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Abstract

In this paper we report experienceson a parallel imple-
mentationof a standardcell placement algorithm on a
clusterof Myrinet connectedPCs. The implementation
is basedon a recently developed placement tool (Feng
Shui) thatextendsrecursive bisectionplacement to incor-
porateglobal aspectsof thedesignusinganefficient op-
timizationcallediterative deletion. Contrary to previous
attemptsat parallelizing placement algorithms,initial ex-
perimental resultsshow significantperformanceimprove-
mentwith small reduction in theplacement quality. Fur-
thermore, thereduction in theplacement quality doesnot
increasewith thenumber of processors.

1 Intr oduction

With advancesin VLSI fabrication technology, the size
of circuits of interestis continuouslyexpanding. Physi-
cal designautomation tools areneededto aid in design
andlayout of suchcircuits. However, thesizeof thecir-
cuits presents a similar challenge to the designautoma-
tion tools: they mustbeableto provide good quality lay-
outswith acceptableruntimes.In this paper, weconsider
VLSI standardcell placement – animportant anddifficult
problem in physical designautomation. The placement
impactscircuit areasandwire delaysprofoundly; a poor
placement maypreventa circuit from operatingat anac-
ceptablespeed,or make it too largefor theavailablereal
estate.Furthermore,if theplacementalgorithm hashigh
complexity, wewill beunable to obtainaplacement in an
acceptable time,forcingasacrificein theplacement qual-
ity (performance,area)to achievefasterplacement time.

Parallelprocessingoffers thepromiseof increasingthe
performanceand capacity of placementtools, enabling
themto providebettersolutionsin fastertimes.Theemer-
genceandcommercial successof clusteringtechnologies
is perhaps themostexciting development yet in thefield�
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of parallel processing: it allows scalablecost-effective
parallel processingmachinesto bebuilt [1, 3, 27]. Clus-
ters approach the performance of customparallel ma-
chinesby usinghigh-performanceLocal/Systemareanet-
working technologiesandstandards(suchasMyrinet [5],
SCI [15] andothers[4, 34, 35]) andlow-overhead user-
level spacecommunicationprotocols (suchas the Basic
Interface for Parallelism (BIP) [13], Illinois Fast Mes-
sages(IFM) [26] andothers[9, 25]). Becausethey use
commodity components, clustersareaffordable,scalable
andeasyto build [30].

Thispaperpresentsexperiencesin parallelizing astate-
of-the-art placement tool on a cluster of workstations.
Thealgorithm usesastandarditerativebisectionapproach
augmentedwith aniterativedeletionstepthatincorporates
global aspectsof thedesignin additionto local optimiza-
tion obtained through iterative bisection. The contribu-
tionsof thepaper are: (i) the initial sequentialalgorithm
is state-of-the-art from a run-time complexity andsolu-
tion quality perspectives;(ii) theparallelimplementation
providessignificantspeedup while maintaining highqual-
ity solutionsregardlessof thenumber of processorsused.
In contrast,otherparallel implementationsgenerally suf-
fer significantdegradationin quality; (iii) mostpublished
solutions are specific to an architectureand are not di-
rectly portable to a clusterenvironment. To our knowl-
edge, this is the first study that investigatesthis impor-
tant problem on a modern clusterenvironment; and(iv)
we investigateseveral algorithmic optimizations aswell
assystem-level tradeoffs in the implementation.This in-
cludesperformance comparisonof a Myrinet network [5]
running theBIP messagepassinglibrary relative to using
100Mbit/secswitchedEthernet for communication.

The remainder of this paper is organized as follows.
Section2 theplacement problem andrelatedwork. Sec-
tion 3 discussesthe sequentialplacementalgorithm in
more detail. Section4 presentsthe detailsof the paral-
lel implementation. Section5 presentsthe experimental
setupandresults. Finally, Section6 presentssomecon-
cluding remarks.
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Figure1: Terminal propagation asperformedby Dunlop
andKernighan. Whenrecursively partitioning a netlist,
we can insert dummy terminals to influence the parti-
tioner. If anetspansmorethanoneregion, thelocationof
dummy terminalscanimprove theplacementquality.

