they
are responsible to monitor and regulate the traffic loads to
avoid congestion. Based on architectural features like the
network buffering capacity and the balancing of upstream
and downstream flows, we derive the global windowing
scheme and the reorder scheme, which transform the algo-
rithm to work efficiently on the hierarchical network.

The rest of the paper is organized as follows. Section 2
lays down the architectural characteristics of the Ethernet-
based hierarchical network, and defines the problems asso-
ciated with this type of network. In Section 3, we provide
a simple abstract model of the network to aid our analysis.
Section 4 presents a bandwidth-optimal complete exchange
algorithm on Ethemet-based hierarchical networks and non-
blocking networks. The experimental results of this algo-
rithm are presented in Section 5 . Finally, the conclusions
are presented in Section 6.

2. Hierarchical Network

Ethernet-based network is the most widely used local
area networking (LAN) technology. Although standard Eth-
ernet has limited bandwidth in supporting cluster comput-
ing, its enhanced versions, such as Fast Ethernet (FE) and
Gigabit Ethernet (GE), provide sufficient bandwidth with a
steady upgrade path in building commodity clusters. There-
fore, many self-made clusters are using FE as the base of
their interconnections, e.g. Avalon [l], ICEBOX [6], KLAT2
[7], VALHAL [13], etc.

There are generally two approaches in building a
Ethernet-based cluster with a few hundreds nodes. First,
using a single high-performance, high port density chassis
switch to connect all machines [5]. Second, using a hierar-

chical network, in which cluster nodes are connected to FE
switches and using the GE as a backbone network to inter-
connect all FE switches. Given that the backbone capacity
of the interconnection network is greater than the demand-
ing bandwidth of the whole cluster, both approaches support
a fully connected network with similar performance. In re-
ality, hey are suffered from some architectural constraints
that limit their actual performance. Our previous study of
complete exchange on a single router switch [111 has re-
vealed that the buffering mechanism used within the switch
could hinder its actual performance, and we have proposed
a sub-optimal algorithm in dealing with the situation.

On the hierarchical network, connections between dif-
ferent technologies are bridged by one or more uplink ports.
Since both FE and GE are mutated from the standard Eth-
ernet, they are using the same mechanism in switching
packets. Packet received on an ingress port is switched to
the corresponding egress port according to the destination
MAC address found at the head of each packet. The switch
uses its address lookup table to make this forwarding deci-
sion.

The requirement of having higher channel bandwidth
for the uplinks limits the switching technique adopted on
this type of interconnection. As cut-through switching is
only possible for ports operate at the same data rate, this is
not suitable for the uplink connections and makes the store-
and-forward switching be the only feasible solution. How-
ever, the change of channel bandwidth between two tech-
nologies may induce hot-spot as store-and-forward switch-
ing causes cumulation of upstream and downstream packets
over those uplink ports.

Apparently, even under a node contention-free sched-
ule of the complete exchange algorithm, sharing of uplinks
is needed. For instance, all cross-switch traffics are going
via the uplinks to the GE switch, packets have to contend
for the shared uplinks even though they are from distinct
sources and to distinct destinations. In theory, under a node
contention-free schedule, the distribution of data packets
should be well balanced, thus, any transient congestion over
the uplinks could be handled by the buffers in the switches
as well as the higher throughput of the uplink connections.

However, the distributed nature of the clusters does
not guarantee to adhere to a tightly synchronized schedule.
For example, any random delay on scheduling communica-
tion events of the complete exchange operation may result
in considerably contention. As congestion is handled by
the buffers in the switches, the buffering mechanism used
within the switches could affect their overall performance.
While there are many variations in switch architectures,
most switches fall into one or a combination of three basic
types: input-buffered, output-buffered and shared-buffered

For the input-buffered architecture, incoming packets
~141.

