

Building a Scalable Web Server with Global Object Space Support

on Heterogeneous Clusters1

Ge Chen Cho-Li Wang Francis C.M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
Email: {gechen, clwang, fcmlau}@csis.hku.hk

1 This research was supported by the Hong Kong RGC Grant HKU 7032/98E and HKU CRGC Grant 10203009.

Abstract

Clustering provides a viable approach to building a
scalable Web server system. Many existing cluster-based
Web servers, however, do not fully utilize the underlying
features of the cluster environment, and most parallel web
servers are designed for homogeneous clusters. In this
paper, we present a pure-Java-implemented parallel Web
server that can run on heterogeneous clusters. The core of
the proposed system is an application-level “global object
space”, which is an integration of the available physical
memory of the cluster nodes for storing frequently
requested objects. The global object space provides a
unified view of cluster-wide memory resources, and
allows transparent accesses to cached objects. Using a
technique known as cooperative caching, a requested
Web object can be fetched from a node’s local memory
cache or a peer node’s memory cache to avoid hot spots
and excessive disk operations. A preliminary prototype
system has been implemented by modifying the W3C’s
Jigsaw Web server. We obtained good speedups in the
benchmark tests, indicating that clustering with
cooperative caching can greatly improve the performance
of a Web server system.

1. Introduction

The Internet’s ever-increasing user popularity and
rapid developments in broadband networking are
demanding that Web sites be able to handle large amount
of requests. This has created an urgent need for a more
powerful Web server architecture.

A cluster-based Web server system consists of multiple
Web servers connected together by a high-speed LAN.
The Web servers work cooperatively to handle the Web
requests. This multi-server architecture is one of the
promising solutions to meeting the heavy demands on
Web services. Many research and industry projects have
been conducted on the design of cluster-based Web

servers [2,4,5,11], which aimed mainly at issues related to
load balancing [7,8,9], scalability [2,18], and high
availability [15,25].

Web caching has been recognized as one of the
effective ways to accelerate the speed of Web access.
Various Web caching techniques developed for different
levels in the Web hierarchy have been discussed
[1,2,3,12,15,19,20]. For example, in Web proxy server
design, popular objects are cached close to the clients to
alleviate server bottlenecks and reduce the network traffic
over the Internet, thereby minimizing user access
latencies [16].

Cooperative caching is an enhancement of traditional
caching mechanisms, which can reduce access latency
and the workload of the main server by fetching objects
from the server’s peer nodes [10]. It has been widely
discussed in the context of cooperative Web proxy
caching systems [12,18] and distributed file systems
[1,17,22].

The design goal of cooperative Web proxy systems
essentially is to reduce the communication cost for
propagating directory updates and the space overhead for
directories, and to improve the cache hit rate using
various cache replacement algorithms. Network latency,
network reliability, and cache routing are the main areas
for consideration in caching policy design, as cooperative
Web proxy is usually employed in a wide area network.
Unfortunately, there is always a lack of global location
information of cached objects because each proxy server
can afford only to maintain a directory of objects cached
in its vicinity. In addition, it is impractical to adopt more
complicated or aggressive caching algorithms due to long
network latencies in wide area networks.

Cooperative caching has also been used in the design
of distributed file systems [10,17,22]. The basic idea is to
use the client’s memory as a global file cache. By using
cooperative caching, the requested file content can be
forwarded from a peer node instead of the master server
[22]. Caching is achieved on a per-block basis (e.g., NFS
and Berkeley’s xFS) rather than the whole file as one

object. The cache consistency protocol is usually
sophisticated as multiple clients can update any variable
stored in a data block. As the file access modes (e.g.,
readable, writable, or executable) are known in advance,
consistency protocols can be designed accordingly.
Because of the diverse implementations of file systems,
however, none of the well-known distributed file systems
is implemented in a heterogeneous environment.

Studies show that Web systems differ from distributed
file systems in their access pattern, their scale, and that
there is a single point of updates for Web objects [19]. In
[1], a cluster-based file system with cooperative caching
was designed for supporting a parallel Web server system.
However, the file system there lacks the knowledge about
the Web accesses, such as the access frequency and the
relationship between the accessed Web pages. Therefore,
it is nearly impossible to apply more efficient caching
replacement algorithms. Moreover, the file system
competes with the Web server on the use of the memory,
which could result in poor memory utilization.

