
Semi-Continuous Transmission for Cluster-Based Video Servers

Sandy Irani and Nalini Venkatasubramanian
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

Email:firani,nalinig@ics.uci.edu

Abstract

With advances in storage technology, the ability to pro-
vide client end storage for continuous media applications
has become a possibility. Transmission of data in cluster
based multimedia environments can be semi-continuous in
conjunction with client side buffering and staging. Exper-
iments indicate that a client buffer size (staging degree) of
20 percent (of object size) is near optimal for most objects.
The work presented in this paper also addresses the impli-
cations of semi-continuous transmission to placement and
admission control mechanisms in a cluster-based multime-
dia server. We improve admission control by introducing
a technique called dynamic request migration in cluster-
based multimedia servers that is enabled by client stag-
ing. Simulation studies demonstrate that close to maximum
utilization can be achieved even if at most one migration
within the server cluster is performed for each request ar-
rival and each request is migrated at most once during its
lifetime. Furthermore, our performance results reveal that
with client staging and dynamic request migration, even
naive placement techniques are tolerant to extreme varia-
tions in request patterns. In fact, our results indicate that
under most circumstances one can be oblivious to request
pattern variations during placement, eliminating the need
to predict relative popularities of objects.

1. Motivation

Recent advances in networking technologies have en-
abled high bandwidth communication infrastructures and
widespread availability of large bandwidth at clients and
servers, making applications such as video-on-demand to
the desktop feasible and affordable. Many of the origi-
nal continuous media servers assume that clientsaccessing
data from multimedia servers have very limited capability in
terms of processing and storage. Current trends in storage
and processing technology have caused a tremendous drop
in storage cost. It is now reasonable to assume that there

is sufficient storage to buffer limited data at the client end.
We use the termclient stagingto refer to workahead trans-
mission into (larger) client disk storage (the staging buffer)
andclient bufferingto refer to transmission into a (smaller)
client memory buffer. The ability to store data at the client
side opens up possibilities ofsemi-continuous transmission
of multimedia data where the server can download informa-
tion to the client in fixed or variable sized segments.

In this paper, we study techniques to make effective uti-
lization of semi-continuous transmission to further the over-
all performance of the system. We are especially interested
in the implications of client side storage on admission con-
trol and placement policies at the server side of a cluster-
based multimedia server.The objective of these techniques
is to improve utilization of system resources and request
success ratios.Specifically, we study the following

� Performance benefits obtained by client staging

� Admission control techniques at the server side to
exploit the availability of client staging. We pro-
pose a mechanism called Dynamic Request Migra-
tion (DRM) and study the performance benefits of this
technique.

� Performance impact of placement policies with client
staging and dynamic request migration. We analyze
how the ability to provide semi-continuous transmis-
sion impacts the performance of distributed object
placement strategies.

The rest of this paper is organized as follows. We de-
scribe the overall architecture of the cluster-based multime-
dia server in Section 2. In Section 3, we describe issues that
arise in the implementation of semi-continuous transmis-
sion of continuous media and propose some mechanisms
for admission control and placement in cluster-based multi-
media server environments. Performance evaluation of the
proposed techniques is presented in Section 4. We address
related work in Section 5 and conclude in Section 6 with
future research directions.



2. System Architecture

Multimedia server environments vary widely based on
the application domain,from tens/hundreds of servers for a
nation-wide educational VOD facility to less than a dozen
servers for small enterprise intranets. We assume the fol-
lowing architecture of a typical cluster-based video server
(see Figure 1).
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Figure 1. Architectural view of a cluster-based
multimedia server