58

Level 2

Level 1

Level0 iit i t ii it ' iit i t iit i t

Figure 1. Interconnection topology of the two-level
switch hierarchy

are queued in buffers, one per input port. This is the sim-
plest design as the internal speed of the buffers only oper-
ates at the same speed as the input/output links. However, it
is known to have the Head-Of-Line (HOL) blocking prob-
lem. Packets block at the head of the queue also block the
packets behind them, even if some of these packets are des-
tined for idle output ports. By using queuing analysis, HOL
blocking is shown to reduce throughput to 58% even un-
der uniform traffic. While for the other two architectures,
output-buffered and shared-buffered, their buffering mech-
anisms avoid the HOL problem, and thus have a higher
congestion tolerance and provide better performance than
input-buffered switches.

3. System Model

In our model, a cluster is defined as a collection of
autonomous machines that are interconnected by a switch-
based network. To simplify the discussion, a two-level
switch hierarchy as depicted in Figure 1 is discussed. For
this tree topology, all cluster nodes are the leaf nodes, and
are grouped into disjoint sets with dl members in each
set. Members of the same set are connected to a parent
which is a switch node located at Level 1, and all communi-
cations generated by the set - both within set and across
set, have to go through this switch node. Communica-
tions between sets are established through the root switch
node, which fully connects all Level 1 switch nodes. To
support high performance communication, we assume that
the switch-to-switch link bandwidth c2 and the node-to-
switch link bandwidth c1 satisfy this constraint, dl c1 c2,
which ensures that the uplink is capable of handling all up-
streddownstream traffics generated by the whole set at
any particular instant. We also assume that the backbone
bandwidth of those Level 1 switches are greater than or
equal to dlc1 + cz, and the backbone bandwidth of the root
switch is greater than or equal to d2c2. With these assump-

tions, the aggregated bandwidth available to a cluster with
p nodes (where p = dl d2) is bounded by dl dzc1.

Switches are the basic building blocks of this hier-
archical network. We assume they are packet-switched,
pipelined network, and operate in full-duplex configuration.
Buffers are provided in the switches for temporary storage,
but the amount of buffers is assumed to be finite. All clus-
ter nodes communicate via this switch-based network and
assume to be homogeneous. In this study, we assume that
each node equips with one network adapter, which supports
concurrent send and receive operations.

We analyze the performance of the complete exchange
algorithms based on a communication model discussed in
[101. This communication model involves several param-
eters: send overhead (Os), network latency (L), network
gaps (9,. g,), receive overheads (Or, U,) and network
buffer capacity (BL). The parameter 0, stands for the soft-
ware overhead associated with the send process for sending
a b-byte data packet. The overall cost reflects the perfor-
mance of the host node, e.g. CPU and system bus speeds,
and the communication protocol in use. The parameter L
is the hardware latency of moving a b-byte packet from the
physical memory of the source node to the physical memory
of the destination node. It encapsulates network-dependent
features, such as network topology, network speed, and di-
ameter between communicating entities. The value of L is
subjected to the traffic load in a real network. With the hier-
archical network, we have two different latency values for
communication between cluster nodes within a switch and
across switches.

The parameter BL corresponds to the available buffers
in a switch, which is a measure of the network tolerance of
the switch in handling contention'. Parameters g, and 9,
encapsulate the minimum time between consecutive injec-
tion or reception of b-byte packets to or from the network by
the communication hardware. It models the data transfer ca-
pabilities of the host machine and the network interface con-
troller, such as DMA transfer and the network technology in
use. For a homogeneous cluster, we generally assume that
g, M gr and simplify the expression by g = max(g,, gr).
Lastly, parameters 0, and U, stand for the software over-
heads induced by the asynchronous reception of a b-byte
packet. With 0, captures the costs of all kernel events in-
cluding interrupt overhead and memory copy, and U, cap-
tures the cost of user-space events such as data processing
and high-level protocol handling.

With current CPU performance and the adoption of
Iow-latency communication support, software overheads in-

'For a simple switch, we only have one BL value, either associates
with the whole switch if it is a shared-buffer switch, or associates to a
switch port if it is an input-buffered or output-buffered switch. For a switch
with uplink module, we may have two BL values which depend on the
architecture used in the uplink module. One is associated to the switch/port
as above, and the another is associated to the uplink port.

