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Abstract 
  

Clustering provides a viable approach to building a 
scalable Web server system. Many existing cluster-based 
Web servers, however, do not fully utilize the underlying 
features of the cluster environment, and most parallel web 
servers are designed for homogeneous clusters. In this 
paper, we present a pure-Java-implemented parallel Web 
server that can run on heterogeneous clusters. The core of 
the proposed system is an application-level “global object 
space”, which is an integration of the available physical 
memory of the cluster nodes for storing frequently 
requested objects. The global object space provides a 
unified view of cluster-wide memory resources, and 
allows transparent accesses to cached objects. Using a 
technique known as cooperative caching, a requested 
Web object can be fetched from a node’s local memory 
cache or a peer node’s memory cache to avoid hot spots 
and excessive disk operations. A preliminary prototype 
system has been implemented by modifying the W3C’s 
Jigsaw Web server. We obtained good speedups in the 
benchmark tests, indicating that clustering with 
cooperative caching can greatly improve the performance 
of a Web server system.  
 
 
1. Introduction 

The Internet’s ever-increasing user popularity and 
rapid developments in broadband networking are 
demanding that Web sites be able to handle large amount 
of requests.  This has created an urgent need for a more 
powerful Web server architecture.  

A cluster-based Web server system consists of multiple 
Web servers connected together by a high-speed LAN. 
The Web servers work cooperatively to handle the Web 
requests. This multi-server architecture is one of the 
promising solutions to meeting the heavy demands on 
Web services. Many research and industry projects have 
been conducted on the design of cluster-based Web 

servers [2,4,5,11], which aimed mainly at issues related to 
load balancing [7,8,9], scalability [2,18], and high 
availability [15,25].  

Web caching has been recognized as one of the 
effective ways to accelerate the speed of Web access. 
Various Web caching techniques developed for different 
levels in the Web hierarchy have been discussed 
[1,2,3,12,15,19,20]. For example, in Web proxy server 
design, popular objects are cached close to the clients to 
alleviate server bottlenecks and reduce the network traffic 
over the Internet, thereby minimizing user access 
latencies [16].  

Cooperative caching is an enhancement of traditional 
caching mechanisms, which can reduce access latency 
and the workload of the main server by fetching objects 
from the server’s peer nodes [10]. It has been widely 
discussed in the context of cooperative Web proxy 
caching systems [12,18] and distributed file systems 
[1,17,22]. 

The design goal of cooperative Web proxy systems 
essentially is to reduce the communication cost for 
propagating directory updates and the space overhead for 
directories, and to improve the cache hit rate using 
various cache replacement algorithms. Network latency, 
network reliability, and cache routing are the main areas 
for consideration in caching policy design, as cooperative 
Web proxy is usually employed in a wide area network. 
Unfortunately, there is always a lack of global location 
information of cached objects because each proxy server 
can afford only to maintain a directory of objects cached 
in its vicinity. In addition, it is impractical to adopt more 
complicated or aggressive caching algorithms due to long 
network latencies in wide area networks.   

Cooperative caching has also been used in the design 
of distributed file systems [10,17,22]. The basic idea is to 
use the client’s memory as a global file cache. By using 
cooperative caching, the requested file content can be 
forwarded from a peer node instead of the master server 
[22]. Caching is achieved on a per-block basis (e.g., NFS 
and Berkeley’s xFS) rather than the whole file as one 



object. The cache consistency protocol is usually 
sophisticated as multiple clients can update any variable 
stored in a data block. As the file access modes (e.g., 
readable, writable, or executable) are known in advance, 
consistency protocols can be designed accordingly. 
Because of the diverse implementations of file systems, 
however, none of the well-known distributed file systems 
is implemented in a heterogeneous environment.  

Studies show that Web systems differ from distributed 
file systems in their access pattern, their scale, and that 
there is a single point of updates for Web objects [19]. In 
[1], a cluster-based file system with cooperative caching 
was designed for supporting a parallel Web server system. 
However, the file system there lacks the knowledge about 
the Web accesses, such as the access frequency and the 
relationship between the accessed Web pages. Therefore, 
it is nearly impossible to apply more efficient caching 
replacement algorithms. Moreover, the file system 
competes with the Web server on the use of the memory, 
which could result in poor memory utilization. 

