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Abstract 
To construct a large commodity clustec a hierarchical 

network is generally adopted for connecting the host mu- 
chines, where a Gigabit backbone switch connects a few 
commodity switches with uplinks to achieve scaled bisec- 
tional bandwidth. This type of interconnection usually re- 
sults in link contention and has congestion developed at 
the uplink ports. Moreover, the non-detenninistic delays 
on scheduling communication events in clusters accelerate 
the building up of congestion amongst these uplink ports, 
which lead to severe packets drop and hinder the overall 
performance. In this paper, we focus on the practical design 
of high-speed complete exchange algorithm on a commod- 
ity cluster interconnected by a hierarchical Ethemet-based 
network. By exploiting some architectural characteristics of 
the interconnection in optimizing the performunce of a com- 
plete exchange algorithm, we introduce a congestion con- 
trol mechanism - global windowing that monitors and reg- 
ulates the trafic load, together with a permutation scheme 
- reorder scheme that effectively alleviates the congestion 
problem. We evaluate our algorithm and compare its per- 
formance with other algorithms in a PC cluster connected 
by various types of switches, including Gigabit Ethernet, 
input-buffered and shared-memory Fast Ethernet switches. 

1. Introduction 

Commodity supercomputing is one of the targets in 
building clusters. Being as one form of message pass- 
ing machines, the performance of clusters depends largely 
on the performance of the interconnection network. With 
the introduction of low-latency communication support [3, 
4, 91, software overheads induced in communication have 
been significantly reduced. This allows applications to push 
data faster into the network, as well as users have more con- 
trol on scheduling communication events. 

*This research was supported by Hong Kong RGC grant 10201701 and 
HKU CRGC grant 10203009 . 

However, having the capability to drive the network 
in higher speed does not guarantee to achieve good per- 
formance. Contention problems can happen in host node, 
network link and switch, which adversely affect the overall 
performance. Node contention happens when multiple data 
packets are contended for the receive channel of a node, 
while link contention occurs when two or more packets 
share a communication link. And switch contention is in- 
duced by the unbalance of traffic flow through the switch, 
which results in overflow of the switch buffer. 

Complete exchange, also named as all-to-all personal- 
ized communication, is a typical example of showing how 
contention problems are crucial to the overall performance. 
This is a collective operation that takes place with a set of 
processes, and each process has a distinct set of data to 
transmit to every other process in the system. A common 
approach to avoid contention loss is to design a commu- 
nication schedule that prevents building up of congestion, 
which results in packet drop. However, some contention- 
free schedules demand on using a tightly synchronized 
scheme [2, 121, which brings on another type of overheads, 
the synchronization overhead. In cluster environment, due 
to the distributed nature, it is difficult to impose such a lock- 
step schedule. For example, cluster node has its own local 
clock and process scheduler, and there is no coordination in 
scheduling those communication events. In addition, most 
of the synchronization operation is implemented by soft- 
ware means. Thus, this further impedes on normal data 
communication and contends for network resources. 

In this paper, we propose an efficient communica- 
tion schedule for running the complete exchange opera- 
tion on clusters, which are interconnected by a hierarchical 
Ethernet-based network. The key feature of this communi- 
cation scheme is the proactive approach in handling conges- 
tion. We try to avoid contention in the first place by having 
a communication schedule which prevents contention at the 
node and switch. If congestion does develop, the communi- 
cation scheme regulates the traffic to avoid further building 
up of congestion. 

This congestion control scheme is different from tra- 
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ditional congestion control schemes. Conventional mech- 
anisms for controlling congestion are based on end-to-end 
windowing schemes [8], however, they are not suitable for 
collective operations in high-speed networks. First, they are 
usually reactive schemes. They probe for congestion sig- 
nals, such as packet loss and timeout signals, and respond 
by recovering the loss and regulating the traffic load to avoid 
further loss. Inevitably, packets are lost and performance 
suffers. Second, the feedback information from the network 
is usually outdated due to the propagation delay, and hence, 
any reactive action taken may be too late. Third, end-to-end 
windowing only provides isolated information on individ- 
ual connection. It lacks in a global picture of the network, 
such as the number of traffic sources and the communica- 
tion pattern in used. However, in cluster computing, the 
traffic pattern is predictable in the case of collective opera- 
tions on a bounded-size enclosed network. 