59

duced in communication have been significantly reduced.
To take advantage of the full-duplex communication, we
assume that the cluster communication system satisfies this
condition, (0, + 0, + U,) < g < L. As a result, under
no conflict, the one-way point-to-point communication cost
(Tpap) in transferring an M-byte long message between two
processes at any two machines of the cluster is modeled as :

T p Z p (M) = o s + (k - 1)g + L + 0, + U, (1)

where k = 7, which corresponds to the fragmentation of
an M-byte message to k data packets of size b bytes. For op-
timal performqce, b usually stands for the maximum trans-
fer unit (mtu) of the underlying communication scheme.

4. Synchronous Shuffle Exchange Algorithm

Figure 2 presents the synchronous shuffle exchange al-
gorithm, which is proposed in [l l] and is a bandwidth-
optimal algorithm on any non-blocking network, The spirit
of this algorithm is the node contention-free schedule oper-
ated at the packet level without explicit synchronization op-
eration. By effectively utilizing the send and receive chan-
nels, this scheme multiplexes all the messages seamlessly to
a single pipeline flow by scheduling consecutive packets to
different destination nodes according to a node contention-
free permutation (9). Such that at a particular instant i3,
each process is sending the j t h packet to process p(myid, i)
directly. There are three numerical functions that can be
used online to compute the node contention-free permuta-
tion. They are the shift pattern, bitwise xor pattern and the
edgecolor pattern [1 11.

If every operation is executed on schedule, the permu-
tation scheme of the synchronous shuffle exchange can be
finished in minimal time. The following formula is the pre-
dicted communication cost for this complete exchange algo-
rithm on a non-blocking switch based on our system model,

However in reality, as this schedule induces inten- .

sive communications and demands on logical synchrony,
any non-deterministic delays between events could break
the synchronism and result in congestion developed in the
switch. For example, non-coordinated process scheduling
would introduce randomness. We have shown in our previ-
ous study that not all switches can withstand such an inten-
sive communication pattern for an extended period of time.

The assumption of logical synchrony on all cluster
nodes is generally too idealistic on the case of commod-
ity clusters, which have not hardware synchronization sup-
port. To impose this synchrony, explicit synchronization

for (s=l to k) & (r=l to k) in parallel do
for (is= 1 to p-1) & (i,= 1 to p-1) do

to = (P,(myid,i,)
from = pr(myid,ir)
if (send-item-to (tos, to) == success)

end i f
if (recv-item-from(from,,from) == success)

endif

inc is

inc i,

endf or
endf or

Figure 2. The Synchronous Shuffle Exchange al-
gorithm

operations can be used. However, this brings on extra syn-
chronization overhead to the total communication time, and
also stalls the communication pipelines as no data commu-
nications are taking place during the synchronization oper-
ation. Since performance loss is caused by oversubscribing
the network that induces packet loss at the bottleneck re-
gion, the best solution to avoid contention loss is to prevent
oversubscription to the network. That can be done by ap-
plying a global congestion window on each node to ensure
fair sharing of resources among cluster nodes.

4.1. Global Window Congestion Control

The conjecture behind the contention problem induced
by the synchronous shuffle exchange algorithm is the non-
deterministic delays on communication events. With the hi-
erarchical network, two more sources of delay could con-
mbute to this non-determinism: a) the queuing delay at the
uplinks and b) the difference of network latencies between
nodes within a switch and across switches. To achieve op-
timal performance on the hierarchical network, sharing of
uplinks, thus having link contention, is a fact that we have
to face. Although mild contention increases network delay,
it does not hurt the performance much unless the congestion
persists for a long period of time, which results in buffer
overflow. Therefore, a congestion control scheme is needed
to prevent overloading the network.

We adopt a proactive approach in congestion control,
as reactive schemes are not suitable for high-speed com-
munication. Based on the network capacity, each node is
assigned with a predefined resource limit, and force them to
regulate their traffic loads below this limit. This ensures that
no source will exceed its allowed traffic capacity and avoids
congestion loss. For our complete exchange algorithm, all
cluster nodes are assigned with a global window (W,) at the
beginning of the operation.