2 Overview and RelatedWork

We considerthe problem of standardcell placement:
theobjectiveis to placerectilinearcircuit elements(cells)
into oneor morehorizontal rows, minimizing total wire
length. Thereare a number of establishedapproaches
to the placement problem. For a comprehensive survey,
the reader is referred to the following paper[31]. Force
Dir ectedor LP basedapproachesrepeatedly solve sys-
temsof equations, determining cell locationsiteratively
(for example, [11]). This approachis popular in commer-
cial placement tools. Simulated Annealing approaches
obtaincell placementsby swappingpositionsof cellsran-
domly, guided by a probabilistic acceptance function. A
number of current commercial placement engines (e.g.,
TimberWolf[33]) use this approach; efficient cost esti-
matesallow the consideration of large numbersof inter-
mediatestates.Partit ioning basedapproachesdetermine
cell locationsby recursively dividing an initial area(re-
gion) with successive bisections or quadrisections. This
approachhasbecomemoreattractive recently;advances
in partitioning researchhaveprovidedanumberof fastal-
gorithms which produceextremely good results. This is
theapproachusedin thispaper.

Breuer[6] utilizedrepeatedgraphbisectionsto obtaina
circuit placement.Thebisections divide thecircuit netlist
into a hierarchy of cells, with the resulting hierarchy
roughly mapping into a rectilinear grid. Dunlop and
Kernighan[10] extended thisapproach,throughtheuseof
animprovedpartitioningmethod[18].

Dunlop and Kernighan [10] also introduce terminal
propagation. Whenpartitioning aregion, wecanexpecta
numberof connectionsto berequiredto cellsor padsout-
sideof theregion. Terminalpropagationprovidesasimple
methodto insertfixed“dummy” vertices,sothat thepar-
titioning considers theseexternal connections(Figure 1).

With terminalpropagation, thepartitioningsof regionsbe-
come interdependent;if webegin with two regions,L and
R, andpartition L first, this impactsthe optimal solution
for R. PartitioningR first might resultin a differentsolu-
tion, andneitherof thesemight begloballyoptimal,even
if the individual partitioningswere. To addresstheorder
dependenceof the partitioning, both [32] and [14] em-
ploy repeatedpartitioning ateachlevel. Wemight wish to
partition L, followedby R, andthenpartitionL a second
time. Repeatedpartitionings do not, however, change a
localoptimizationprocessinto aglobalone.

Becauseof the computational complexity of place-
ment, therehasbeensignificant interestin parallelizing
placement algorithms since the 1980’s (see for exam-
ple[8, 16, 19, 20, 21,22, 24]; agoodsummaryis available
here[2]). Thesestudieshave experimentedwith paral-
lelizing mostof theplacementalgorithms on a varietyof
parallel architectures. Most of thesestudiesarequiteold
andarespecificto thearchitecturesthatwereusedto test
them;it is difficult to compare performancedirectly with
them.In addition, theobjectivefunctionsthatthedifferent
studiesoptimize aregenerally different. Furthermore,re-
searchin placementsuffersfrom thelackof uniformmet-
rics for reporting the results– wire lengths arereported,
but theresultscanvaryby amultiplicative factordepend-
ing on the underlying assumptions(suchascell spacing
andthemethodof measuringwire length).This makesit
difficult to fairly comparethealgorithms, evenwhenthe
samemodelsareused.However, while directcomparison
is difficult, comparison of relative measuresbetweenthe
sequential andparallelversionsof eachalgorithm(suchas
speedup, andqualitydegradation) arestill possible.In the
following paragraphwe will overview someof the most
recent of theseworks. In Section5 they arealsoreviewed
aswe compareour resultsto them.