Our complete exchange algorithm on hierarchical net- 
work is derived from an algorithm, which is developed on 
a theoretical non-blocking network [ 111. By introducing a 
global windowing concept to all participating nodes, they 
are responsible to monitor and regulate the traffic loads to 
avoid congestion. Based on architectural features like the 
network buffering capacity and the balancing of upstream 
and downstream flows, we derive the global windowing 
scheme and the reorder scheme, which transform the algo- 
rithm to work efficiently on the hierarchical network. 

The rest of the paper is organized as follows. Section 2 
lays down the architectural characteristics of the Ethernet- 
based hierarchical network, and defines the problems asso- 
ciated with this type of network. In Section 3, we provide 
a simple abstract model of the network to aid our analysis. 
Section 4 presents a bandwidth-optimal complete exchange 
algorithm on Ethemet-based hierarchical networks and non- 
blocking networks. The experimental results of this algo- 
rithm are presented in Section 5 .  Finally, the conclusions 
are presented in Section 6. 

2. Hierarchical Network 

Ethernet-based network is the most widely used local 
area networking (LAN) technology. Although standard Eth- 
ernet has limited bandwidth in supporting cluster comput- 
ing, its enhanced versions, such as Fast Ethernet (FE) and 
Gigabit Ethernet (GE), provide sufficient bandwidth with a 
steady upgrade path in building commodity clusters. There- 
fore, many self-made clusters are using FE as the base of 
their interconnections, e.g. Avalon [l], ICEBOX [6], KLAT2 
[7], VALHAL [13], etc. 

There are generally two approaches in building a 
Ethernet-based cluster with a few hundreds nodes. First, 
using a single high-performance, high port density chassis 
switch to connect all machines [5]. Second, using a hierar- 

chical network, in which cluster nodes are connected to FE 
switches and using the GE as a backbone network to inter- 
connect all FE switches. Given that the backbone capacity 
of the interconnection network is greater than the demand- 
ing bandwidth of the whole cluster, both approaches support 
a fully connected network with similar performance. In re- 
ality, hey are suffered from some architectural constraints 
that limit their actual performance. Our previous study of 
complete exchange on a single router switch [ 111 has re- 
vealed that the buffering mechanism used within the switch 
could hinder its actual performance, and we have proposed 
a sub-optimal algorithm in dealing with the situation. 

On the hierarchical network, connections between dif- 
ferent technologies are bridged by one or more uplink ports. 
Since both FE and GE are mutated from the standard Eth- 
ernet, they are using the same mechanism in switching 
packets. Packet received on an ingress port is switched to 
the corresponding egress port according to the destination 
MAC address found at the head of each packet. The switch 
uses its address lookup table to make this forwarding deci- 
sion. 

The requirement of having higher channel bandwidth 
for the uplinks limits the switching technique adopted on 
this type of interconnection. As cut-through switching is 
only possible for ports operate at the same data rate, this is 
not suitable for the uplink connections and makes the store- 
and-forward switching be the only feasible solution. How- 
ever, the change of channel bandwidth between two tech- 
nologies may induce hot-spot as store-and-forward switch- 
ing causes cumulation of upstream and downstream packets 
over those uplink ports. 

Apparently, even under a node contention-free sched- 
ule of the complete exchange algorithm, sharing of uplinks 
is needed. For instance, all cross-switch traffics are going 
via the uplinks to the GE switch, packets have to contend 
for the shared uplinks even though they are from distinct 
sources and to distinct destinations. In theory, under a node 
contention-free schedule, the distribution of data packets 
should be well balanced, thus, any transient congestion over 
the uplinks could be handled by the buffers in the switches 
as well as the higher throughput of the uplink connections. 