During the execution flow, at it" communication step,
a process is sending a data packet to another process ac-
cording to a node contention-free permutation scheme cp. If

60

every operation is on schedule, the number of outstanding nodeid1 0 I 1 1 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1 0 1 1 1 I121 131 141 151

data packets (q) in transit from a process to other process lmlwl10 I 0 I 0 I 0 I 1 1 1 I 1 I 1 I 2 I 2 I 2 I 2 I 3 I 3 1 3 I 3)

is bounded by 161. Under mild congestion, the process
experiences sligkiicrease of q. If congestion persists, this
eventually induces packet loss, and q will increase dramat-
ically. The above observation implies that to avoid over-
flowing the network buffers, we need to regulate the num-
ber of outstanding packets (q). The basic principle behind
this scheme is simple. If a process finds that sending out
a data packet may overload the network, when q = W,, it
just halts current transmission and waits until it is safe to
transmit, i.e. q < W,. By picking the correct value for
W,, this scheme guarantees that during any interval, the to-
tal number of packets entering the network does not exceed
the sum of a pre-specified limit, which is the network buffer
capacity at the bottleneck region.

To compute W,, we need to identify the bottleneck re-
gion and measure the buffer capacity (BL) associated to the
bottleneck, then we derive W, from BL on the principle of
fair sharing. In [9], we have explained how to evaluate the
BL parameter of the switch from a user perspective. Based
on the communication pattern and schedule, we estimate the
average number of packets (Y) generates at each communi-
cation step which are forwarded to the bottleneck region.

Under the synchronous shuffle schedule, in p-1 com-
munication steps, a process generates p-1 data packets
which are destined to p-1 distinct nodes. However, only
dl - 1 packets are switched locally, and the rest, p - dl
packets, are forwarded by the FE switch to its uplink port.
Therefore, there are (p - d1)dl packets being forwarded
upstream by each FE switch in p-1 communication steps.
Based on the node contention-free permutation, the same
amount of data packets are switched from the Gigabit back-
bone back to each FE switch. Thus, the average number of
packets directed to each FE switch’s uplink port per com-
munication step is

From this we derive the value of W,, which is

w, =

(3)

(4)

4.2. Reorder Scheme

However, knowing the value of W, is a necessary but
not sufficient condition to avoid congestion loss. This is
because a) W, is derived from taking the average traffic
load, and b) unlike traditional end-to-end scheme, global
windowing needs to monitor and regulate all traffic flows of
a process, not just one connection. If the traffic distribution

Figure 3. An example permutation in which global
windowing alone fails to regulate the traffic.
(The bottom matrix represents the induced cross-
switch traffics.)

is not uniformly spread across the network, the global win-
dowing scheme could not fulfill its function correctly. This
is being shown in Figure 3. In this example, we assume that
the bottleneck region of the 4x4 two-level hierarchical net-
work is at the uplink ports with BL = 30. However, under
the xor permutation scheme, we still experience contention
loss even though the global windowing is adopted.

= 9. As-
sume that at communication step i, four packets originated
from switch 2 and headed for switch 3 are blocked by some
cause, e.g. HOL, so as those packets that follow in step
i+l, i+2, and i+3 from the same switch. However, no pro-
cess is aware of this contention until after step i+8 when the
global windows of processes in switch 3 become saturated.
By that time, processes in switch 1 have already sent out
all their packets to processes in switch 3, which further in-
creases the queue length at switch 3. Moreover, processes
in switch 0 are not aware of the problem. This is because
global windowing collects traffic information on the base of
past events, but none of these past events could indicate the
congestion problem in switch 3. As a result, processes in
switch 0 continue to send all their packets to processes in
switch 3, which finally overflow the buffer.

Although the overflow situation could be detected and
resolved by both global windowing and individual end-to-
end flow control scheme, performance has been suffered as
packets are lost inevitably. If we can arrange all communi-
cation events in a way that each process is communicating
with different processes reside in a node linked to differ-
ent switches at each communication step, the traffic loads
would become more evenly distributed as well as having
more regular information feedback between different pro-
cesses in different part of the network.