Our server-side caching solution is developed based on
the global object space (GOS) concept. The global object
space is built on the physical memory of all the cluster
nodes and is used for the containment of all cached Web
objects in order to alleviate excessive file accesses from
the disks. All Web objects stored in the global object
space are visible and accessible by all Web server nodes.
In each node of the cluster, a Web server is responsible
for managing its local object caches as well as
cooperating with the rest of the collection of Web servers
to create a unified and consistent view of a globally
shared cache space. GOS implements a cooperative object
caching mechanism. A requested Web object can be
obtained from a server’s local cache, a peer node’s cache,
the server’s local file system, or other server node’s file
system based on various load balancing policies. The
location where an object resides is transparent to the client
request.

We use the concept of “hot objects” in the global
object space to refer to those objects that are frequently
requested. Hot objects can be replicated and stored at
multiple server nodes in order to improve hit rates, and to
avoid excessive remote fetching of hot objects from other
nodes.

A prototype system has been implemented by
modifying the W3C’s Jigsaw Web server [24], a Web
server written in Java. The application-level object space
together with the pure-Java implementation makes it
possible for the Web server system to operate in a
heterogeneous cluster with nodes running different OSes
on different hardware architectures.

The rest of the paper is organized as follows. Section 2
gives an overview of the Web server’s system architecture.
In Section 3, we discuss the basic concept and
implementation details of the global object space. Section
4 presents some benchmarking results of the prototype

system. Some related works are discussed in Section 5.
We summarize our experiences and propose some future
research items in Section 6.

2. System Overview

Figure 1 shows the overview of our Web server
architecture. Each server node sets aside and maintains a
special memory segment, called single node memory
space (SNMS), for caching Web objects. An SNMS
serves as a hot object cache (HOC). All the SNMSs are
combined into a globally shared object cache, called the
global object space (GOS).

To the clients, the Web server system appears to be a
single system, with a single URL and IP address. A
dispatcher node at the entrance of the system is employed
to direct a client request to a selected server node for
service. The decision of which node will serve an
incoming request can be based on a simple round-robin
scheme, or the workload situation across all server nodes.

Each node operates two daemons, the global object
space service daemon (GOSD) and the request handle
daemon (RHD). The GOSD is responsible for managing
the node’s HOC, as well as cooperating with all the other
nodes to provide a global lookup mechanism for locating
and accessing cached Web objects. The RHD listens on
the TCP port that is used for communicating with the
requesting client. It submits the parsed and analyzed
requests to the GOSD which handles object requests from
the local RHD as well as those from peer GOSDs.

Each cached object has a single home node. The home
node is the node in which the original persistent copy of
the cached object is located. Since a popular object that
has become “hot” can appear in multiple SNMEs, an
object’s home node is assigned the responsibility to keep
track of the location information of all the copies of the
object and their access statistics. The system keeps track
of the number of times the object is accessed over a
certain period. This is recorded in a counter associated
with the object. Because of the distributed nature of the
system, where multiple copies of the same object could
exist, the accurate count for an object could be elusive. A
mechanism has been built into the system to make sure
that at least a good approximation of the actual count can
be obtained.

The workflow of the proposed Web server system is
described as follows. Every time a new object request
arrives, the GOSD will try to find the requested object in
its local object cache. If a cached copy is found, the
object’s local counter is incremented, and the cached copy
is sent to the client. If this very first search fails, the
GOSD will send an object request message to the object’s
home node. The home node will return the request with a
cached copy from its local object cache, if any, or reply to
the requesting server with a disk copy if a copy is not
found in the cache. The home node could request a cached

copy, if one exists, from another node. This feature is
switched off in the current implementation because we
would like to concentrate on the basic features and their
performance in this paper.