The video server consists of a cluster of multiple inde-
pendent and distributed data sources (servers), with high
capacity storage devices (e.g. hard-disks), processor, buffer
memory, and high-speed network interfaces for real-time
video retrieval and transmission [24]. To accommodate
a large number of video objects, the video server cluster
includes tertiary storage. A central distribution controller
(DC) governs the operation of the data sources within the
cluster. When a request to view a particular video arrives in
the system, the distribution controller must decide whether
or not to accept the incoming request based on current re-
source allocation. If the request is accepted, it must be allo-
cated to a particular server (i.e. data source) within the clus-
ter which holds a replica of the requested video and which
also has the available resources to begin transmission imme-
diately. In the typical mode of operation, the data sources
guarantee to provide appropriate quality of service toeach
request until its completion. All the above components are
interconnected via an external distributionnetwork that pro-
vides client/subscriber connectivity. A lower speed back-
channel conveys client commands back to the data sources
via the DC. Note that in this architecture, scheduling a re-
quest on a data source implies that the request is serviced
using storage on that data source. In contrast, other ar-
chitectures [8, 10] assume the availability of shared stor-
age among the servers. The scalability of our architecture
is attributable to the ability to add additional data sources
to the server in order to provide increased storage capac-
ity and transfer bandwidth. We believe that assuming non-
shared storage subsystems across servers will enable us to

scale our management mechanisms to server complexes dis-
tributed over a wide area network easily.

Since storage is limited at each server and the video ob-
jects are large, it is not feasible to store a replica of each
video on each server. Thus, avideo placementstrategy must
be devised. The placement strategy decides when, where
and how many replicas of a video object will need to be cre-
ated to satisfy incoming requests. While a copy of a given
video which resides on a server can be used to satisfy many
requests for that video object, each request uses a portion
of the bandwidth of the server. Naturally, the relative pop-
ularity of videos will differ, so researchers have focused on
video placement strategies to balance thepopularity of a
video with its storage requirements so that both the storage
and bandwidth of the servers can be used effectively.

3. Semi-continuous transmission

In continuous transmission, the video is transmitted in
a continuous stream at the rate at which the video must
be viewed ( called theview bandwidth). This amount of
bandwidth is reserved on the assigned server for the dura-
tion of the transmission. In semi-continuous transmission,
the client staging buffer is used to transmit a portion of
the video before it is actually viewed. The parameters of
the workahead transmission into the client staging buffer is
based on the capacity of the client staging buffer and the
need to guarantee continuous playback at the client.

Semi-continuous transmission can be implemented in a
variety of ways. It is possible to transmit the video in
fixed size segments each of which are transmitted in a non-
continuous manner some time before that particular seg-
ment will be viewed. Alternatively, it is possible to imple-
ment this by simply varying the bandwidth of each contin-
uous transmission. Since the former approach is a special
case of the latter, we will assume variable width transmis-
sion since this offers the most flexibility in transmission.

Semi-continuous transmission has the potential to offer
performance benefits in different ways. First of all, it has
the effect of smoothing out natural fluctuations in the ar-
rival rate of requests to servers. If client staging is feasible,
then spare bandwidth can be utilized when the number of re-
quests in the system is below the average which will result
in the availability of more bandwidth when the demand is
above average. Variabilities are buffered permitting reallo-
cation of resources on the fly. Secondly, client staging opens
up the possibility fordynamic request migration(DRM) at
the server during admission control.

3.1. Dynamic Request Migration

Suppose that a request for a video arrives and all servers
which hold a copy of the requested video do not have any



bandwidth available for the new request. A straightforward
approach to deal with this would be to reject the request;
more resource intensive solutions perform dynamic repli-
cation of the requested object on another server where re-
sources can be made available. However, it is possible that
some server with the requested video object may have an-
other currently active request which can be migrated to an-
other server. With DRM, the active request can be migrated
to the other server, releasing bandwidth for the newly ar-
rived request. This kind of dynamic request migration is
difficult to implement without staging/buffering at the client
since the request transfer can take some time which would
otherwise result in jitter observed by the client. Jitter during
stream switching can be a serious issue depending on the
NW infrastructure (reestablishing QoS routes and network
connections in a general Internet domain is time consum-
ing). This can be handled by using special purpose software
at switches and network components [3, 4]; however, this is
not always possible. Sufficient client staging also opens up
the ability to delay switching till resources occupied in the
short term become available; this information is useful for
adaptation purposes. Dynamic request migration can also
be used to engineer a limited degree of fault tolerance into
the server since the ability to dynamically switch servers for
a single stream can help deal with node server failures.