An approach in generating this kind of dispersive per-
mutation is by the reorder scheme, which is arearrangement
of an existing permutation. Observed that the original per-

In this example, the size of W, is

61

nodeldl 0 I4 I 8 1121 1 I 5 I O I131 2 I6 1101141 3 I 7 111115(

switch(0 1 0 1 0 I O 1 1 I 1 I 1 I 1 I2 I 2 I2 I2 1 3 I 3 I 3 1 3 J

5.

Switchluplink I Architecture

Table 1. The BL parameter of different switches in
our experimental setup

Experimental Results
Figure 4. The resulting communication pattern af-
ter applying the reorder mapping scheme.

Set q = 0
for (s=l to k) & (r=l to k) i n parallel do

for (is= 1 to p-1) & (ip 1 to p-1) do
to = rp,(@(physical id), is)
from = cP,(@(physical i d) , i,)
if (9 W) &&

(send-ftem-to(to,, to) == success)
inc is
inc 7

inc i,
dec

endi f
if (recv-item-from(froq,from) == success)

endi f
endf or

endf or

Figure 5. Synchronous Shuffle Exchange algo-
rithm with global windowing and reorder scheme

mutation is obtained by some simple functions (9) which
operates on inputs such as current communication step and
node id. A simple method to rearrange the original permu-
tation is by redefining a mapping between logical node id
to its physical id. One example of such reorder scheme (4)
can be as follows:

physical id
logical id = I dl 1 +(physical id % dl)*dl (5)

Carry on with the previous example, if we apply the xor
permutation on the reordered logical id, we get the commu-
nication schedule as shown in Figure 4, which is a more
evenly distributed pattern with respect to both switches and
cluster nodes. We observe that with this new communica-
tion pattern, a process is communicating with different pro-
cesses located in different part of the network in consecutive
communication steps, and hence, greatly relieves the con-
tention at the uplink ports and improves the effectiveness of
our congestion control scheme.

Based on the global windowing scheme and the re-
order scheme, we have modified the synchronous shuffle
exchange algorithm to work efficiently on the two-level hi-
erarchical network, and the modified algorithm is given in
Figure 5 .

Our experimental platform is a cluster consists of 16
standard PCs running Linux 2.0.36. Each cluster node
equips with a 45OMHz Pentium 111 processor with 5 12KB
L2 cache, 128MB of main memory, a Digital 21 140A FE
card and is connected to a FE Switch. We use the Directed
Point (DP) communication system [8] to drive the network
and conduct all our experiments. We have implemented
a simple Go-Back-N protocol to support limited reliabil-
ity on DP. In our studies, we have 4 FE switches and one
GE switch to set up various configurations in evaluating our
algorithm.

The GE backbone switch is a chassis switch from Al-
catel. It is the model PowerRail2200 (PR2200) with back-
plane capacity reaches 22 Gigabit per second (Gbps). This
switch is equipped with 8 GE ports on 2 modules, but we
only use up at most 4 ports in our experiments. Two FE
switches are from IBM, which are the model 8275-326. It
is a 24-port input-buffered switch with backplane capacity
reaches 5 Gbps. A one-port GE uplink module is installed
on each switch to connect to the Gigabit backbone. Another
pair of FE switches are the Intel 510T switches, which are
revealed as shared-buffered architecture. The 510T is a 24-
port switch with only 2.2 Gbps backbone capacity. Both
switches are also equipped with add-on GE modules for
connecting to the PR2200. Table 1 summaries all the buffer
parameters of the above switches, which are used in OUT al-
gorithm to compute the global windows (W,) for different
network configurations.

5.1. Configuration One - 16x1

In Figure 6, we measured three complete exchange
implementations on the 16-node cluster interconnected by
an input-buffered switch (8275-326). They are the syn-
chronous shuffle with global windowing (sync+GW), origi-
nal synchronous shuffle (sync), and the popular pairwise ex-
change (pairwise) [1 I]. The experiment is conducted with
each node sending k packets of size 1492 bytes to every
node in the cluster, which is ranged from k=l to 2000. We
used a relative metric, called achieved bandwidth, to quan-
tify the efficiency of the algorithm in utilizing the network.