However, the distributed nature of the clusters does 
not guarantee to adhere to a tightly synchronized schedule. 
For example, any random delay on scheduling communica- 
tion events of the complete exchange operation may result 
in considerably contention. As congestion is handled by 
the buffers in the switches, the buffering mechanism used 
within the switches could affect their overall performance. 
While there are many variations in switch architectures, 
most switches fall into one or a combination of three basic 
types: input-buffered, output-buffered and shared-buffered 

For the input-buffered architecture, incoming packets 
~141. 
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Figure 1. Interconnection topology of the two-level 
switch hierarchy 

are queued in buffers, one per input port. This is the sim- 
plest design as the internal speed of the buffers only oper- 
ates at the same speed as the input/output links. However, it 
is known to have the Head-Of-Line (HOL) blocking prob- 
lem. Packets block at the head of the queue also block the 
packets behind them, even if some of these packets are des- 
tined for idle output ports. By using queuing analysis, HOL 
blocking is shown to reduce throughput to 58% even un- 
der uniform traffic. While for the other two architectures, 
output-buffered and shared-buffered, their buffering mech- 
anisms avoid the HOL problem, and thus have a higher 
congestion tolerance and provide better performance than 
input-buffered switches. 

3. System Model 

In our model, a cluster is defined as a collection of 
autonomous machines that are interconnected by a switch- 
based network. To simplify the discussion, a two-level 
switch hierarchy as depicted in Figure 1 is discussed. For 
this tree topology, all cluster nodes are the leaf nodes, and 
are grouped into disjoint sets with dl members in each 
set. Members of the same set are connected to a parent 
which is a switch node located at Level 1, and all communi- 
cations generated by the set - both within set and across 
set, have to go through this switch node. Communica- 
tions between sets are established through the root switch 
node, which fully connects all Level 1 switch nodes. To 
support high performance communication, we assume that 
the switch-to-switch link bandwidth c2 and the node-to- 
switch link bandwidth c1 satisfy this constraint, dl c1 c2, 
which ensures that the uplink is capable of handling all up- 
streddownstream traffics generated by the whole set at 
any particular instant. We also assume that the backbone 
bandwidth of those Level 1 switches are greater than or 
equal to dlc1 + cz, and the backbone bandwidth of the root 
switch is greater than or equal to d2c2. With these assump- 

tions, the aggregated bandwidth available to a cluster with 
p nodes (where p = dl d2) is bounded by dl dzc1. 

Switches are the basic building blocks of this hier- 
archical network. We assume they are packet-switched, 
pipelined network, and operate in full-duplex configuration. 
Buffers are provided in the switches for temporary storage, 
but the amount of buffers is assumed to be finite. All clus- 
ter nodes communicate via this switch-based network and 
assume to be homogeneous. In this study, we assume that 
each node equips with one network adapter, which supports 
concurrent send and receive operations. 

We analyze the performance of the complete exchange 
algorithms based on a communication model discussed in 
[ 101. This communication model involves several param- 
eters: send overhead (Os), network latency (L), network 
gaps (9,. g,), receive overheads (Or, U,) and network 
buffer capacity (BL).  The parameter 0, stands for the soft- 
ware overhead associated with the send process for sending 
a b-byte data packet. The overall cost reflects the perfor- 
mance of the host node, e.g. CPU and system bus speeds, 
and the communication protocol in use. The parameter L 
is the hardware latency of moving a b-byte packet from the 
physical memory of the source node to the physical memory 
of the destination node. It encapsulates network-dependent 
features, such as network topology, network speed, and di- 
ameter between communicating entities. The value of L is 
subjected to the traffic load in a real network. With the hier- 
archical network, we have two different latency values for 
communication between cluster nodes within a switch and 
across switches. 

The parameter BL corresponds to the available buffers 
in a switch, which is a measure of the network tolerance of 
the switch in handling contention'. Parameters g, and 9, 
encapsulate the minimum time between consecutive injec- 
tion or reception of b-byte packets to or from the network by 
the communication hardware. It models the data transfer ca- 
pabilities of the host machine and the network interface con- 
troller, such as DMA transfer and the network technology in 
use. For a homogeneous cluster, we generally assume that 
g, M gr and simplify the expression by g = max(g,, gr). 
Lastly, parameters 0, and U, stand for the software over- 
heads induced by the asynchronous reception of a b-byte 
packet. With 0, captures the costs of all kernel events in- 
cluding interrupt overhead and memory copy, and U, cap- 
tures the cost of user-space events such as data processing 
and high-level protocol handling. 