We use the termmigration chain lengthto refer to the
number of requests that must be migrated to accommodate
an incoming request. The termhops per requestwill de-
note the number of times a request can be migrated during
the course of its lifetime. Throughout this paper, we will
refer to the effects ofsemi-continuous transmissionas the
combined effect of bothclient staginganddynamic request
migration.

3.2. Video Placement

Many sophisticated schemes have been devised for video
placement as well as request assignment and migration
[29, 26]. These schemes use statistics to predict the relative
popularity of videos to guide initial video placement and
then dynamic reallocation to adjust placement to discrepan-
cies between predicted and actual demand. The results of
our study indicate that with current technology, very sim-
ple schemes which take advantage of limited staging at the
client are sufficient to provide close to100% utilization. We
explore two simplistic placement strategies:
� Even Allocation(placement): This strategy allocates

the same number of copies to each video (with rounding
done at random). Each copy is placed on a randomly cho-
sen video server.
� Predictive Allocation(placement): The number of

copies of each object is proportional to its predicted popu-
larity. Once the number of copies of each video is decided,

copies are distributed randomly to the servers.
We focus on the even allocation scheme in conjunction

with client staging and buffering. The request assignment
algorithm assigns each newly arrived request to the server
which has a copy of the requested video and has the fewest
current requests. A very limited amount of request migra-
tion is attempted if all servers which hold a copy of the
requested video are full. If this fails, then the request is
not accepted. Our results show that even these very sim-
ple schemes perform very well in most circumstances. In
fact, the even allocation which is completely oblivious to
which videos are the most popular achieves very good uti-
lization except when the relative demand for the videos is
highly uneven. The even allocation eliminates the need to
predict the relative popularity of videos. It also enables the
system to use a single video placement strategy even if the
relative demand of different videos changes over the course
of time. The reason for the success of such simple schemes
is twofold:
�Semi-Continuous Transmission. The benefits of

buffering/staging a portion of the video at the client and
very limited dynamic request migration in most situations
are sufficient to compensate for faulty video placement
schemes.
� Large Server to View Bandwidth Ratio. A crucial

parameter in server utilization is the ratio of the server band-
width to the bandwidth at which a video is viewed. We call
this the server-to-view bandwidth ratio (SVBR). Values for
the SVBR which are consistent with current technology ac-
tually make it difficult to make a system perform poorly.
Since the SVBR is likely to grow in the future, utilization
will grow accordingly. Our experiments which show the
impact of the SVBR on the utilization of the system are re-
ported in the full version of this paper [15]. We also show
an analytical expression which gives the expected utiliza-
tion as a function of the SVBR for a one server system. The
fact that the analytical results are very close to the empirical
results, as shown in [15], also validates the accuracy of out
experimental results.

3.3. Client Staging

More extensive use of client staging and buffering is
what is needed to perform dynamic request migration and
help improve system performance. Client Staging has the
effect of smoothing out fluctuations in the arrival sequence
which allows the system to accept more requests when the
system receives more than the average number of requests.
This happens because a server can transmit at a higher band-
width when there are fewer requests in the system. The re-
quests which are transmitted at a higher bandwidth finish
earlier which frees up the system later when there may be
more requests.