62

16 nodes (8275426)

t l2

l1
a

E a
g 10

9-1
1 10 100 lo00 1ooo(

Per node message length (k)

Figure 6. Performance of Synchronous Shuffle Ex-
change on a single input-buffered switch.

This metric is computed by dividing the total data sizes in-
jected into the network by each node with the measured
communication time.

The results show that both versions of the synchronous
shuffle algorithms have similar performance, which is peak
at 97% of the available bandwidth. When compared to the
theoretical performance (eqt. 2), the synchronous shuffle
exchange algorithm has its efficiency ranged from 87% to
97% of the theoretical bandwidth. When compared with
the pairwise exchange, which has a higher synchronization
overhead, the results show that the synchronous shuffle al-
gorithm can effectively mask away those synchronization
overhead and achieve better performance, especially when
exchanging small size messages. However, the performance
of the original algorithm degrades significantly after b 5 12,
which corresponds to the total message length of 11 MByte
per node. Meanwhile, with the addition of the global win-
dowing scheme to the synchronous shuffle algorithm, it
continues to operate efficiently as the problem size scales.

5.2. Configuration 'ILvo - 4x4

With a different network configuration, we compare
four different implementations: synchronous shuffle with
global windowing and reorder scheme (sync+GWRS), orig-
inal synchronous shuffle (sync), original algorithm with
global windowing only (sync+GW) and the pairwise ex-
change (pairwise) algorithm. The results are shown in Fig-
ure 7. As we are using a two-level configuration, there are
total 5 switches with different architectures. When com-
paring the buffer capacities of those switches, the obvious
limitation is on the uplink module of the IBM 326 switch.
With the corresponding BL value, we compute the W, fac-
tor, which is equal to 14.

The results show that synchronous shuffle exchange
with global windowing and reorder scheme performs con-

16 nodes (4 x 4)
9 1 4 1

g 12

g 10
Y

L
c 8
m
P 6 z
E 4
a -

U

* theoretical

2-1 ,
1 10 100 1000 1Oooo

Per node message length (k)

Figure 7. Performance of Synchronous Shuffle Ex-
change on the 4x4 configuration - 4 nodes connect
to a FE switch, which is connected to the PR2200.

I 16 nodes (8 x 2)

14

g 12

f 10

C 8

2 6 - -+ sync+GW

-w-- theoretical
B 4 -

Y 0 9 : t l ? = c t : :

2 2 -

1 10 100 lo00 1ooo(
Per node message length (k)

Figure 8. Performance of Synchronous Shuffle Ex-
change on the 8x2 configuration - 8 nodes connect
to the IBM 326, which is connected to the PR2200.

sistently and efficiently in this test. It effectively masks
away the synchronization and contention overheads, which
appears to have a more significant influence on the pairwise
exchange algorithm when executes on this hierarchical net-
work. When compared with the original algorithm, we see
that the performance of the original algorithm starts to de-
grade at b64, which means there is significant contention
build-up on the uplink ports. By applying the global win-
dowing without reorder scheme, we can slightly extend the
contention tolerance of the synchronous shuffle algorithm
until b 1 2 8 . This experiment shows that both global win-
dowing and reorder scheme are required to monitor on the
congestion problem.

5.3. Configuration Three - 8x2
In this configuration, we interconnect two IBM 326

switches to the PR2200, with each switch connects to 8

63

nodes. It is clear that the performance bottleneck would
lie on the uplink ports. Base on this configuration, the com-
puted value of W, is 10, and the results are shown in Figure
8. Same as the previous two experiments, the modified syn-
chronous shuffle algorithm performs the best.

However, both the original synchronous shuffle and the
original algorithm with global windowing perform poorly
in this test. This is because a) the Go-Back-N protocol is
known to suffer badly when the error rate is high, and b)
the GE module of the model 326 is not performing as good
as it claims. By using a bi-directional exchange benchmark
test, we revealed that the uplink ports could only support up
to 5 active bi-directional channels without packet loss. It
seems like the circuitry of the uplink modules cannot catch
up with the Gigabit performance. We have tested with other

cable to future technologies, such as 1OGigabit Ethernet,
which simply extends the topology to multi-level hierarchy.