With current CPU performance and the adoption of 
Iow-latency communication support, software overheads in- 

'For a simple switch, we only have one BL value, either associates 
with the whole switch if it is a shared-buffer switch, or associates to a 
switch port if it is an input-buffered or output-buffered switch. For a switch 
with uplink module, we may have two BL values which depend on the 
architecture used in the uplink module. One is associated to the switch/port 
as above, and the another is associated to the uplink port. 
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duced in communication have been significantly reduced. 
To take advantage of the full-duplex communication, we 
assume that the cluster communication system satisfies this 
condition, (0, + 0, + U,) < g < L. As a result, under 
no conflict, the one-way point-to-point communication cost 
(Tpap) in transferring an M-byte long message between two 
processes at any two machines of the cluster is modeled as : 

T p Z p ( M )  = o s  + (k - 1)g + L + 0, + U, (1) 

where k = 7,  which corresponds to the fragmentation of 
an M-byte message to k data packets of size b bytes. For op- 
timal performqce, b usually stands for the maximum trans- 
fer unit (mtu) of the underlying communication scheme. 

4. Synchronous Shuffle Exchange Algorithm 

Figure 2 presents the synchronous shuffle exchange al- 
gorithm, which is proposed in [ l l] and is a bandwidth- 
optimal algorithm on any non-blocking network, The spirit 
of this algorithm is the node contention-free schedule oper- 
ated at the packet level without explicit synchronization op- 
eration. By effectively utilizing the send and receive chan- 
nels, this scheme multiplexes all the messages seamlessly to 
a single pipeline flow by scheduling consecutive packets to 
different destination nodes according to a node contention- 
free permutation (9). Such that at a particular instant i3, 
each process is sending the j t h  packet to process p(myid,  i) 
directly. There are three numerical functions that can be 
used online to compute the node contention-free permuta- 
tion. They are the shift pattern, bitwise xor pattern and the 
edgecolor pattern [ 1 11. 

If every operation is executed on schedule, the permu- 
tation scheme of the synchronous shuffle exchange can be 
finished in minimal time. The following formula is the pre- 
dicted communication cost for this complete exchange algo- 
rithm on a non-blocking switch based on our system model, 

However in reality, as this schedule induces inten- . 

sive communications and demands on logical synchrony, 
any non-deterministic delays between events could break 
the synchronism and result in congestion developed in the 
switch. For example, non-coordinated process scheduling 
would introduce randomness. We have shown in our previ- 
ous study that not all switches can withstand such an inten- 
sive communication pattern for an extended period of time. 

The assumption of logical synchrony on all cluster 
nodes is generally too idealistic on the case of commod- 
ity clusters, which have not hardware synchronization sup- 
port. To impose this synchrony, explicit synchronization 

for (s=l to k) & (r=l to k) in parallel  do 
for (is= 1 to p-1) & (i,= 1 to p-1) do 

to = (P,(myid,i,) 
from = pr(myid,ir) 
if (send-item-to (tos, to) == success) 

end i f 
if (recv-item-from(from,,from) == success) 

endif 

inc is 

inc i, 

endf or 
endf or 

Figure 2. The Synchronous Shuffle Exchange al- 
gorithm 

operations can be used. However, this brings on extra syn- 
chronization overhead to the total communication time, and 
also stalls the communication pipelines as no data commu- 
nications are taking place during the synchronization oper- 
ation. Since performance loss is caused by oversubscribing 
the network that induces packet loss at the bottleneck re- 
gion, the best solution to avoid contention loss is to prevent 
oversubscription to the network. That can be done by ap- 
plying a global congestion window on each node to ensure 
fair sharing of resources among cluster nodes. 

4.1. Global Window Congestion Control 

The conjecture behind the contention problem induced 
by the synchronous shuffle exchange algorithm is the non- 
deterministic delays on communication events. With the hi- 
erarchical network, two more sources of delay could con- 
mbute to this non-determinism: a) the queuing delay at the 
uplinks and b) the difference of network latencies between 
nodes within a switch and across switches. To achieve op- 
timal performance on the hierarchical network, sharing of 
uplinks, thus having link contention, is a fact that we have 
to face. Although mild contention increases network delay, 
it does not hurt the performance much unless the congestion 
persists for a long period of time, which results in buffer 
overflow. Therefore, a congestion control scheme is needed 
to prevent overloading the network. 