To build and maintain the global object space, two
tables are defined and managed by each GOSD: (1) local
object table (LOT), and (2) global object table (GOT).
The GOT contains system-wide information for all
objects of which the node in question is their home node;
this information includes the server locations where
copies of the object are placed and the system-wide access
count (global access count). The LOT contains basic
access records of objects stored in the node’s HOC,
including the objects’ cache addresses, object sizes, local
access counts, approximated global access counts, and the
objects’ home node locations. The approximated global
access count stored in the LOT for an object is mainly
used for cache replacement decisions. The computation of
the local access count and the global access count will be
explained in Section 3.1.

A preliminary prototype system has been implemented
by modifying the W3C’s Java Web Server, Jigsaw [24].
Since Jigsaw is written in Java, and runs on top of the
Java Virtual Machine, our system can support Web
services on a heterogeneous cluster. The JVM hides all
the hardware and OS differences.

3. Object Caching in Global Object Space

3.1. Hot Object Caching

Much research effort has been directed to the workload
characterization and the performance implication of Web

servers [3,6,21]. One of the major results is the notion of
concentration [3], which is that documents on a Web
server are not equally accessed. Some of them are
extremely “hot” and popular, and are accessed frequently
at short intervals by many clients from many sites. Other
documents are accessed rarely, if at all. Analyses show
that around 10% of the distinct documents are responsible
for 80-95% of all requests received by the server [3]. This
result applies to both requests and byte throughput.

Based on the above research conclusion, we adopted
the hot object concept in designing caching policies for
the global object space. Hot objects, by our definition, are
those popular Web objects that receive multiple requests
from different clients within a short interval or that are
accessed frequently. They have a higher priority to be
cached in the global object space. In addition, because the
set of hot objects only accounts for a small portion of the
whole objects in a Web site, we allow hot objects to be
cached at more than one node. Thus, bursty hot object
requests could be handled simultaneously by different
server nodes which reply to the requests directly from
their caches for speeding up the processing time and
sharing the workload.

To determine the “hotness” of an object, the home
node is responsible for keeping track of the object’s
global access count. When an object is cached in or
swapped out of a server’s HOC, this change will be
immediately reflected in its local access count.
Periodically, all nodes send the local access counts of the
cached objects to their home nodes to update the global
access counts stored in the home nodes’ GOT and LOT.
The local access counts in the nodes holding the cached
copies are then reset to zero. In the meantime, the updated

Figure 1. System architecture (RHD: Request Handle Daemon, GOSD: Global Object Space Service
Daemon, SNMS: Single Node Memory Space)

Global Object Space

INTERCONNECTION NETWORK

Hardware
OS

JVM

RHD

GOSD

SNMS

Hardware
OS

JVM

RHD

GOSD

SNMS

Hardware
OS

JVM

RHD

GOSD

SNMS

Hardware
OS

JVM

RHD

GOSD

SNMS

global access count is sent in a reply to update those
servers’ approximated global access count stored in their
LOT. Thus, we ensure that all server nodes keep the most
up-to-date global access count in their LOT, in order to
make a more accurate cache replacement decision.
Because we only periodically update the global access
count in the LOT and the GOT, this value could be
slightly different from the actual global access count.
However, this approach causes less overhead and is
practical in a cluster environment since to maintain a
correct global access count on every server is costly.

As the hot object cache provides only limited cache
space, an LFU-Aging cache replacement algorithm is
adopted at each node. When there is no free cache space
available in a server node’s HOC, a cached object with
the least approximated global access count will be
replaced. At the end of every pre-specified time interval,
the approximated global access count is divided by two to
simulate the aging effect.

3.2. Scalable Global Object Table Design

When the system scales up, a full mapping of object
IDs to resource locations will make the mapping table
extremely large and will consume a lot of memory space.
Such a large in-memory table will compete for memory
space with the object caches, leading possibly to poor
cache performance.

Furthermore, as the mapping table scales, the lookup
time will increase, which will result in longer response
time. For example, in Jigsaw’s lookup process, where an
object ID is mapped to file path, when the lookup table
becomes larger than some predefined size, the system will
be busy swapping entries of the lookup table to the file
system. This results in heavy file I/O traffic. Our test
shows that, the lookup time may account for as much as
70% of the whole request handling time in a single Jigsaw
Web server. Therefore, a scalable system should try to
keep the table as small as possible.