Let bview be the bandwidth at which the data is viewed.
Theprojected finishing timeof a request is the time at which
the entire data object will have been transmitted if data is
sent at a rate ofbview from the current time on. A request is
said to beunfinishedif all the data has not yet been sent. The
deadlineof a request is the time by which all the data must
be transmitted if it is to be viewed continuously by the client
at a rate ofbview. We focus on a class of algorithms which
will allocate at least a minimum bandwidth, saybview, to
any unfinished request. We call these algorithmsminimum-
flow algorithms. Note that this may not necessarily be the
optimal choice since it may be preferable to stop transmis-
sion on a request which has a large amount of data stored
on the client buffer in order to accept a new incoming re-
quest. We refer to the class of algorithms where a stream
alternates between periods of transmission and no transmis-
sion asintermittentalgorithms. In this paper, we restrict
the discussion to minimum-flow algorithms. The reason for
this restriction is that it makes the decision procedure to de-
termine if a new request can be allocated to a given server
very simple. For minimum-flow algorithms, a new request
can be allocated to a given server if and only if the sum of
the view bandwidths of all the unfinished requests allocated
to that server plus the view bandwidth of the new request is
at most the bandwidth capacity of the server. The decision
procedure for the optimal intermittent algorithm is imprac-
tical to apply in real time.

We propose a scheduling algorithm which decides the
best way to use extra available bandwidth in transmitting
data ahead of time. The algorithmEarliest Finishing Time
First (EFTF) picks the active request with the earliest pro-
jected finishing time whose client also has available buffer
space and allocates as much bandwidth to that request as
can be handled by the receiving client. We prove that
the EFTF algorithm is optimal among minimum-flow algo-
rithms when there is no bound on the bandwidth at which
clients can receive data. Of course, it will not be the case in
general that a typical client can receive data at the same rate
at which a server can transmit data, so the theorem does
not necessarily hold in our simulations with limits on the
receiving bandwidth of clients, but empirically it does very
well. It is, in fact, impossible that any algorithm can achieve
optimality with limits on the receiving bandwidth of clients
without knowledge of future request arrivals.

The EFTF procedure (See Figure 3.3) is called when-
ever a new request arrives, a request finishes transmission,
a client’s buffer becomes full or a client’s buffer becomes
empty.

Theorem 1 If the videos are not paused and there are no
limits on the bandwidth at which clients can receive data,
then EFTF is optimal among minimum-flow algorithms, in
that for any set� of request arrivals which can all be ac-
comodated by any scheduling algorithm, EFTF will accom-

modate�.

The proof of the above theorem is given in the full ver-
sion of this paper [15]. What EFTF does not indicate is
which set of requests should beaccepted; it merely indi-
cates the best way to allocate bandwidth for the set of ac-
cepted requests. We adopt a policy that will allow a request
to be assigned to a server as long as the number of unfin-
ished requests allocated to that server is less than the ratio
of the server bandwidth to the view bandwidth, i.e. as long
as there are resources to service the request. This may not
necessarily be the optimal decision. It may be preferable to
not accept a newly arrived request even if there is enough
available bandwidth in order to have bandwidth available to
accept future requests. It is, however, impossible that any
algorithm can decide the optimal set of jobs to accept with-
out knowledge of future request arrivals.

4. Performance Evaluation

4.1. Experimental Design

In all the simulations below, a static video placement
is determined before any requests arrive. The number of
copies of each video is first decided. Then a subset of the
servers is chosen at random foreach video and copies of
that video are placed on the selected servers. In the even
video placement, the same number of copies are chosen for
each video and rounding is done at random. For example,
in one system we consider, there is an average of2:1 copies
of each video. This means that each video has either two or
three copies and those videos which have three copies are
selected at random. In the predictive video placement pol-
icy, the algorithm has complete knowledge of the relative
popularity ofeach video and makes copies of each video
in proportion to this popularity. The algorithm, however, is
required to make at least one copy of each video, assuming
the availability of storage.

The arrival process of requests is Poisson. The arrival
rate is chosen so that if all the requests are accepted, the uti-
lization will be100%. That is, the expected sum of the sizes
of all requested videos is equal to the number of servers
times the server bandwidth times the length of the simula-
tion. The arrival rate is chosen so as to place as much stress
as possible on the system and accentuate the differences be-
tween the different schemes.