We adopt a proactive approach in congestion control, 
as reactive schemes are not suitable for high-speed com- 
munication. Based on the network capacity, each node is 
assigned with a predefined resource limit, and force them to 
regulate their traffic loads below this limit. This ensures that 
no source will exceed its allowed traffic capacity and avoids 
congestion loss. For our complete exchange algorithm, all 
cluster nodes are assigned with a global window (W,) at the 
beginning of the operation. 

During the execution flow, at it" communication step, 
a process is sending a data packet to another process ac- 
cording to a node contention-free permutation scheme cp. If 
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is bounded by 161. Under mild congestion, the process 
experiences sligkiicrease of q. If congestion persists, this 
eventually induces packet loss, and q will increase dramat- 
ically. The above observation implies that to avoid over- 
flowing the network buffers, we need to regulate the num- 
ber of outstanding packets (q). The basic principle behind 
this scheme is simple. If a process finds that sending out 
a data packet may overload the network, when q = W,, it 
just halts current transmission and waits until it is safe to 
transmit, i.e. q < W,. By picking the correct value for 
W,, this scheme guarantees that during any interval, the to- 
tal number of packets entering the network does not exceed 
the sum of a pre-specified limit, which is the network buffer 
capacity at the bottleneck region. 

To compute W,, we need to identify the bottleneck re- 
gion and measure the buffer capacity (BL) associated to the 
bottleneck, then we derive W, from BL on the principle of 
fair sharing. In [9], we have explained how to evaluate the 
BL parameter of the switch from a user perspective. Based 
on the communication pattern and schedule, we estimate the 
average number of packets (Y )  generates at each communi- 
cation step which are forwarded to the bottleneck region. 

Under the synchronous shuffle schedule, in p-1 com- 
munication steps, a process generates p-1 data packets 
which are destined to p-1 distinct nodes. However, only 
dl - 1 packets are switched locally, and the rest, p - dl 
packets, are forwarded by the FE switch to its uplink port. 
Therefore, there are (p - d1)dl packets being forwarded 
upstream by each FE switch in p-1 communication steps. 
Based on the node contention-free permutation, the same 
amount of data packets are switched from the Gigabit back- 
bone back to each FE switch. Thus, the average number of 
packets directed to each FE switch’s uplink port per com- 
munication step is 

From this we derive the value of W,, which is 

w, = 

(3) 

(4) 

4.2. Reorder Scheme 

However, knowing the value of W, is a necessary but 
not sufficient condition to avoid congestion loss. This is 
because a) W, is derived from taking the average traffic 
load, and b) unlike traditional end-to-end scheme, global 
windowing needs to monitor and regulate all traffic flows of 
a process, not just one connection. If the traffic distribution 

Figure 3. An example permutation in which global 
windowing alone fails to regulate the traffic. 
(The bottom matrix represents the induced cross- 
switch traffics.) 

is not uniformly spread across the network, the global win- 
dowing scheme could not fulfill its function correctly. This 
is being shown in Figure 3. In this example, we assume that 
the bottleneck region of the 4x4 two-level hierarchical net- 
work is at the uplink ports with BL = 30. However, under 
the xor permutation scheme, we still experience contention 
loss even though the global windowing is adopted. 

= 9. As- 
sume that at communication step i, four packets originated 
from switch 2 and headed for switch 3 are blocked by some 
cause, e.g. HOL, so as those packets that follow in step 
i+l, i+2, and i+3 from the same switch. However, no pro- 
cess is aware of this contention until after step i+8 when the 
global windows of processes in switch 3 become saturated. 
By that time, processes in switch 1 have already sent out 
all their packets to processes in switch 3, which further in- 
creases the queue length at switch 3. Moreover, processes 
in switch 0 are not aware of the problem. This is because 
global windowing collects traffic information on the base of 
past events, but none of these past events could indicate the 
congestion problem in switch 3. As a result, processes in 
switch 0 continue to send all their packets to processes in 
switch 3, which finally overflow the buffer. 