In order to reduce the size of the global object table,
we propose a partitioning mechanism that optimizes the
use of the available memory space. This design originates
from the observation that in a Web server, the file
organization of a Web site usually follows the tree
structure. In a cluster-based Web server system, a
centralized NFS server, for example, may create access
bottlenecks. Thus, it is wise to partition the whole file
hierarchy into a few sub-trees and distribute them among
the cluster nodes for balancing the load caused by the file
accesses. This is sometimes inevitable for a large Web
site where the whole document set cannot fit on a single
disk.

Based on our partitioning mechanism, it is not
necessary that every object has an entry in the table. In
our system, a hash table is used as the global object space
table. All the objects having the same common part in its

object ID will share the same entry in the table. If all the
objects’ home nodes under a directory are in fact the same
server node, then all the objects under the directory will
share a same entry key. For example, in a tree structured
Web site, if the HTML files under directory
/root/dir1/dir12/ are stored in the same node, all the files
under this directory will share the same entry in the GOS
table. There’s only one key, “/root/dir1/dir12/”, to all the
files under dir12. This will greatly reduce the mapping
table size if the website is well organized.

3.3. Load Balancing for Persistent Connections

Support of persistent HTTP connections [23] is usually
available in modern Web server. The use of persistent
HTTP connections can greatly improve performance,
specially when multiple HTTP requests from different
clients are routed to a single proxy and then dispatched as
a whole to the Web server. Our Web server system
supports persistent HTTP connections with the help of the
global object space. To avoid the hot-spot problem, where
all the HTTP requests of a session jam at a single Web
server, a redirection function is implemented on top of the
global object space.

During normal execution of our Web server system,
after a client makes a request to some server node and the
objects are not found in the local cache, the server would
keep the persistent HTTP connection. In the meantime, it
collects all the requested objects from other nodes’ object
caches through the GOS. As such, the server in question
can easily become a hot spot since it has to handle all the
HTTP requests and object caching.

Since our system runs at the Java application level,
low-level approaches such as packet rewriting are not
suitable for our system. Our system uses a load-weighted
HTTP redirection approach to distribute the incoming
HTTP requests embedded in a single connection among
the server nodes. When a persistent HTTP connection is
requested, the server will first parse the request and start
fetching the requested object and deliver the object to the
client. When the server node finds out that it is overloaded,
it will stop the service and find out the home node of the
requested object. Then it will send an HTTP redirection
reply to the client browser to redirect the client to the
home node of the requested object to continue the service.
To achieve the best performance, all URLs are
represented by relative path format in our Web server.
Thus, the redirected client can continue to send
subsequent requests to the new server node.

4. Performance Results

A preliminary prototype system has been implemented
by modifying the W3C’s Jigsaw server, version 2.0.5 [24].
The global object space layer is added to Jigsaw to
provide cluster-wide cached object sharing.

4.1. Experimental Setup

We measured the performance of our Web server
system on a 32-node PC cluster. Each node consists of a
733 MHz Pentium III running Linux 2.2.4. These nodes
are connected with an 80-port Cisco Catalyst 2980G Fast
Ethernet switch. During the benchmark test, 16 nodes
acted as clients, and the rest as Web servers. Each of the
server nodes has 392M bytes of memory.

All the 16 clients run a Web server benchmark
program, which is a modified version of httperf [13].
Httperf performs stress test on the designated Web server
based on a collected Web server log. The main
characteristics of the data set and the log file are
summarized in Table 1 and Table 2. All files are evenly
partitioned into disjoint document sets, and stored in each
server node’s local disk.

Table 1. Summary of data set Characteristics
(Raw Data Set)

Total size 6.756 Gbytes
No. of files 89,689
Average file size 80,912 bytes

Table 2. Summery of access log characteristics

Number of requests ~640,000
Data transferred ~ 35 Gbytes
Distinct files requested 52,347

Httperf supports customized workload generation

based on a workload file. We modified the collected
access log file to make it work for httperf. Requests are
generated by httperf according to this modified workload
file.