Banerjee’s researchgrouphasdone themostextensive
work in the areaof parallel placement algorithms. For
example, within the ProperPLACE CAD tool they dis-
cussa parallel placement algorithm basedon simulated
annealing [19]. In contrast to other parallel placement
implementations,they work with anabstractparallelma-
chine model allowing the implementationto be directly
ported acrossdifferent architectures. They studyshared
memory anddistributedmemory implementations. The
speedup acrossdifferentimplementationswere reported
on theISCASbenchmarks. Koideet al present a parallel
implementationof theirPOPINStiming driven placement
tool [21]. They usea bisectionapproachsimilar to our
own, with non-linearprogrammingusedin asecondphase
optimization. The parallel implementation usesshared
memory. In this study, the drop of quality in the paral-
lel implementationwassignificant(anaverage of 14%).
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3 Algorithm Formulation

This paper considers parallelizing a placement tool
(calledFeng Shui [36]) developedby two of theauthors.
Feng Shi adaptsarecentlypresentedpartitioningapproach
for k-waypartitioning. It differsfrom thatsolutionin that
it usesa techniquecalled iterative deletion [23] to allow
someglobal issuesto be capturedresultingin improved
placement quality at significantly lower cost thank-way
partitioning. Feng Shui integratesa variantof k-way par-
titioning approachinto a traditional framework. Thegen-
eral flow of our placement tool is asshown in Figure3.
Whenfacedwith large numbers of regions to bisect,it-
erative deletion is appliedfirst (to obtain a good qual-
ity globalsolution), followedby repartitioning of regions
with a traditional bisectionapproach(to improvesolution
quality from a local perspective). The remainder of this
sectiondescribesthesestepsin moredetail.

3.1 Bisection

Theframework for theplacement tool is atextbookimple-
mentationof theapproachof Dunlop andKernighan[10].
The circuit is repeatedly divided by eitherhorizontal or
vertical cut lines. A recentmulti-level clusteringbased
partitioning algorithm hMetis[17], version1.5.3 is used.
At eachpartitioning, we attemptto obtaina nearlyexact
bisectionif cuttingvertically. If thecut line is horizontal
(splitting a number of rows), therows aresplit asevenly
aspossible.If the region beingbisectedcontainsanodd
numberof standardcell rows,fixedandweighteddummy
verticesareaddedto allow a nearlyexact bisectionto be
mapped into theavailablespace.Thepartitioning objec-
tive is min-cut; the hMetis partitionerattemptsto mini-
mizethenumber of cuthyperedges.

Recursivebisectiondividesplacement regionsinto pro-
gressively smallerareas,ultimatelyassigningeachcell to
a singlerow, but possiblyhaving severalcells remaining
within a region. To establishpositions for eachcell, the
cellsareorderedby region locationwithin eachrow; the
cellsarepackedtogether without spacesor overlap. The
positionsof cellswhich werewithin thesameregionwill
be arbitrary at this point; they were not ordered by the
partitioning process.To optimize thesepositions,we ap-
ply branch-and-bound reorderingto modify thepositions
of a smallsetof consecutivecellsin asinglerow.

Feng Shui allows thespecificationof a “window size,”
controlling the number of cells involved in any branch-
and-boundoptimization. This window passesover each
cell row (in order), traveling alongeachrow at stepsof
half thewindow size. At eachstep,theoptimal orderfor
cells found under the window is determined. The num-
berof passesover theplacement,andthesizeof thewin-

dow, arebothparameterswhich canbecontrolled by the
user. In practice,we find that window sizesof 6 to 8
cells,and4 passesof improvement,aresufficientfor good
overall performance. Increasingthewindow sizeimpacts
runtimessubstantially(thecomplexity of thebranch-and-
bound procedureis O

�
w! � worstcase,wherew is thesize

of the window). In [7], a number of waysto implement
branch-and-boundreorderingsefficiently wereexplored.

3.2 k-Way Partitioning

Thefocus of our work hasbeenon the global aspectsof
the placement problem. With partitioning, we canopti-
mizethenumber of edgescut within a region effectively,
but have no way of knowing if this local optimization
is appropriatefrom a global perspective. Similarly, our
branch-and-boundreordering is alsoa local optimization.

A careful examinationof placementby recursivebisec-
tion revealsanumberof instanceswhereglobal objectives
maybelost. Theexamplein Figure3 showsasimplecase
where local optimizationis insufficient; therearefour re-
gions to bisect,eachwith two cells. If theproblemis ap-
proachedasa seriesof independentbisections,a number
of configurationswhich are both stableand suboptimal
canbeencountered.Thesub-optimality of theglobal so-
lution is notrelatedto thequalityof thebisectionsof each
region; simply improving thebisectionalgorithm will not
improvetheglobal configuration.