Although the overflow situation could be detected and 
resolved by both global windowing and individual end-to- 
end flow control scheme, performance has been suffered as 
packets are lost inevitably. If we can arrange all communi- 
cation events in a way that each process is communicating 
with different processes reside in a node linked to differ- 
ent switches at each communication step, the traffic loads 
would become more evenly distributed as well as having 
more regular information feedback between different pro- 
cesses in different part of the network. 

An approach in generating this kind of dispersive per- 
mutation is by the reorder scheme, which is arearrangement 
of an existing permutation. Observed that the original per- 

In this example, the size of W, is 
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5. 

Switchluplink I Architecture 

Table 1. The BL parameter of different switches in 
our experimental setup 

Experimental Results 
Figure 4. The resulting communication pattern af- 
ter applying the reorder mapping scheme. 

Set q = 0 
for (s=l to k) & (r=l to k) i n  parallel do 

for (is= 1 to p-1)  & (ip 1 to p-1) do 
to = rp,(@(physical  id), is) 
from = cP,(@(physical i d ) ,  i,) 
if (9 W )  && 

(send-ftem-to(to,, to) == success) 
inc is 
inc 7 

inc i, 
dec 

endi f 
if (recv-item-from(froq,from) == success) 

endi f 
endf or 

endf or 

Figure 5. Synchronous Shuffle Exchange algo- 
rithm with global windowing and reorder scheme 

mutation is obtained by some simple functions (9) which 
operates on inputs such as current communication step and 
node id. A simple method to rearrange the original permu- 
tation is by redefining a mapping between logical node id 
to its physical id. One example of such reorder scheme (4) 
can be as follows: 

physical id 
logical id = I dl 1 +(physical id % dl)*dl (5)  

Carry on with the previous example, if we apply the xor 
permutation on the reordered logical id, we get the commu- 
nication schedule as shown in Figure 4, which is a more 
evenly distributed pattern with respect to both switches and 
cluster nodes. We observe that with this new communica- 
tion pattern, a process is communicating with different pro- 
cesses located in different part of the network in consecutive 
communication steps, and hence, greatly relieves the con- 
tention at the uplink ports and improves the effectiveness of 
our congestion control scheme. 

Based on the global windowing scheme and the re- 
order scheme, we have modified the synchronous shuffle 
exchange algorithm to work efficiently on the two-level hi- 
erarchical network, and the modified algorithm is given in 
Figure 5 .  

Our experimental platform is a cluster consists of 16 
standard PCs running Linux 2.0.36. Each cluster node 
equips with a 45OMHz Pentium 111 processor with 5 12KB 
L2 cache, 128MB of main memory, a Digital 21 140A FE 
card and is connected to a FE Switch. We use the Directed 
Point (DP) communication system [8] to drive the network 
and conduct all our experiments. We have implemented 
a simple Go-Back-N protocol to support limited reliabil- 
ity on DP. In our studies, we have 4 FE switches and one 
GE switch to set up various configurations in evaluating our 
algorithm. 

The GE backbone switch is a chassis switch from Al- 
catel. It is the model PowerRail2200 (PR2200) with back- 
plane capacity reaches 22 Gigabit per second (Gbps). This 
switch is equipped with 8 GE ports on 2 modules, but we 
only use up at most 4 ports in our experiments. Two FE 
switches are from IBM, which are the model 8275-326. It 
is a 24-port input-buffered switch with backplane capacity 
reaches 5 Gbps. A one-port GE uplink module is installed 
on each switch to connect to the Gigabit backbone. Another 
pair of FE switches are the Intel 510T switches, which are 
revealed as shared-buffered architecture. The 510T is a 24- 
port switch with only 2.2 Gbps backbone capacity. Both 
switches are also equipped with add-on GE modules for 
connecting to the PR2200. Table 1 summaries all the buffer 
parameters of the above switches, which are used in OUT al- 
gorithm to compute the global windows (W,) for different 
network configurations. 