We measure the performance of the system in terms of
bandwidth utilization and request rejections. That is, we
sum the size of all transmissions and divide that number by
the total amount of data which could be sent if all servers
were sending data at the maximum bandwidth for the dura-
tion of the simulation. This value is the ratio of data sent
to the maximum amount that is possible to send. Note that



EARLIESTFINISHTIMEFIRST

At each event, do the following:
LetR be the set of unfinished requests.
LetF be the set of requests whose clients nonot have full buffers.
Let bserver be the bandwidth capacity of the server
Let bremain  bserver
Let br be the amount of bandwidth currently allocated to requestr
for all requestsr.

br  0.
for each requestr 2 R,

allocatebview in bandwidth tor
br  bview
bremain = bremain � bview

while (bremain > 0 andF 6= ;)
Pick the requestr in F with the earliest projected finishing time
Let breceive be the maximum bandwidth at which the client who initiated requestr can receive data
Allocate an additionalminfbremain; breceive� brg in bandwidth tor
bremain  bremain �minfbremain; breceive � brg

Figure 2. The Earliest Finishing Time First Algorithm

there may be other resources which are consumed on a per
request basis (for example, CPU cycles). However we as-
sume that each of these resources is used in proportion to
the bandwidth usage. When all servers are homogeneous,
we can assume without loss of generality that bandwidth is
the limiting resource which dictates the maximum number
of requests which can be sustained at a time. If it were actu-
ally a different resource which proved to be the bottleneck,
we could define utilization in terms of that resource and the
results would be the same.

When a request arrives, it is placed on a server which
currently has a copy of the requested video and has suffi-
cient bandwidth to satisfy the request. If many such servers
exist, the placement algorithm used here places the new re-
quest on the server with the minimum number of active re-
quests. If such a server does not exist, then the request is
not accepted (in the case when there is nodynamic request
migration).

In all the experiments, the relative popularity of the
videos is chosen according to a Zipf-like distribution [10].
A Zipf distribution takes two parameters,N and�. N is
the number of items in the distribution.c is a normaliza-
tion parameter:c = 1=(

PN

i=1
1=i1��). The probability that

a newly arrived request is for videoi is: pi = c=i1��. �
is a parameter which corresponds to the amount of skew in
the demand. Typically, this number is varied in the range
0 � � � 1. � = 0 corresponds to a highly skewed dis-
tribution and� = 1 corresponds to a completely uniform
distribution. Values around� = :27 have been used in pre-
vious studies [10, 28].N also effects the degree to which

the distribution is skewed. In this study, we vary� from�:5
to 1, giving an even wider range of parameters than is usu-
ally studied. Note that the distribution is well defined for
negative values of�. It just means that the distribution is
highly skewed. For a fixed value of�, a largerN results in
a more highly skewed distribution.

Unless otherwise stated, a video server system consists
of a collection of homogeneous servers. The rate at which
videos are viewed is 3 Mb/s. Each data point is the result
of 5 trials, each of which lasts1000 hours. In order to fo-
cus our empirical study, we run all experiments on two sys-
tems with widely differing characteristics. The first sys-
tem is a large video server which delivers feature length
movies. The second system is a small video server which
delivers shorter video clips. The parameters of each system
are given in Figure 3. The length of each video is chosen
uniformly at random from the ranges indicated. Further het-
erogeneity studies that represent a larger range of system
configurations are reported in the full version of this paper
[15].

4.2. Effect of Dynamic Request Migration

In this section, we examine the effect of dynamic request
migration on system utilization. The even video allocation
scheme is used throughout the experiments discussed in this
section. Only enough staging at the client to allow for re-
quest migration is performed. The migration chain length
which refers to the number of requests that are migrated to
accommodate an incoming request is kept at one throughout
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Figure 4. The effect of dynamic video migration. The results for the large system are to the left and
the results for the small system are to the right.