Our server-side caching solution is developed based on 
the global object space (GOS) concept. The global object 
space is built on the physical memory of all the cluster 
nodes and is used for the containment of all cached Web 
objects in order to alleviate excessive file accesses from 
the disks. All Web objects stored in the global object 
space are visible and accessible by all Web server nodes. 
In each node of the cluster, a Web server is responsible 
for managing its local object caches as well as 
cooperating with the rest of the collection of Web servers 
to create a unified and consistent view of a globally 
shared cache space. GOS implements a cooperative object 
caching mechanism. A requested Web object can be 
obtained from a server’s local cache, a peer node’s cache, 
the server’s local file system, or other server node’s file 
system based on various load balancing policies. The 
location where an object resides is transparent to the client 
request. 

We use the concept of “hot objects” in the global 
object space to refer to those objects that are frequently 
requested. Hot objects can be replicated and stored at 
multiple server nodes in order to improve hit rates, and to 
avoid excessive remote fetching of hot objects from other 
nodes.  

A prototype system has been implemented by 
modifying the W3C’s Jigsaw Web server [24], a Web 
server written in Java. The application-level object space 
together with the pure-Java implementation makes it 
possible for the Web server system to operate in a 
heterogeneous cluster with nodes running different OSes 
on different hardware architectures. 

The rest of the paper is organized as follows. Section 2 
gives an overview of the Web server’s system architecture. 
In Section 3, we discuss the basic concept and 
implementation details of the global object space.  Section 
4 presents some benchmarking results of the prototype 

system. Some related works are discussed in Section 5. 
We summarize our experiences and propose some future 
research items in Section 6. 
 
2. System Overview 

Figure 1 shows the overview of our Web server 
architecture. Each server node sets aside and maintains a 
special memory segment, called single node memory 
space (SNMS), for caching Web objects. An SNMS 
serves as a hot object cache (HOC). All the SNMSs are 
combined into a globally shared object cache, called the 
global object space (GOS).  

To the clients, the Web server system appears to be a 
single system, with a single URL and IP address. A 
dispatcher node at the entrance of the system is employed 
to direct a client request to a selected server node for 
service. The decision of which node will serve an 
incoming request can be based on a simple round-robin 
scheme, or the workload situation across all server nodes.  

Each node operates two daemons, the global object 
space service daemon (GOSD) and the request handle 
daemon (RHD). The GOSD is responsible for managing 
the node’s HOC, as well as cooperating with all the other 
nodes to provide a global lookup mechanism for locating 
and accessing cached Web objects.  The RHD listens on 
the TCP port that is used for communicating with the 
requesting client. It submits the parsed and analyzed 
requests to the GOSD which handles object requests from 
the local RHD as well as those from peer GOSDs. 

Each cached object has a single home node. The home 
node is the node in which the original persistent copy of 
the cached object is located. Since a popular object that 
has become “hot” can appear in multiple SNMEs, an 
object’s home node is assigned the responsibility to keep 
track of the location information of all the copies of the 
object and their access statistics. The system keeps track 
of the number of times the object is accessed over a 
certain period. This is recorded in a counter associated 
with the object. Because of the distributed nature of the 
system, where multiple copies of the same object could 
exist, the accurate count for an object could be elusive. A 
mechanism has been built into the system to make sure 
that at least a good approximation of the actual count can 
be obtained.  

The workflow of the proposed Web server system is 
described as follows.  Every time a new object request 
arrives, the GOSD will try to find the requested object in 
its local object cache. If a cached copy is found, the 
object’s local counter is incremented, and the cached copy 
is sent to the client. If this very first search fails, the 
GOSD will send an object request message to the object’s 
home node. The home node will return the request with a 
cached copy from its local object cache, if any, or reply to 
the requesting server with a disk copy if a copy is not 
found in the cache. The home node could request a cached 



copy, if one exists, from another node. This feature is 
switched off in the current implementation because we 
would like to concentrate on the basic features and their 
performance in this paper. 

To build and maintain the global object space, two 
tables are defined and managed by each GOSD: (1) local 
object table (LOT), and (2) global object table (GOT). 
The GOT contains system-wide information for all 
objects of which the node in question is their home node; 
this information includes the server locations where 
copies of the object are placed and the system-wide access 
count (global access count). The LOT contains basic 
access records of objects stored in the node’s HOC, 
including the objects’ cache addresses, object sizes, local 
access counts, approximated global access counts, and the 
objects’ home node locations. The approximated global 
access count stored in the LOT for an object is mainly 
used for cache replacement decisions. The computation of 
the local access count and the global access count will be 
explained in Section 3.1. 