Similar tests were also carried out on a 4-node
heterogeneous cluster composed of a Celeron PC running
Microsoft Windows 2000 Professional, an SMP PC with
two Pentium Pro CPUs running RedHat Linux 6.1, and
two PCs each with a Pentium II CPU running RedHat
Linux 6.2. Our Web server runs well on this
heterogeneous cluster. As the performance behavior is
similar to the 4-node homogeneous cluster, we focus on
the performance of the homogeneous cluster in the
following.

4.2. Effects of Scaling the Cluster Size

Figure 2 and Figure 3 show the requests and bytes
throughput obtained for the 2-node, 4-node, 8-node, and
16-node configuration respectively with an object cache
size of 56M bytes enabled at each server node.

The curves show the impact of the hot object caching
on the overall system performance. With the hot object
cache enabled, the performance increases almost linearly
as we increase the number of server nodes since we can
cache most of the frequently requested objects in the
global object space. With the hot object caching support,
the speedup is 4.77 when the system scales from two
nodes to sixteen nodes, while that for the case without hot
object caching support is only 2.02.

4.3. Effects of Scaling the Cache Size

Figure 4 shows the global cache hit rate with different
hot object cache sizes allocated on each node. Figure 5
and Figure 6 show the requests and bytes throughput with
different cache sizes. We tested the cache hit rate and the
overall system performance with different hot object
cache sizes from 7M bytes to 56M bytes per node.

Given an object data set that will be stored in a cluster
Web server system, we are interested to know what is the
appropriate hot object cache size that should be used for
each node in order to achieve a high cache hit rate. The
global cache hit rate increases from around 45% to 90%
when the cache size scales from two nodes with a 7M
bytes cache on each node to sixteen nodes with a 56M
bytes cache on each node. The largest total cache size in
the tests is the 16-node configuration with 56M bytes on
each node. That is, the total cache size is 896M bytes. It is
about 13% of the data set size, but the cache hit rate
reaches around 90%. This observation confirms earlier
research results about the nature of the access patterns for

Figure 2. Comparison of requests service rate

Figure 3. Comparison of bytes service rate

0

100

200

300

400

500

2 Nodes 4 Nodes 8 Nodes 16 Nodes

R
e
q
u
e
s
t
s
/
S
e
c
o
n
d

With Hot Object Caching

Without Hot Object Caching

0

1000

2000

3000

4000

5000

2 Nodes 4 Nodes 8 Nodes 16 Nodes

B
y
t
e
s
/
S
e
c
o
n
d

With Hot Object

Cache

Without Hot

Object Cache

hot objects [3] as stated in Section 3.1. With a relatively
small amount of memory in each node used for caching
hot objects, we are able to obtain a high cache hit rate
which increases the whole system’s performance
considerably.

4.4. Performance Analysis

Based on our caching mechanism, each client request
may result in one of the three types of memory or disk
objects:

(1) Local Cache Object: The client is replied with a
copy of the requested object from a server’s local
object cache. This type of object access has the
shortest access latency.

(2) Home Node Cache Object: The server that
receives the request does not have the object in its
cache. The server fetches a copy of the requested
object from the local object cache of the object’s

home node and then replies to the client.
Additional network delay is caused as compared
with (1). This also consumes the cluster network
bandwidth.

(3) Home Node Disk Object: The document is not in
the global object cache at all. The server that
receives the request fetches a copy of the
requested object from the object’s home node, and
then replies to the client. This type of operation
involves extra network delay and disk access at the
home node. Thus, it requires the longest time to
serve.

Figure 7 shows the percentage of client requests that
results in each type of the above objects with respect to
different cluster server sizes, where each node has a 56M
bytes cache. Figure 8 shows the case with a 7M bytes
cache at each node. In the figure, a local cache object and
a home node cache object both contribute a cache hit
when calculating the global hit rate.