System Small Large
Number of Servers 5 20

Bandwidth 100 Mb/s 300 Mb/s
Video Length 10-30 Min 1-2 Hrs

Number of Videos 500 700
Average Number of
Copies Per Video 2.2 2.1

Disk Capacity 100 GB 150 GB

Figure 3. Parameters for the two video servers
studied.

our experiments. The results below show that request mi-
gration even with this simple algorithm can significantly im-
prove utilization. Furthermore, when migration is restricted
so that each request is only migrated once over the course
of its lifetime (i.e., hops per request = 1), the utilization is
almost as good as when an arbitrary number of hops per
request were allowed (unrestricted hops per request). The
low utilization at negative values of Zipf� is caused by the
even allocation scheme for video placement. This will be
discussed in more detail in Section 4.4.

4.3. Effect of Client Staging

In this section, we examine the effect of client staging
on system utilization. Our experimental results are shown
in Figure 5. Throughout the experiments, we use the even
video placement scheme and do not migrate any jobs. As
an additional restriction, we restrict the amount of band-

width which can be used to send data to a single client to
30 Mb per second. Thus, we limit the rate at which a client
can receive data to 30 Mb/s. This has the effect of limiting
the benefits of semi-continuous transmission slightly. The
amount of staging buffer is expressed as a percentage of the
storage required to store an entire copy of the average sized
video.

The most notable result is that almost the maximum
amount of benefit from staging data at the client can be ob-
tained with buffer space which is only20% of the entire
video object. This indicates that it is only worthwhile to
allocate this amount of disk space to the staging of an in-
coming video transmission. The benefit from client staging
is more pronounced for the smaller video server. In general,
there are two primary factors which serve to cushion natural
fluctuations in the arrival rate. These are client staging and
a large server to view bandwidth ratio. Since the servers in
the larger system already have a larger server to view band-
width ratio, there is less room for improvement for client
staging.

4.4. Effect of Video Placement

As we have observed, the performance of the even al-
location scheme suffers under highly skewed distributions.
This effect is more pronounced in the larger system. This
is due to the fact that in both systems, the average number
of copies of each video is roughly the same (around 2.2),
but in the larger system, the copies are spread out among a
larger number of servers. This means that there are a fewer
number of videos on each server and there is lessoppor-
tunity for variation in the popularity of videos stored on a
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Figure 5. The effect of client staging. The results for the large system are to the left and the results for
the small system are to the right. No dynamic request migration is performed in these experiments.
The number of copies of each video is uniform.

single server to average out. That is, it becomes more likely
that the average popularity of the videos stored on some
given server will be higher than the average popularity of
the videos over all servers.

A natural question then is how much does the video al-
location have to be skewed in order to match the predic-
tive scheme which can predict popularity perfectly. So far
we have only discussed the two extremes in our ability to
predict the relative popularity of videos. On one hand,
we have the even allocation scheme which has no knowl-
edge of the relative popularity of the videos. On the other
hand, we have the popularity based allocation which as-
sumes complete knowledge. A more practical scenario is
that we have some, but not complete ability to predict how
popular the videos will be. In order to explore the spectrum
between these two extremes, we introduce a very mildly
skewed allocation which makes a few extra copies of the
most popular videos. We call this the partial predictive al-
location scheme. Detailed experiments [15] show that even
this mildly skewed allocation scheme in conjunction with
dynamic request migration and client staging can achieve
comparable utilization to a perfect predictive video alloca-
tion scheme. Thus, it is not necessary to know exactly how
popular the most popular videos will be. It is only necessary
to identify the ones that are likely to be more popular.

4.5. Semi-Continuous Transmission

In this section, we compare the performance benefit of
the integration of the three factors described in this study:
dynamic request migration, client staging and video place-
ment. It should be noted that in order to actually implement
the predictive scheme, it is necessary to monitor the rela-
tive popularity of all the videos and to dynamically replicate
and de-replicate videos to adjust to changes in relative de-
mand. In our study, we assume that the predictive scheme
has perfectly predicted demand and that no adjustments to
the number of replicas need to be made for the duration of
the simulation.