5.1. Configuration One - 16x1 

In Figure 6, we measured three complete exchange 
implementations on the 16-node cluster interconnected by 
an input-buffered switch (8275-326). They are the syn- 
chronous shuffle with global windowing (sync+GW), origi- 
nal synchronous shuffle (sync), and the popular pairwise ex- 
change (pairwise) [ 1 I]. The experiment is conducted with 
each node sending k packets of size 1492 bytes to every 
node in the cluster, which is ranged from k=l to 2000. We 
used a relative metric, called achieved bandwidth, to quan- 
tify the efficiency of the algorithm in utilizing the network. 
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Figure 6. Performance of Synchronous Shuffle Ex- 
change on a single input-buffered switch. 

This metric is computed by dividing the total data sizes in- 
jected into the network by each node with the measured 
communication time. 

The results show that both versions of the synchronous 
shuffle algorithms have similar performance, which is peak 
at 97% of the available bandwidth. When compared to the 
theoretical performance (eqt. 2), the synchronous shuffle 
exchange algorithm has its efficiency ranged from 87% to 
97% of the theoretical bandwidth. When compared with 
the pairwise exchange, which has a higher synchronization 
overhead, the results show that the synchronous shuffle al- 
gorithm can effectively mask away those synchronization 
overhead and achieve better performance, especially when 
exchanging small size messages. However, the performance 
of the original algorithm degrades significantly after b 5  12, 
which corresponds to the total message length of 11 MByte 
per node. Meanwhile, with the addition of the global win- 
dowing scheme to the synchronous shuffle algorithm, it 
continues to operate efficiently as the problem size scales. 

5.2. Configuration 'ILvo - 4x4 

With a different network configuration, we compare 
four different implementations: synchronous shuffle with 
global windowing and reorder scheme (sync+GWRS), orig- 
inal synchronous shuffle (sync), original algorithm with 
global windowing only (sync+GW) and the pairwise ex- 
change (pairwise) algorithm. The results are shown in Fig- 
ure 7. As we are using a two-level configuration, there are 
total 5 switches with different architectures. When com- 
paring the buffer capacities of those switches, the obvious 
limitation is on the uplink module of the IBM 326 switch. 
With the corresponding BL value, we compute the W, fac- 
tor, which is equal to 14. 

The results show that synchronous shuffle exchange 
with global windowing and reorder scheme performs con- 
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Figure 7. Performance of Synchronous Shuffle Ex- 
change on the 4x4 configuration - 4 nodes connect 
to a FE switch, which is connected to the PR2200. 
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Figure 8. Performance of Synchronous Shuffle Ex- 
change on the 8x2 configuration - 8 nodes connect 
to the IBM 326, which is connected to the PR2200. 

sistently and efficiently in this test. It effectively masks 
away the synchronization and contention overheads, which 
appears to have a more significant influence on the pairwise 
exchange algorithm when executes on this hierarchical net- 
work. When compared with the original algorithm, we see 
that the performance of the original algorithm starts to de- 
grade at b64, which means there is significant contention 
build-up on the uplink ports. By applying the global win- 
dowing without reorder scheme, we can slightly extend the 
contention tolerance of the synchronous shuffle algorithm 
until b 1 2 8 .  This experiment shows that both global win- 
dowing and reorder scheme are required to monitor on the 
congestion problem. 

5.3. Configuration Three - 8x2 
In this configuration, we interconnect two IBM 326 

switches to the PR2200, with each switch connects to 8 
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nodes. It is clear that the performance bottleneck would 
lie on the uplink ports. Base on this configuration, the com- 
puted value of W, is 10, and the results are shown in Figure 
8. Same as the previous two experiments, the modified syn- 
chronous shuffle algorithm performs the best. 

However, both the original synchronous shuffle and the 
original algorithm with global windowing perform poorly 
in this test. This is because a) the Go-Back-N protocol is 
known to suffer badly when the error rate is high, and b) 
the GE module of the model 326 is not performing as good 
as it claims. By using a bi-directional exchange benchmark 
test, we revealed that the uplink ports could only support up 
to 5 active bi-directional channels without packet loss. It 
seems like the circuitry of the uplink modules cannot catch 
up with the Gigabit performance. We have tested with other 

cable to future technologies, such as 1OGigabit Ethernet, 
which simply extends the topology to multi-level hierarchy. 

References 

[I]  The Avalon Cluster. (http://cnls.lanl.gov/ 
aval on / ) 

[2] S.H. Bokhari and D.M. Nicol, "Balancing Contention and 
Synchronization on the Intel Paragon", in IEEE Concur- 
rency Vol. 5, No. 2, 1997, pp 74-83. 