In Figure 7, the portion of home node disk objects
decreases as the number of server nodes increases. This is
because the size of the global object cache increases

Figure 4. Global cache hit rate with different cache size

Figure 5. Requests throughput with different cache size

Figure 6. Bytes throughput with different cache size

Figure 7. Analyses of request handle pattern
(with 56M cache at each node)

Figure 8. Analyses of request handle pattern
(with 7M cache at each node)

Hot Object Cache Hit Rate

0%

20%

40%

60%

80%

100%

7M 14M 28M 56M

Hot Object Cache Size

H
o
t

O
b
j
e
c
t

C
a
c
h
e

H
i
t

R
a
t
e

16 Server Nodes

8 Server Nodes

4 Server Nodes

2 Server Nodes

Requests Throughput With Defferent Hot Object Cache Size

0

100

200

300

400

500

0M 7M 14M 28M 56M

Hot Object Cache Size

R
e
q
u
e
s
t
s
/
S
e
c
o
n
d

16 Server Nodes

8 Server Nodes

4 Server Nodes

2 Server Nodes

Bytes Throuhgput With Different Hot Object Cache Size

0

1000

2000

3000

4000

5000

0M 7M 14M 28M 56M

Hot Object Cache Size

B
y
t
e
s
/
S
e
c
o
n
d

16 Server Nodes

8 Server Nodes

4 Server Nodes

2 Server Nodes

Breakdown of Request Handle Pattern

(With 56M Cache Size at Each Node)

0%

20%

40%

60%

80%

100%

2 Nodes 4 Nodes 8 Nodes 16 Nodes

Local Cache Object Home Node Cache Object
Home Node Disk Object

Breakdown of Request Handle Pattern

 (With 7M Cache Size at Each Node)

0%

20%

40%

60%

80%

100%

2 Nodes 4 Nodes 8 Nodes 16 Nodes

Local Cache Object Home Node Cache Object
Home Node Disk Object

linearly with the number of nodes. With more nodes, the
larger aggregated cache size can cache more objects.

Figure 7 also indicates a high hit rate for the local
object cache. The local object cache hit rate can reach as
high as 70%. This proves that our approximated global
LFU algorithm is very effective. It simulates well the
global LFU algorithm so that the local object cache will
cache the “hottest” objects in the system. Therefore, most
of the incoming requests will be served with objects
fetched from the local object cache. This reduces the high
overhead of fetching an object from a remote cache or
disk, and can greatly improve the throughput and
performance.

For a 16-node case, we found that with only 1/8 of the
cache size (7 MB vs. 56 MB), the disk access percentage
only increases from around 10% to around 30%. As the
number of cluster nodes increases, the home node cache
objects account for a larger portion of the total global
cache hit rate. This has shown the advantage of adopting
the cooperative caching technique in our system for
improving the performance by reducing the disk
operations. Nevertheless, a more aggressive cooperative
cache mechanism can be employed whereby the requested
object can be fetched from any peer node holding a
cached copy rather than only from the home node. This
will alleviate the possible overload of the home node
when many of the objects in the home node become hot
and a great number of requests asking for an object copy
come from the peer nodes at the same time. This will
alleviate the possible overload of the home node when
many of the objects in the home become hot and a great
number of requests asking for an object copy would come
from the peer nodes. This mechanism is under
development and will be an integral part of the next
version.

5. Related Works

Distributed Cooperative Web Servers (DCWS) is a
cooperative Web server system developed by the
Department of Computer Science, University of Arizona
[6]. The DCWS project tries to explore application-level
techniques for distributing Web contents. The approach is
to dynamically manipulate the hyperlinks stored within
the Web documents. All documents originally reside on a
home server. It dynamically migrates documents to
cooperative Web servers which are dedicated server nodes
for sharing the load of the home server. By modifying the
hyperlinks in the document, the Web server will distribute
workload to cooperative nodes to achieve dynamic load
balancing.

Although it realizes application-level document
distribution, it could suffer from excessive overheads
from modifying the hyperlinks in the documents, because
parsing of an HTML document is rather time consuming.
The other problem is that if any of the cooperative nodes

receives a request for a document it does not have, it will
fetch it from the home node where the document
originally locates. The document will be delivered
(actually migrated) to the requesting node by the home
node, and all the documents containing hyperlinks
referring to this document have to be updated. This is a
nontrivial task in terms of network traffic and the use of
system resources such as CPU and memory, since it needs
re-parsing and modifying all the documents in the system.
The overhead is obviously enormous when the document
set size is large. Moreover, DCWS does not deal well
with hot objects, which are called hot spots in DCWS,
because it only maintains one cache copy of a document;
this could result in poor scalability when the hot spot
problem occurs, according to the test conducted by the
authors.