A preliminary prototype system has been implemented 
by modifying the W3C’s Java Web Server, Jigsaw [24].  
Since Jigsaw is written in Java, and runs on top of the 
Java Virtual Machine, our system can support Web 
services on a heterogeneous cluster. The JVM hides all 
the hardware and OS differences. 
 
3. Object Caching in Global Object Space 

3.1.  Hot Object Caching 

Much research effort has been directed to the workload 
characterization and the performance implication of Web 

servers [3,6,21]. One of the major results is the notion of 
concentration [3], which is that documents on a Web 
server are not equally accessed. Some of them are 
extremely “hot” and popular, and are accessed frequently 
at short intervals by many clients from many sites. Other 
documents are accessed rarely, if at all. Analyses show 
that around 10% of the distinct documents are responsible 
for 80-95% of all requests received by the server [3]. This 
result applies to both requests and byte throughput. 

Based on the above research conclusion, we adopted 
the hot object concept in designing caching policies for 
the global object space. Hot objects, by our definition, are 
those popular Web objects that receive multiple requests 
from different clients within a short interval or that are 
accessed frequently. They have a higher priority to be 
cached in the global object space. In addition, because the 
set of hot objects only accounts for a small portion of the 
whole objects in a Web site, we allow hot objects to be 
cached at more than one node. Thus, bursty hot object 
requests could be handled simultaneously by different 
server nodes which reply to the requests directly from 
their caches for speeding up the processing time and 
sharing the workload.  

To determine the “hotness” of an object, the home 
node is responsible for keeping track of the object’s 
global access count. When an object is cached in or 
swapped out of a server’s HOC, this change will be 
immediately reflected in its local access count. 
Periodically, all nodes send the local access counts of the 
cached objects to their home nodes to update the global 
access counts stored in the home nodes’ GOT and LOT. 
The local access counts in the nodes holding the cached 
copies are then reset to zero. In the meantime, the updated 

Figure 1. System architecture (RHD: Request Handle Daemon, GOSD: Global Object Space Service 
Daemon, SNMS: Single Node Memory Space) 
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global access count is sent in a reply to update those 
servers’ approximated global access count stored in their 
LOT. Thus, we ensure that all server nodes keep the most 
up-to-date global access count in their LOT, in order to 
make a more accurate cache replacement decision. 
Because we only periodically update the global access 
count in the LOT and the GOT, this value could be 
slightly different from the actual global access count. 
However, this approach causes less overhead and is 
practical in a cluster environment since to maintain a 
correct global access count on every server is costly.  

As the hot object cache provides only limited cache 
space, an LFU-Aging cache replacement algorithm is 
adopted at each node. When there is no free cache space 
available in a server node’s HOC, a cached object with 
the least approximated global access count will be 
replaced. At the end of every pre-specified time interval, 
the approximated global access count is divided by two to 
simulate the aging effect. 

 
3.2.  Scalable Global Object Table Design 

When the system scales up, a full mapping of object 
IDs to resource locations will make the mapping table 
extremely large and will consume a lot of memory space. 
Such a large in-memory table will compete for memory 
space with the object caches, leading possibly to poor 
cache performance.  

Furthermore, as the mapping table scales, the lookup 
time will increase, which will result in longer response 
time. For example, in Jigsaw’s lookup process, where an 
object ID is mapped to file path, when the lookup table 
becomes larger than some predefined size, the system will 
be busy swapping entries of the lookup table to the file 
system. This results in heavy file I/O traffic. Our test 
shows that, the lookup time may account for as much as 
70% of the whole request handling time in a single Jigsaw 
Web server. Therefore, a scalable system should try to 
keep the table as small as possible.  

In order to reduce the size of the global object table, 
we propose a partitioning mechanism that optimizes the 
use of the available memory space. This design originates 
from the observation that in a Web server, the file 
organization of a Web site usually follows the tree 
structure. In a cluster-based Web server system, a 
centralized NFS server, for example, may create access 
bottlenecks. Thus, it is wise to partition the whole file 
hierarchy into a few sub-trees and distribute them among 
the cluster nodes for balancing the load caused by the file 
accesses.  This is sometimes inevitable for a large Web 
site where the whole document set cannot fit on a single 
disk.  

Based on our partitioning mechanism, it is not 
necessary that every object has an entry in the table. In 
our system, a hash table is used as the global object space 
table. All the objects having the same common part in its 

object ID will share the same entry in the table. If all the 
objects’ home nodes under a directory are in fact the same 
server node, then all the objects under the directory will 
share a same entry key. For example, in a tree structured 
Web site, if the HTML files under directory 
/root/dir1/dir12/ are stored in the same node, all the files 
under this directory will share the same entry in the GOS 
table. There’s only one key, “/root/dir1/dir12/”, to all the 
files under dir12.  This will greatly reduce the mapping 
table size if the website is well organized.  