References

[I] The Avalon Cluster. (http://cnls.lanl.gov/
aval on /)

[2] S.H. Bokhari and D.M. Nicol, "Balancing Contention and
Synchronization on the Intel Paragon", in IEEE Concur-
rency Vol. 5, No. 2, 1997, pp 74-83.

[3] G. Chiola and G. Ciaccio, "GAMMA: a Low-cost Network
of Workstations Based on Active Messages", in the 5th EU-
ROMICRO workshop on Parallel and Distributed Process-
ing (PDP'97), January 1997.

[4] T. von Eicken, A. Basu, V. Buch and W. Vogels, "U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing", in the 15thACMSymposiwn on Operating Sys-
tem Principles, December 1995.

configurations, such as 6x2 and 4x2, to corroborate with the
above observations. This experiment shows that without the
reorder scheme, the global windowing scheme cannot avoid
congestion build-up on its own.

6. Conclusion
[5] Extreme Networks. (http: / / W W W .

extremenetworks.com/products/)

[6] The ICEBOX Cluster. (ht tp : / /WWW. chpc . Utah. edu/
ice/) This paper presented an efficient implementation of

complete exchange operation on a Ethernet-based hierarchi-
cal network. The hierarchical network is based on a Gigabit [7] The KLAT2 Cluster. (http: //aggregate. org/
switch as the backbone to which all Fast Ethernet switches KLAT2 /)
are connected. We demonstrated that the contention prob-
lems on such network - link, node, and switch contention,
can severely affect the overall performance of the clusters.
To avoid congestion loss on this type of network, we pro-
pose the synchronous shuffle exchange algorithm with con-
gestion control scheme. This algorithm makes uses of ar-
chitectural characteristics to avoid congestion build-up in
the first place and reduces congestion whenever it happens.
We derive a global window scheme from information on
the network buffer capacity, which forces each node to limit
their traffic loads and ensures a fair sharing of network re-
sources that avoids congestion overflow. We also make use
of information on the network topology to derive a reorder
scheme in generating a communication schedule, which is
both node and switch contention-free, as well as supports
a more evenly distributed traffic pattern on the network.
This improves the synchronism of the traffic information

[8] M. Sidi, W.Z. Liu, I. Cidon and I. Gopal, "Congestion Con-
trol Through Input Rate Regulation", in IEEE Transactions
on Communications, Vol. 41, No. 3, March 1993, pp 471-
477.

[9] C.M. Lee, A. Tam and C.L. Wang, "Directed Point: An Ef-
ficient Communication Subsystem for Cluster Computing",
in the International Conference on Parallel and Distributed
Computing Systems (IASTED), October 1998.

[lo] A.T.C. Tam and C.L. Wang, "Realistic Communication
Model for Parallel Computing on Cluster", in the Ist IEEE
Computer Society International Workshop on Cluster Com-
puting (IWCC'99), December 1999.

[111 A.T.C. Tam and C.L. Wang, "Efficient Scheduling of Com-
plete Exchange on Clusters", in the ISCA 13th International
Conference On Parallel And Distributed Computing Systems
(PDCS2000), August 2000.

exchange between cluster nodes, and hence, improves the
effectiveness of the global windowing scheme in monitor-
ing the network.

The hierarchical network model is a practical design to
construct large-scale clusters. With this system configura-
tion, clusters can be scaled up to hundreds of nodes, and
support enough bandwidth for high-speed communication.
Our research can be used in any combination Of Ethernet-
based switched network, which we belief, over 50% of the
self-made clusters are based on. And the concept is appli-

[121 Y.C. Tseng and S.K.S. Gupta, "All-to-All Personalized
Communication in a Wormhole-Routed Torus", in IEEE
Transactions on Parallel and Distributed Systems, Vol. 7,
No. 5 , May 1996, pp 498-505.

[I31 The VALHAL Cluster. (http : 1 /www - fysik- dtu - dk/
CAMP/valhal.html)

[141 J. Walrand and P. Varaiya, High-Performance Communica-
tion Networks, Morgan Kaufmann Publishers, 1996.

64

http://cnls.lanl.gov