As we progress through the placement process,the
numberof regions increases,doubling repeatedly. If there
are k regions that are to be split (obtaining 2k new re-
gions), the traditional approach is iterative, bisectinga
singleregion at a time. Instead, Feng Shui attemptsbi-
sectionof all regions at thesametime, obtaininga solu-
tion that is of good quality globally. Themethodusedto
performthismassivebisectionis basedonpartitioningby
iterativedeletion[23].

3.3 NewFormulation – Iterati veDeletion

To captureglobalobjectiveseffectively, avariantof multi-
way partitioning is used(rather thanasa seriesof bipar-
titions). We partitionall regions simultaneously, with the
intermediatestateof eachregion influencing the others.
Weareconcernedwith partitioning very largenumbersof
regions,andour costobjective is wire lengthratherthan
min-cut. The problem we consider is given a set of re-
gions (with physical constraints) and a set of elements
mapped to these regions, bisect all regions to minimize
the resulting bounding-box wire length. Solutionof this
problem optimizesthe circuit from a global perspective.
Multi-way partitioning hasprovenquitechallenging[29];
for traditional objectivessuchasmin-cut, thegreatestsuc-
cesshasbeenobtainedwith recursivepartitioning.
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Split each region into
a pair of smaller regions,
using Iterative Deletion

Partition each
pair of regions with
hMetis

Largest region
remaining smaller
than threshold?

Branch-and-
Bound optimization
of each row

Begin with a single
region, comprising the
entire placement area.

N

Y

Figure2: Flowchart of theplacement approach. Thepartitioning andbranch-and-bound improvement stepsarewell
known. New to theapproachis thepre-processingperformedby iterative deletion.
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Figure3: Giventhenetlistabove,we mayassignpairsof cells to theregionsshown. If we determine theordering in
region R1 first, wearriveat a stablebut suboptimal solution.

In [23], hypergraph partitioning wasconsidered.A new
methodbasedon iterative deletion waspresented; in this
approach, verticesare duplicated, with one instanceof
eachvertex beingassignedto a partition. Redundantel-
ementsareremovedoneat a time until no duplicates re-
main.While theapproachwasrelatively simple,it proved
effectivein someareaswheretraditionalmethodshaddif-
ficulty. For bipartitioning, cut sizesfrom a singlelinear-
timepasswerecomparableto many passesof atraditional
FM[12] algorithm. Multi-waycutsizesweresuperior to a
directflat multi-waypartitioningalgorithm[29]. Forprob-
lemswith a varietyof hyperedgeweights, a combination
of iterative deletionandFM partitioning provedsubstan-
tially moreeffective thanFM partitioning alone.Theap-
proach is computationallyattractive: with integerhyper-
edgeweights, it maybeimplementedin O

�
n � time.

Our variation of the iterative deletion approach for
placement operatesin the following manner. Eachcell
in a region is assignedto both subregions;if thereis more
thana singleinstanceof a cell, it is considered to be re-

dundant. Werepeatedlyremoveredundantcellsfrom sub-
regionswhichhavehighutilization, andselectthehighest
costcell for removal.

In theexistingimplementationof theplacement engine,
thecell costis evaluatedbasedon thecenterof massfor
the componentnets. For eachnet n i, the centerof mass
for this net is the averageX andY locationof the cells
which it connects. The costof any cell c i is the sumof
the distancesbetweenthe cell andthe centerof massof
eachnet to which the cell is connected. In this way, a
cell which is far from the centerof massof eachnet to
which the cell is connectedhashigh cost. Eachregion
hasa number of cellsassignedto it, andanavailableca-
pacity; redundantcells(thoseintroducedby iterativedele-
tion) with high costsareremovedfrom theregion which
hasthehighestratioof cell areato capacity.

Heapsareusedto maintaintheordering of cellswithin
any given region and the ordering of regions. In this
way, maintenanceand cell selectionare both at worst
O
�
log n � for eachcell removed.As thenumberof redun-
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dantelementsto be removed in any passis n, eachpass
is O

�
nlog n � . Region sizesdecreaseby a factorof 2 with

eachpass,resultingin a logarithmic numberof passesre-
quired. Thus, the iterative deletion portion of the algo-
rithm is atworstO

�
nlog2n � .