A prototype system of a cluster-based Web server
developed by Department of Computer Science, Rice
University uses an extended Location Aware Request
Distribution (LARD) policy to distribute requests among
the backend server nodes in a cluster environment [4].
The prototype system uses a front-end server as request
dispatcher. An initial incoming request from a new client
will be dispatched to one of the backend server nodes
according to the LARD policy, and requests that follow
will be handled by the assigned backend node, to
implement persistent connection in HTTP/1.1. Non-local
documents are fetched by using the TCP connection
handoff protocol between the concerned backend nodes,
which actually forwards the request to the home node of
the requested non-local document.

It uses a centralized LARD information control. The
potential problem is that the front-end will easily become
a bottleneck when the system scales up. In addition,
because all the requests for the same document will be
dispatched by the front-end server and will ultimately be
passed to a single node, with enough hot objects, that
node will become a bottleneck too.

In [1], a cluster-based file system with cooperative
caching was designed for supporting a parallel Web
server system. The authors proposed an improved
cooperative cache system based on some hint-based file
system cooperative cache [17] for their cluster-based Web
server’s file system. Positive results are obtained from the
simulation experiments indicating good load balancing
and reduced disk access rates. This approach allows Web
servers to transparently access the Web objects without
worrying the underlying caching activities. However, the
cost is a passive Web object caching policy since the file
system is lack of the knowledge about the Web access
patterns. More aggressive caching approaches, such as hot
object caching, are generally impossible and the cache
replacement algorithm is applied with restricted
information. Moreover, the file system competes with the
Web server on the memory resources, which could result
in poor memory utilization.

6. Conclusion and Future Work

Our experience with the global object space shows that
the use of physical memory as the first-level cache can
lead to improved throughput and service availability. The
hot object cache is very helpful in increasing system
performance and scalability. With relatively small amount
of memory dedicated for object content caching, we are
able to achieve a very high hit rate. The approximated
global LFU cache replacement algorithm works well for
our goal of keeping the hottest objects in the relatively
limited cache space. This will lead to improved server
performance for most of the requests served by the Web
server. By using cooperative caching among the cluster
nodes, we can further improve the cache performance in
terms of global cache hit rate. The fetching of hot objects
from peer nodes’ caches can also reduce the expensive
disk I/O operations.

Our future work includes a study of the impact of hot
object caching on the overall system performance for
larger cluster sizes. More advanced replacement policies
on hot object caching will also be studied, as well as more
aggressive cooperative caching mechanisms that may
achieve more efficient use of cluster-wide resources, such
as memory space and network bandwidth.

Although our prototype system does not implement
dynamic content caching, it is possible to provide the
extension by implementing some efficient object
consistency protocol within the global object space. Our
cooperative caching solutions can be implemented on
other non-Java Web server systems to improve their
performance.

References:

[1] Woo Hyun Ahn, Sang Ho Park, and Daeuyeon Park,
“Efficient Cooperative Caching for File Systems in Cluster-
Based Web Servers,” Proc. of IEEE International Conference
on Cluster Computing, 2000.
[2] D. Andresen, Tao Yang, V. Holmedahl, O. H. Ibarra,
“SWEB: Towards a Scalable World Wide Web Server on
Multicomputers”. International Conference of Parallel
Processing Symposium (IPPS), 1996, pp. 850 –856
[3] Martin F. Arlitt, and Carey L. Williamson, “Internet Web
Servers: Workload Characterization and Performance
Implications,” IEEE/ACM Transactions on Networking, Vol. 5,
No.5, October 1997, pp.631-645.
[4] Mohit Aron, Peter Druschel, and Willy Zwaenepoel,
“Efficient Support for P-HTTP in Cluster-Based Web Servers,”
Proc. of the 1999 Annual Usenix Technical Conference,
Monterey, CA, June 1999.
[5] Scott M. Baker, and Bongki Moon, “Scalable Web Server
Design for Distributed Data Management,”. IEEE, 1999. Proc.
of the 15th International Conference on Data Engineering,
1999 , Page(s): 96