 
3.3.  Load Balancing for Persistent Connections 

Support of persistent HTTP connections [23] is usually 
available in modern Web server. The use of persistent 
HTTP connections can greatly improve performance, 
specially when multiple HTTP requests from different 
clients are routed to a single proxy and then dispatched as 
a whole to the Web server. Our Web server system 
supports persistent HTTP connections with the help of the 
global object space. To avoid the hot-spot problem, where 
all the HTTP requests of a session jam at a single Web 
server, a redirection function is implemented on top of the 
global object space. 

During normal execution of our Web server system, 
after a client makes a request to some server node and the 
objects are not found in the local cache, the server would 
keep the persistent HTTP connection. In the meantime, it 
collects all the requested objects from other nodes’ object 
caches through the GOS. As such, the server in question 
can easily become a hot spot since it has to handle all the 
HTTP requests and object caching.   

Since our system runs at the Java application level, 
low-level approaches such as packet rewriting are not 
suitable for our system. Our system uses a load-weighted 
HTTP redirection approach to distribute the incoming 
HTTP requests embedded in a single connection among 
the server nodes.  When a persistent HTTP connection is 
requested, the server will first parse the request and start 
fetching the requested object and deliver the object to the 
client. When the server node finds out that it is overloaded, 
it will stop the service and find out the home node of the 
requested object. Then it will send an HTTP redirection 
reply to the client browser to redirect the client to the 
home node of the requested object to continue the service. 
To achieve the best performance, all URLs are 
represented by relative path format in our Web server. 
Thus, the redirected client can continue to send 
subsequent requests to the new server node. 

 
4. Performance Results 

A preliminary prototype system has been implemented 
by modifying the W3C’s Jigsaw server, version 2.0.5 [24]. 
The global object space layer is added to Jigsaw to 
provide cluster-wide cached object sharing. 



 
4.1.  Experimental Setup 

We measured the performance of our Web server 
system on a 32-node PC cluster. Each node consists of a 
733 MHz Pentium III running Linux 2.2.4. These nodes 
are connected with an 80-port Cisco Catalyst 2980G Fast 
Ethernet switch. During the benchmark test, 16 nodes 
acted as clients, and the rest as Web servers. Each of the 
server nodes has 392M bytes of memory. 

All the 16 clients run a Web server benchmark 
program, which is a modified version of httperf [13]. 
Httperf performs stress test on the designated Web server 
based on a collected Web server log. The main 
characteristics of the data set and the log file are 
summarized in Table 1 and Table 2. All files are evenly 
partitioned into disjoint document sets, and stored in each 
server node’s local disk. 

Table 1. Summary of data set Characteristics  
(Raw Data Set) 

Total size 6.756 Gbytes 
No. of files 89,689 
Average file size 80,912 bytes 

 

Table 2. Summery of access log characteristics 

Number of requests ~640,000 
Data transferred ~ 35 Gbytes 
Distinct files requested 52,347 

 
Httperf supports customized workload generation 

based on a workload file. We modified the collected 
access log file to make it work for httperf. Requests are 
generated by httperf according to this modified workload 
file. 

Similar tests were also carried out on a 4-node 
heterogeneous cluster composed of a Celeron PC running 
Microsoft Windows 2000 Professional, an SMP PC with 
two Pentium Pro CPUs running RedHat Linux 6.1, and 
two PCs each with a Pentium II CPU running RedHat 
Linux 6.2. Our Web server runs well on this 
heterogeneous cluster. As the performance behavior is 
similar to the 4-node homogeneous cluster, we focus on 
the performance of the homogeneous cluster in the 
following. 

 
4.2.  Effects of Scaling the Cluster Size 

Figure 2 and Figure 3 show the requests and bytes 
throughput obtained for the 2-node, 4-node, 8-node, and 
16-node configuration respectively with an object cache 
size of 56M bytes enabled at each server node.  

The curves show the impact of the hot object caching 
on the overall system performance. With the hot object 
cache enabled, the performance increases almost linearly 
as we increase the number of server nodes since we can 
cache most of the frequently requested objects in the 
global object space. With the hot object caching support, 
the speedup is 4.77 when the system scales from two 
nodes to sixteen nodes, while that for the case without hot 
object caching support is only 2.02. 