Policy Allocation Migration Client
Number Policy Policy Staging

P1 Even No Migr 0% Buffer
P2 Even No Migr 20% Buffer
P3 Even Migr 0% Buffer
P4 Even Migr 20% Buffer
P5 Predictive No Migr 0% Buffer
P6 Predictive No Migr 20% Buffer
P7 Predictive Migr 0% Buffer
P8 Predictive Migr 20% Buffer

Figure 6. Policies evaluated



We compare the combinations of the different mecha-
nisms using policies illustrated in Table 6. The first four
policies do not use any knowledge about the relative pop-
ularity of the videos. The last four policies are assumed
to have predicted the relative popularity of all the videos
perfectly and this is reflected in the placement scheme ac-
cordingly. With both allocation policies, we determine the
effect of migration, client staging and their combination on
the placement schemes. Specifically, we study how migra-
tion and client staging can compensate for a faulty place-
ment scheme. We have varied the skew parameter� beyond
the usual[0; 1] interval in order to understand at which point
the simpler schemes break down. The results show that for
� in the [0; 1] range, the even allocation schemes perform
quite well. In these cases, the use of dynamic request mi-
gration and client staging are the dominant factors in im-
proving utilization. That is, policy P4 performs comparable
to policy P8 and outperforms the other policies. For the
highly skewed distributions in which the Zipf� is negative,
the allocation scheme is the dominant factor in determin-
ing performance. In these cases, dynamic request migra-
tion and client staging are not enough to compensate for the
faulty placement scheme. As discussed in Section 4.4, this
is because there are not enough copies of the most popular
videos.

4.6. Effect of heterogeneity on semi-continuous
transmission

We next studied the effect of heterogeneity of server re-
source configurations on the overall performance and the
system. Our experiments were conducted on 3 classes of
systems with 5, 10 and 20 servers within each distributed
server configuration. Within each class, we studied the im-
pact of bandwidth and storage heterogeneity on distributed
server performance. In each case, we ensured that the num-
ber of requests submitted to the servers were sufficient to
keep the servers fully saturated in terms of resource utiliza-
tion. The results of these experiments are omitted here for
lack of space but are reported in the full version of this paper
[15]. The results show that the effect of heterogeneity (stor-
age and bandwidth) is more pronounced with the smaller
system. With a large number of servers, we obtain better
overall performance since variabilities are spread out over a
larger number of servers. In addition, the effect of storage
heterogeneity on system performance seems to be much less
pronounced than bandwidth heterogeneity. In fact, the sta-
tistical significance of any difference is questionable since
in some cases, the systems which have heterogeneous stor-
age actually outperforms the homogeneous system. Thus,
our results indicate that the algorithms studied in this paper
are robust to variations in the level of storage heterogeneity.

5. Related Work

Many of the initial efforts in designing video servers
have focussed on continuous media transmission. Within
this context, techniques have been proposed to address
placement of media on disk to ensure real-time retrieval [2,
29], admission control procedures to maximize server
throughput [27] and buffer management policies to mini-
mize memory requirements [13, 17]. Replication and strip-
ing strategies for optimizing storage across disk arrays are
described in [16, 25].

A number of algorithms for placement in distributed
video servers have been proposed. Considering the storage
subsystem alone, a two-stage DASD dancing scheme for
load balancing is studied in [28]. In the initial static stage,
a greedy assignment of videos to disk groups is obtained
using a graph-theoretic approach. The dynamic phase that
follows uses the static assignment to perform real-time disk
scheduling effectively. The goal of the dynamic phase is
the minimization of an objective function that optimally bal-
ances disk loads, again, using a graph theoretic approach. A
dynamic segment replicationscheme for partial replication
of video objects is proposed in [9]. This mechanism per-
mits the executing requests to be dynamically migrated to a
replica on a less loaded device. The trade-offs between stor-
age space and transfer bandwidth are highlighted in [10].
This work proposes a multi-phase online video placement
policy that attempts to match the bandwidth to space ratios
of videos with that of storage devices in a video server, in
order to increase server throughput. A revenue based greedy
matrix algorithm that attempts to maximize revenue gener-
ated by the service provider is discussed in [26]. More
recent work studies the impact ofdynamic replication tech-
niques for continuous media servers [7].