[3] G. Chiola and G. Ciaccio, "GAMMA: a Low-cost Network 
of Workstations Based on Active Messages", in the 5th EU- 
ROMICRO workshop on Parallel and Distributed Process- 
ing (PDP'97), January 1997. 

[4] T. von Eicken, A. Basu, V. Buch and W. Vogels, "U-Net: 
A User-Level Network Interface for Parallel and Distributed 
Computing", in the 15thACMSymposiwn on Operating Sys- 
tem Principles, December 1995. 

configurations, such as 6x2 and 4x2, to corroborate with the 
above observations. This experiment shows that without the 
reorder scheme, the global windowing scheme cannot avoid 
congestion build-up on its own. 

6. Conclusion 
[5] Extreme Networks. (http: / / W W W .  

extremenetworks.com/products/) 

[6] The ICEBOX Cluster. (ht tp : / /WWW. chpc . Utah. edu/ 
ice/) This paper presented an efficient implementation of 

complete exchange operation on a Ethernet-based hierarchi- 
cal network. The hierarchical network is based on a Gigabit [7] The KLAT2 Cluster. (http: //aggregate. org/ 
switch as the backbone to which all Fast Ethernet switches KLAT2 /) 
are connected. We demonstrated that the contention prob- 
lems on such network - link, node, and switch contention, 
can severely affect the overall performance of the clusters. 
To avoid congestion loss on this type of network, we pro- 
pose the synchronous shuffle exchange algorithm with con- 
gestion control scheme. This algorithm makes uses of ar- 
chitectural characteristics to avoid congestion build-up in 
the first place and reduces congestion whenever it happens. 
We derive a global window scheme from information on 
the network buffer capacity, which forces each node to limit 
their traffic loads and ensures a fair sharing of network re- 
sources that avoids congestion overflow. We also make use 
of information on the network topology to derive a reorder 
scheme in generating a communication schedule, which is 
both node and switch contention-free, as well as supports 
a more evenly distributed traffic pattern on the network. 
This improves the synchronism of the traffic information 

[8] M. Sidi, W.Z. Liu, I. Cidon and I. Gopal, "Congestion Con- 
trol Through Input Rate Regulation", in IEEE Transactions 
on Communications, Vol. 41, No. 3, March 1993, pp 471- 
477. 

[9] C.M. Lee, A. Tam and C.L. Wang, "Directed Point: An Ef- 
ficient Communication Subsystem for Cluster Computing", 
in the International Conference on Parallel and Distributed 
Computing Systems (IASTED), October 1998. 

[lo] A.T.C. Tam and C.L. Wang, "Realistic Communication 
Model for Parallel Computing on Cluster", in the Ist IEEE 
Computer Society International Workshop on Cluster Com- 
puting (IWCC'99), December 1999. 

[ 111 A.T.C. Tam and C.L. Wang, "Efficient Scheduling of Com- 
plete Exchange on Clusters", in the ISCA 13th International 
Conference On Parallel And Distributed Computing Systems 
(PDCS2000), August 2000. 

exchange between cluster nodes, and hence, improves the 
effectiveness of the global windowing scheme in monitor- 
ing the network. 

The hierarchical network model is a practical design to 
construct large-scale clusters. With this system configura- 
tion, clusters can be scaled up to hundreds of nodes, and 
support enough bandwidth for high-speed communication. 
Our research can be used in any combination Of Ethernet- 
based switched network, which we belief, over 50% of the 
self-made clusters are based on. And the concept is appli- 

[ 121 Y.C. Tseng and S.K.S. Gupta, "All-to-All Personalized 
Communication in a Wormhole-Routed Torus", in IEEE 
Transactions on Parallel and Distributed Systems, Vol. 7, 
No. 5 ,  May 1996, pp 498-505. 

[I31 The VALHAL Cluster. (http : 1 /www - fysik- dtu - dk/ 
CAMP/valhal.html) 

[ 141 J. Walrand and P. Varaiya, High-Performance Communica- 
tion Networks, Morgan Kaufmann Publishers, 1996. 

64 

http://cnls.lanl.gov