To illustrate the iterative deletion process,we present
Figure4. In thisfigure,weduplicatecellsc1, in region R1,
andcell c2 in regionR2, andassumethatanetconnectsc1

to c2, andthatasecondnetconnectsc2 to apad.
The order of cell deletionsin this figure is as follows.
Notethatothercell deletionsmaybeinterspersedwith the
steps;we focusonly on thesecellsto clarify theprocess.

� Thecenterof massfor thenetsconnectedto cell c2

is closestto the pad; we remove the instanceof c2

which is furthestfrom this location(asthis is thein-
stancewhichhashighestcost).

� The centerof massfor netsconnectedto cell c2 is
recalculated, andthis is propagatedto theothercells.

� Net n1 now hastwo instancesof c1 andoneinstance
of c2 connectedto it: thecenterof massfor this net
changes,influencing thecostfor eachinstanceof c1.

� An instanceof c1 is removed.

4 Parallel Cell Placement

Theoptimizedsequential implementationof theplace-
mentalgorithm discussedabovewasinstrumentedto iso-
late the portions that aremostcomputationally demand-
ing. The bulk of the execution time was spentin par-
titioning and reordering phases– iterative deletion up-
datescontributedvery little overheadaftereachpartition-
ing pass.Theparallelimplementationandoptimizations
to it (both thosewe have alreadyimplemented andones
that areplanned) will be discussedin this section. The
implementationwasperformedusingMPICH runningon
top of theBasicInterfacefor Parallelism(BIP) [28] on a
myrinet connectedPCclusterrunningLinux.

4.1 Parallel Partitioning

In order to maintaintheglobaloptimizationachieved by
iterative deletion,parallelprocessingis restrictedto the
growing list of regions to bepartitionedin eachpass.In
the first passthe main region is partitionedby a master
process into two. In the secondpassthe resultingtwo
regionsarepartitioned into four in parallelby themaster
anda slave andsoon until theprocessorlimit is reached.
As the list grows, regions above a certainthresholdare
distributedevenlyby themasteramongall processes.An
example is shown in Figure5.

Initially, we implementedthedatadistribution usinga
messageper work unit (i.e. region). Thus, the master
walksthe list andsendsa messagefor eachregion to the
slavesin a round-robin fashion.We optimized this imple-
mentationbygeneratingamessagepereachbatchof work
units usingMPI’s vector scatter-gather. Obviously, the
latter outperforms the first becauseit increasesthe com-
putation granularity by requiring the masterto commu-
nicatefewer messageswith larger size. Load balanceis
maintainedby theaforementionedevendistributionof re-
gionsandby thefactthatthepartitioningengineproduces
balancedregioncutsaswell.

BecauseVLSI CAD applicationsrequire largememory
space,it is necessaryto utilize memory efficiently. There-
fore, unicastmaster-to-slave andbroadcastcommunica-
tion messagesareusedto instructslavesto allocateonly
thespacerequired for storingandprocessingtheir work-
load in round robin andvectorscatter-gatherimplemen-
tationsrespectively. Suchmessagesincurslight overhead
thatis negligible for non-trivial placement problems.

An approximateanalysisof theparallelpartitioning fol-
lows. Considera regionof areaR to bepartitionedinto N
regions just below the threshold. Assuminga linear run
time complexity of the partitioning engine anda homo-
geneousdistribution of circuit elements,if it takes time
Tp to partitionR, thenpartitioning a region of area R

n re-

quires Tp
n . Theprogressionof region partitioning is mod-

eledby thetreein Figure5. A sequential implementation
performsn steps,with steptime Tp

n , at eachpassto par-
tition n regions into 2n regions with a total time of Tp.
The number of passesis log2N, andso the total amount
of partitioning time is Tp � log2N. On theotherhand, us-
ing P processors, thefirst log2P � 1 passeshave n �	� P
andeachtakes Tp

n to complete(i.e. a maximum of one
region perprocessor) while theresthave n 
 p andeach
takesceil(n/p) x Tp/n to complete (i.e. ceil(n/p) regions
perprocessor). Thetime for thefirst groupof passesis:

log2P

∑
i � 0

Tp

2i (1)

andthetotal time for therestis:

log2N � 1

∑
i � log2P  1

Tp

P
� Tp

P � � log2N � log2P � 1� (2)