[6] Scott M. Baker, and Bongki Moon, “Distributed
Cooperative Web Servers,” Proc. of WWW8 Conference,
http://www8.org/w8-apers/2abserver/distributed/distributed.html
[7] H. Bryhni, E. Klovning, O. Kure, “A Comparison of
Load Balancing Techniques for Scalable Web Servers”, IEEE
Network, Volume: 14 Issue: 4, July-Aug. 2000, pp.58-64.
[8] Richard B. Bung, Derek L. Eager, Gregory M. Oster,
Carey L. Williamson. “Achieving Load Balance and Effective
Caching in Clustered Web Servers”. The 4th International Web
Caching Workshop, 1999.
[9] Valeria Cardellini, Michele Colajanni, and Philip S. Yu,
“Dynamic Load Balancing on Web-Server Systems,” IEEE
Internet Computing, May-June 1999, pp. 28-39.
[10] M.D. Dahlin, R. Y. Wang, T.E. Anderson, and D.A.
Pattern, “Cooperative Caching: Using Remote Client Memory to
Improve File System Performance,” Proc. Of the 1st Symposium
on Operating Systems Design and Implementation, 1994, pp.
267-280.
[11] Arun Ivengar, et al., “High-Performance Web Site Design
Techniques,” IEEE Internet Computing, March-April 2000,
pp.17-26.
[12] Jean-Marc Menaud, Valerie Issarny, and Micheal Banatre,
“A scalable and Efficient Cooperative System for Web Caches,”
IEEE Concurrency, July-September 2000, pp.56-62.
[13] David Mosberger, Tai Jin, “httperf – A Tool for
Measuring Web Server Performance”, Proc. of 1998 Workshop
on Internet Server Performance, Madison, Wisconsin, June 23,
1998.
[14] B. Narendran, S. Rangarajan, S. Yajnik, “Data
Distribution Algorithms for Load Balanced Fault-Tolerant Web
Access”. The Sixteenth International Symposium on Reliable
Distributed Systems, 1997, pp. 97 –106.
[15] Guillaume Pierre, et al. “Differentiated Strategies for
Replicating Web Documents,” Proc. of The 5th International
Web Caching and Content Delivery Workshop, Lisbon, Portugal,
22-24 May, 2000.
[16] Michael Rabinovich, Jeff Chase, and Syam GaddeNot,
‘’All Hits Are Created Equal: Cooperative Proxy Caching Over
a Wide-Area Network,’’ The Third International Web Caching
Workshop, 1998.
[17] Prasenjit Sarkar, John H. Hartman, “Hint-Based
Cooperative Caching,” ACM Transactions on Computer Systems,
Vol. 18, No. 4, November 2000, pp.387-419.
[18] Trevor Schroeder, Steve Goddard, and Byrav
Ramamurthy, “Scalable Web Server Clusering Technologies,”
IEEE Network, May/Jun 2000, pp.38-45.
[19] Jia Wang, “A Survey of Web Caching Schemes for the
Internet,” ACM Computer Communication Review (CCR), Vol.
29, No. 5, October 1999.
[20] Duane Wessels et al. Squid Internet Object Cache,
http://squid.nlanr.net/
[21] Alec Wolman, et al., “On the scale and performance of
cooperative Web proxy caching,” Proc. of 17th ACM Symposium
on Operating Systems Priciples, Kiawah Island Resort, SC, USA,
December, 1999, pp.16-31.
[22] Berkeley’s Serverless File System xFS: http://now.cs.
berkeley.edu/Xfs/xfs.html
[23] Hypertext Transfer Protocol – HTTP/1.1, URL:
http://www.w3c.org/Protocols/
[24] Jigsaw Overview, http://www.w3c.org/Jigsaw
[25] SASHA http://www.zweknu.org/tech/src/lsmac2/pape
r/paper.html