More recently, a number of techniques have been pro-
posed for managing video transmission at the proxies and
the client [6]. Proxies are situated between servers and
clients and provide services that lead to enhancement of
QoS perceived by the client. Proxy cache management
techniques take into account workload characteristics and
make decisions on when, where and how to store and re-
place objects [18]. Video staging exploits disk storage
space of proxy servers at the network edges to reduce band-
width consumption. Video smoothing [20] techniques re-
duce rate variability of video transmission by using in-
memory buffers in the delivery path, e.g. at a proxy server,
to perform workahead transmission into a client buffer and
reduce burstiness.Prefix cachingis another strategy em-
ployed at the proxy where the first segment of many popular
continuous media objects arecached [22]. Patching tech-
niques reduce the overhead of communication by allowing
a client to obtain a portion of a multimedia stream by lis-
tening(snooping) into ongoing transmissions of the required
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Figure 7. Comparing the effects of adaptive video placement on sever ut ilization. The results for the
large system are to the left and the results for the small system are to the right. In these experiments,
dynamic request migration and client staging is used. The clients have buffer capacity which is 20%
of the size of a video.

streams to other clients. Efficient implementations of patch-
ing require sophisticated buffer management strategies [21]
and controlled multicast protocols [12].

A number of broadcast and multicast techniques have
been studied for effective utilization of network bandwidth
[5, 14, 1] for video-on-demand systems. Multicast smooth-
ing techniques [23] attempt to reduce network bandwidth
and provide efficient delivery of services to heterogeneous
clients by integrating video smoothing with differential
caching at intermediatenodes. [11] presents a greedy disk
conserving broadcast based scheme for optimizing the uti-
lization of resources in the network, client and server; the
work specifically addresses the issues of client resource re-
quirements both in terms of I/O and storage. Recent work
suggests the need for composing services such as worka-
head smoothing, prefix caching, patching etc. to provide a
integrated proxy management environment [19].

Our work complements recent work in this area on proxy
server based management techniques for MM transmis-
sion. The work presented in this paper addresses the im-
plications of client side buffering and staging techniques to
placement and admission control mechanisms at the server
end. Specifically, we address server side techniques enabled
by the introduction of client side buffering on disk. We
present improved admission control mechanisms that ex-
ploit the ability to perform dynamic request migration when
there are no available replicas to schedule a request to. We

also demonstrate how replica placement and management
policies in a cluster-based server can be greatly simplified
without any degradation in performance. Traditional client
buffering schemes have considered buffering at the client of
1-2 minutes of stored video (about 100Mbyte buffers). Our
work differs from this in that we assume the availability of
disk storage at the client that can buffer larger segments of
video (e.g. 20 percent of the total video object size).

6. Future Research Directions

We plan to continue further performance evaluations
with more server configurations and request types. Specif-
ically, we would like to analyze the impact of non-
continuous media such as text and images on semi-
continuous transmission, e.g. in multimedia Web scenar-
ios. Our work has so far focused on clusters of servers
with non-shared storage, some of the techniques proposed
in this paper are applicable to shared storage clusters as
well. Scalability is an important issue in designing wide-
area distributed multimedia services. We intend to study
the performance of the proposed technique as the number of
servers and requests scale. Integration of the proposed ad-
mission control and placement schemes with proxy servers
is another area of future research. Implementing multicast
in the context of semi-continuous transmission can be com-
plicated since client resource capabilities can vary and ap-



propriate synchronization protocols are required. We will
study the applicability of techniques such as controlled mul-
ticasting, differential caching, stream merging and selective
catching to semi-continuous transmission. Other issues in-
clude the study of specific request migration policies, inter-
activity in semi-continuous transmission and segment based
real-time scheduling policies. Finally, we are studying the
utility of semi-continuous transmission in mobile and fault
tolerant multimedia environments.
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