For machineswith smallP, over a wide rangeof problem
size,N is muchlarger thanP (i.e. the number of passes
with n �	� p is muchlessthanthosewith n 
 P), andif
log2N 
�
 log2P � 1, thenthe total time is given by the
secondformula andis approximatedby Tp

p � log2N. The
bestcasespeedup (sequential/paralleltime) is hencelin-
earin thenumber of processors.
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Figure5: ParallelPartitioning

Costupdateandcommunicationtimescouldbe incor-
porated by time Tu aftereachpass.Thetotal of this over-
headis thegeometric seriesandis givenby:

log2N � 1

∑
i � 0

2i � Tu � Tu �
�
2 � log2N � � 1��

2 � 1� � � N � 1� � Tu (3)

SinceTu is larger in the parallel implementationdue
to communicationtime, theactualspeedup cannotbeex-
pectedto belinear.

4.2 Parallel Reordering

Branchandbound cell reorderingis a secondphaseop-
timization that is performedafter the placement stepto
improve the solutionquality. A reorderingwindow of a
prespecifiedwidth in number of cells is slid acrossthe

eachrow in stepsof half thewindow size. All combina-
tionsof reorderingsof thecellswithin thecurrent window
areconsideredandthebestwindow kept.Thus,thesmall-
estwork unit is theblock of consecutive cellsdefinedby
the reorderingwindow. The larger the window size the
larger theblock andthelarge thenumber of cellsconsid-
eredfor reorderingatatime,but thesmallerthenumberof
blockssincerowsareof fixedlength.All cellsexcept half
awindow’sworthatthebeginningof eachrow areconsid-
eredfor reorderingtwice. To keepthis key for quality in
theparallelimplementation,only non-overlappingblocks
arereorderedin parallel. Thus,eachrow undergoestwo
passesof reorderingwherea window now moves at steps
of full size.Thefirst passconsidersevenblocks only and
thesecondconsiders oddblocks only or vice versa.

The sameprinciples for partitioning load balanceand
communicationarefollowed here;blocks aredistributed
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Figure6: ParallelReordering Passes

Benchmark Rows Cells Nets
fract 6 149 163
struct 21 1952 1920
primary1 17 833 904
primary2 22 3014 3029
biomed 44 6514 7052
industry2 69 12637 13419
industry3 52 15433 21967
avqsmall 79 21918 30038
avqlarge 83 25178 33298
golem3 117 100312 217362

Table 1: The placement benchmarks considered. The
first four benchmarksaretheISCASBenchmark circuits.
Number of Rows determinedusingTimberWolf.

evenly among all processorsusingvectorscatter-gatheras
shown in Figure6. Becausethereis oftena largenumber
of rows in a placement, it is crucial to optimize memory
reallocation; allocatedmemory is not releasedunlessthe
spacerequired to hold blocksof a new row is larger than
theavailablespace.

5 Experiments

Theparallel implementationof theplacement tool was
evaluated for execution time andquality of solutionon a
clusterof eight 550MHz PentiumIII workstations. The
cluster is interconnectedusing a Myrinet network; the
Myrinet LAN cardsuseaLANai 7 33MHzprocessorand
33MHz,32-BitPCIbus.Themachinesarealsoconnected
via switched100Mbit/secEthernet. In [36], Feng Shui’s
performancewas compared againstcommercially avail-
abletoolsandfoundto producebetterresultswith smaller
run times. In this paper, we focuson theperformanceof
theparallelversion. Unlessotherwiseindicated, all results
aretheaverageof five runswith differentseeds.Table1

shows the benchmarksusedin the experiments. These
benchmarks spana wide range of circuits, including the
largestavailablepublic domaincircuits.