4.3.  Effects of Scaling the Cache Size  

Figure 4 shows the global cache hit rate with different 
hot object cache sizes allocated on each node.  Figure 5 
and Figure 6 show the requests and bytes throughput with 
different cache sizes. We tested the cache hit rate and the 
overall system performance with different hot object 
cache sizes from 7M bytes to 56M bytes per node.  

Given an object data set that will be stored in a cluster 
Web server system, we are interested to know what is the 
appropriate hot object cache size that should be used for 
each node in order to achieve a high cache hit rate. The 
global cache hit rate increases from around 45% to 90% 
when the cache size scales from two nodes with a 7M 
bytes cache on each node to sixteen nodes with a 56M 
bytes cache on each node. The largest total cache size in 
the tests is the 16-node configuration with 56M bytes on 
each node. That is, the total cache size is 896M bytes. It is 
about 13% of the data set size, but the cache hit rate 
reaches around 90%. This observation confirms earlier 
research results about the nature of the access patterns for 

Figure 2. Comparison of requests service rate 

Figure 3. Comparison of bytes service rate 
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hot objects [3] as stated in Section 3.1. With a relatively 
small amount of memory in each node used for caching 
hot objects, we are able to obtain a high cache hit rate 
which increases the whole system’s performance 
considerably. 
 
4.4.  Performance Analysis 

Based on our caching mechanism, each client request 
may result in one of the three types of memory or disk 
objects:  

(1) Local Cache Object: The client is replied with a 
copy of the requested object from a server’s local 
object cache. This type of object access has the 
shortest access latency. 

(2) Home Node Cache Object: The server that 
receives the request does not have the object in its 
cache. The server fetches a copy of the requested 
object from the local object cache of the object’s 

home node and then replies to the client. 
Additional network delay is caused as compared 
with (1). This also consumes the cluster network 
bandwidth. 

(3) Home Node Disk Object: The document is not in 
the global object cache at all. The server that 
receives the request fetches a copy of the 
requested object from the object’s home node, and 
then replies to the client.  This type of operation 
involves extra network delay and disk access at the 
home node. Thus, it requires the longest time to 
serve.  

Figure 7 shows the percentage of client requests that 
results in each type of the above objects with respect to 
different cluster server sizes, where each node has a 56M 
bytes cache. Figure 8 shows the case with a 7M bytes 
cache at each node. In the figure, a local cache object and 
a home node cache object both contribute a cache hit 
when calculating the global hit rate.  

In Figure 7, the portion of home node disk objects 
decreases as the number of server nodes increases. This is 
because the size of the global object cache increases 

Figure 4. Global cache hit rate with different cache size 

Figure 5. Requests throughput with different cache size 

Figure 6. Bytes throughput with different cache size 

Figure 7. Analyses of request handle pattern 
(with 56M cache at each node) 

Figure 8. Analyses of request handle pattern 
(with 7M cache at each node) 
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linearly with the number of nodes. With more nodes, the 
larger aggregated cache size can cache more objects. 

Figure 7 also indicates a high hit rate for the local 
object cache. The local object cache hit rate can reach as 
high as 70%. This proves that our approximated global 
LFU algorithm is very effective. It simulates well the 
global LFU algorithm so that the local object cache will 
cache the “hottest” objects in the system. Therefore, most 
of the incoming requests will be served with objects 
fetched from the local object cache. This reduces the high 
overhead of fetching an object from a remote cache or 
disk, and can greatly improve the throughput and 
performance. 

For a 16-node case, we found that with only 1/8 of the 
cache size (7 MB vs. 56 MB), the disk access percentage 
only increases from around 10% to around 30%. As the 
number of cluster nodes increases, the home node cache 
objects account for a larger portion of the total global 
cache hit rate. This has shown the advantage of adopting 
the cooperative caching technique in our system for 
improving the performance by reducing the disk 
operations. Nevertheless, a more aggressive cooperative 
cache mechanism can be employed whereby the requested 
object can be fetched from any peer node holding a 
cached copy rather than only from the home node. This 
will alleviate the possible overload of the home node 
when many of the objects in the home node become hot 
and a great number of requests asking for an object copy 
come from the peer nodes at the same time. This will 
alleviate the possible overload of the home node when 
many of the objects in the home become hot and a great 
number of requests asking for an object copy would come 
from the peer nodes. This mechanism is under 
development and will be an integral part of the next 
version. 
  