Table 2 shows the execution times of the parallel al-
gorithm (usingscatter/gather). Theseresultswereabout
30% faster than our initial implementation with round
robin region distribution. Thequality of theparallel ver-
sion is not affectedby the number of processors. The
degradationin quality is due to the fact that the region
processingis done in paralleland in phases. This is in
contrast to the sequential version wherethe regions are
updatedsequentially, with every subsequentregion using
theupdatedvaluesof theregions processedbefore it. We
notethatthesmallestmodel(fract) suffersa slowdown in
theparallelimplementation; its sizemakesthecommuni-
cationoverheaddominatethe execution time. Note that
even thoughthetableshowstheresultsfor 2, 4 and8 pro-
cessorsonly, the algorithm is not restrictedto power of
two processorconfigurations.

The resultsuse a reorder window size of 6. As we
will show later, a window sizeof 6 wasfound to provide
the bestquality to execution time point (bigger window
sizetook muchlongerto execute andprovidedmarginal
improvement). The drop in quality was small for most
benchmarks(lowerthan6%). Theexception wasavqlarge
andavqsmallwhichsufferedaround 10%reduction in so-
lutionquality. Thesetwo benchmarksalsodid notachieve
good speedupdespitetheir large size. We arecurrently
looking morecloselyat their behavior to try to gain in-
sight into their behavior; otherstudiesreportdifficulties
with thesebenchmarks[21]. The reduction in quality is
significantly smaller than that reported in other parallel
placementstudies.For example, in onestudythequality
degradationof theparallelsolutionreached30%(with an
averageof 14%) [21] on a 4 processorstudy. In another
study, thequalitydrop alsoreachedover 30%with anav-
erage of around 20%. Both studiesonly report resultson
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Benchmark Wire Length RunTime(sec)
Sequential Parallel (ratio) Sequential 2 Processors 4 Processors 8 Processors

fract 66242 69498.4(1.05) 2.6 7 7 6.9
struct 775636 797647.6(1.03) 41.9 30.5 21.5 16.6
primary1 1053258 1064441(1.01) 18.6 16.9 13.2 11.8
primary2 3747715 3855615.4(1.03) 80.2 57.1 39.2 30.1
biomed 3382200 3514514(1.04) 162 111.8 79.4 64.5
industry2 15629154 16508315(1.06) 359.4 227.2 155.5 117.8
industry3 45088174 47757192.8(1.06) 538.6 338.5 218.1 157
avqsmall 6041243 6626165.6(1.1) 925.1 746.8 598.9 566.3
avqlarge 6344469 7053757.8(1.11) 1006 788.2 645.5 603.9
golem3 88959019 92830917(1.04) 3235.9 2191.2 1243.1 918.1

Table2: Wire LengthsandRunTimesfor theParallelImplementationUsingScatter/GatheronMyrinet

Benchmark RunTime (sec)
Sequential 2 Proc. 4 Proc. 8 Proc.

industry2 359.4 283 229.7 212.6(1.69)
industry3 538.6 402.9 309.1 263.9(2.04)
avqsmall 925.1 894.6 816 772.9(1.20)
avqlarge 1006 946.2 872.6 842.3(1.19)
golem3 3235.9 2328 1983 1635

Table3: Wire LengthsandRunTimesfor theParallelIm-
plementationUsingScatter/GatheronEthernet

a subsetof thebenchmarksusedin this study.
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Figure7: Speedup for theMyrinet/BIPExperiments

Figure 7 shows the speedup obtainedby the parallel
versiononselectedbenchmarks. Wenotethatthespeedup
generally increaseswith thesizeof themodel;the larger
the model the larger the granularity of the computation.
Theonly exceptionis avqlarge– despitebeingthesecond
largest model, it benefitsleastof the5 models shown.

Table3 shows the run times for selectedbenchmarks
usingethernet communication. The quality resultswere
identicalto theMyrinet version.Clearly, theperformance
is significantlyworsethantheMyrinet version. This can

Benchmark Wire Length Improvement(%)
Without ID With ID

fract 68502 69498.4 -1.4
struct 804123 797647.6 0.8
primary1 1084639 1064441 1.9
primary2 3914142 3855615.4 1.5
biomed 3506130 3514514 -0.2
industry2 16488752 16508315 -0.1
industry3 48973501 47757192.8 2.5
avqsmall 6479309 6626165.6 -2.3
avqlarge 6947883 7053757.8 -1.5
golem3 96020944 92830917 3.3