5. Related Works 

Distributed Cooperative Web Servers (DCWS) is a 
cooperative Web server system developed by the 
Department of Computer Science, University of Arizona 
[6]. The DCWS project tries to explore application-level 
techniques for distributing Web contents. The approach is 
to dynamically manipulate the hyperlinks stored within 
the Web documents. All documents originally reside on a 
home server. It dynamically migrates documents to 
cooperative Web servers which are dedicated server nodes 
for sharing the load of the home server. By modifying the 
hyperlinks in the document, the Web server will distribute 
workload to cooperative nodes to achieve dynamic load 
balancing.  

Although it realizes application-level document 
distribution, it could suffer from excessive overheads 
from modifying the hyperlinks in the documents, because 
parsing of an HTML document is rather time consuming. 
The other problem is that if any of the cooperative nodes 

receives a request for a document it does not have, it will 
fetch it from the home node where the document 
originally locates. The document will be delivered 
(actually migrated) to the requesting node by the home 
node, and all the documents containing hyperlinks 
referring to this document have to be updated. This is a 
nontrivial task in terms of network traffic and the use of 
system resources such as CPU and memory, since it needs 
re-parsing and modifying all the documents in the system. 
The overhead is obviously enormous when the document 
set size is large. Moreover, DCWS does not deal well 
with hot objects, which are called hot spots in DCWS, 
because it only maintains one cache copy of a document; 
this could result in poor scalability when the hot spot 
problem occurs, according to the test conducted by the 
authors. 

A prototype system of a cluster-based Web server 
developed by Department of Computer Science, Rice 
University uses an extended Location Aware Request 
Distribution (LARD) policy to distribute requests among 
the backend server nodes in a cluster environment [4]. 
The prototype system uses a front-end server as request 
dispatcher. An initial incoming request from a new client 
will be dispatched to one of the backend server nodes 
according to the LARD policy, and requests that follow 
will be handled by the assigned backend node, to 
implement persistent connection in HTTP/1.1. Non-local 
documents are fetched by using the TCP connection 
handoff protocol between the concerned backend nodes, 
which actually forwards the request to the home node of 
the requested non-local document.  

It uses a centralized LARD information control. The 
potential problem is that the front-end will easily become 
a bottleneck when the system scales up. In addition, 
because all the requests for the same document will be 
dispatched by the front-end server and will ultimately be 
passed to a single node, with enough hot objects, that 
node will become a bottleneck too. 

In [1], a cluster-based file system with cooperative 
caching was designed for supporting a parallel Web 
server system. The authors proposed an improved 
cooperative cache system based on some hint-based file 
system cooperative cache [17] for their cluster-based Web 
server’s file system. Positive results are obtained from the 
simulation experiments indicating good load balancing 
and reduced disk access rates. This approach allows Web 
servers to transparently access the Web objects without 
worrying the underlying caching activities. However, the 
cost is a passive Web object caching policy since the file 
system is lack of the knowledge about the Web access 
patterns. More aggressive caching approaches, such as hot 
object caching, are generally impossible and the cache 
replacement algorithm is applied with restricted 
information. Moreover, the file system competes with the 
Web server on the memory resources, which could result 
in poor memory utilization. 



 
6. Conclusion and Future Work 

Our experience with the global object space shows that 
the use of physical memory as the first-level cache can 
lead to improved throughput and service availability. The 
hot object cache is very helpful in increasing system 
performance and scalability. With relatively small amount 
of memory dedicated for object content caching, we are 
able to achieve a very high hit rate. The approximated 
global LFU cache replacement algorithm works well for 
our goal of keeping the hottest objects in the relatively 
limited cache space. This will lead to improved server 
performance for most of the requests served by the Web 
server. By using cooperative caching among the cluster 
nodes, we can further improve the cache performance in 
terms of global cache hit rate. The fetching of hot objects 
from peer nodes’ caches can also reduce the expensive 
disk I/O operations.  

Our future work includes a study of the impact of hot 
object caching on the overall system performance for 
larger cluster sizes. More advanced replacement policies 
on hot object caching will also be studied, as well as more 
aggressive cooperative caching mechanisms that may 
achieve more efficient use of cluster-wide resources, such 
as memory space and network bandwidth. 

Although our prototype system does not implement 
dynamic content caching, it is possible to provide the 
extension by implementing some efficient object 
consistency protocol within the global object space. Our 
cooperative caching solutions can be implemented on 
other non-Java Web server systems to improve their 
performance. 
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