Table4: Effect of IterativeDeletion

more clearlybeseenin Figure8.
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Figure8: Speedup ComparisonMyrinet/BIPvs. Ethernet

Iterative deletionproved useful in the sequentialver-
sion of the tool, yielding a few percent improvement on
averagewith a small increase in execution time. We at-
tempted to verify whetheriterative deletionwill have the
sameeffect on the parallelversion. Table4 presentsthe
resultsof this study. While iterative deletionresultedin
0.7% improvement onaverage,it did performworsefor a
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number of benchmarks. Most notably, the two problem-
aticbenchmarks in termsof speedup andqualitydegrada-
tion (avqsmall andavqlarge)sufferedthebiggestdegrada-
tion from usingiterative deletion.Without thosetwo, the
improvement becomes1.4%.

Wealsoinvestigatedtheeffectof thesizeof thereorder
window (from thedefault6 to 8). Theexecution timerose
sharplyfor all benchmarks,but theefficiency of thepar-
allelismfor thereorder portionof thealgorithm raisedthe
overall speedup (ascanbeseenin Table5). Wenotehow-
ever thatthegainin quality is marginal; wewouldbebet-
ter off to execute with window size6 sequentially rather
thanwindow size 8 – the gain from the higher window
sizeis smallerthanthelossdueto parallelism.

Theseresultsrepresent what is very mucha work-in-
progress.We expect to further refinetheexisting imple-
mentationin thefollowingways.Currently, theregion list
is relayedbackto themasterat theendof everypartition-
ing stepto updatethedependencies,before resending the
resultsbackout to theslaves. This causesa lot of redun-
dantcommunicationaswell asa sequentialwalk of the
list. Thenext stepis to allow aparallelwalk of thelist and
update of theregionsby doinganall to all exchange,in-
steadof the“reduction” backto themasterprocess.From
the quality perspective, we are working on maintaining
thesequential dependenciesusinga “wavefront pipeline”
scheme.This formulationshouldproducethesamequal-
ity asthesequentialversion,althoughthespeedup will not
beashighasthecurrentformulation.

6 Concluding Remarks

With theexponentialgrowth in thesizeof circuitsun-
derfabrication, efficientphysicaldesigntoolsareneeded.
Parallel processingoffers the promiseof increasingper-
formanceandcapacity. Theemergenceof clustersascost-
effective scalablehigh-performance computing platform
brings thelong overduepromiseof parallelprocessingto
the mainstream. The investigation of parallelization of
physicaldesigntoolsusingclustersis timely.

In this paper, we presentedexperienceswith paralleliz-
ing a state-of-the-artplacement tool on a clusterof work-
stations.Thesequential tool provideswire lengthscom-
parable to thoseof a well known commercial tool, and
resultsreportedfor thetool Capo indicatethatplacements
arenotdifficult to route.Thesequential implementationis
efficient; thegrowth in run timesis nearlylinearwith the
sizeof thecircuit. Thetool usesa novel iterativedeletion
approachto allow the consideration of global objectives
from within atraditional top-down placementframework.
For moredetailspleasereferto thefollowing paper[36].

Contraryto othereffortsatparallelplacement, wewere

able to obtain significant improvement in performance
with minimaldegradationin thequality of thelayout. The
degradationin thequalityof thesolutiondoesnotincrease
with thedegreeof parallelism.We exploredseveralalgo-
rithmic andsystemoptimizations andevaluatedthe im-
plementationon a myrinetaswell asa switchedEthernet
network. We arestill in theprocessof optimizingtheim-
plementationandarehopeful of achieving higherspeedup
in time for thefinal versionof this paper.

We expectto continue to refinethis tool both from an
implementationand functionality perspectives. For ex-
ample, timing driven placement is a significantconcern
for modern design.We arecurrently working with anin-
dustryresearchgroup to evaluatetheperformanceof our
approachon largedesignsunder realisticdelayrules.We
notethat delayoptimization is perhaps more of a global
phenomena thanwire lengthminimization: meetingtim-
ing objectivesmayrequire modificationsin many areasof
a placement, andreductionsin delayfor somenetsmay
require increaseddelayin others.
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