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Abstract 

In modem clustering environments where the memory hi- 
erarchy has many luyers (distributed memmy, shared mern- 
u?y layer; cache, . . .), an important question is how to fully 
utilize all available resources and identify the most domi- 
nant layer in certain computation. When combining algo- 
rithms on all layers together; what would be the best method 
to get the bestpeflomtance out of all the resources we have? 
Mixed mode programming model that uses threadprogrum- 
ming on the shared memory layer and message passing pro- 
gramming an the distributed memory layer is a method that 
many researchers are using to utilize the memory resources. 
In this papes we take an algorithmic approach that uses 
matrix multiplication as a tool to ‘show how cache algo- 
rithms affect the pe@ormance of both shared memoly and 
distributed memory algorithms. We show that with good 
underlying cache algorithm, overall perfarmance is sta- 
ble. When underlying cache algorithm is bad, sqmlinear 
speedup may OCCUI; and increasing number of threads may 
also improve pegormance. 

1. Memory Hierarchies in the modern cluster- 
ing environments 

Figure 1 shows the memory hierarchy that exists in most 
nodes of modem clustering environments. Globally, many 

nodes are linked together by a high-speed network; inside 
each node there may be many processors; along with each 
processor memory access is either to a high speed memory 
unit “cache” or the low speed “main memory”. 

In our mixed-mode programming model we use mes- 
sage passing interface, MPI, for the data communication 
between the global nodes. Inside each ME’I process we 
have two choices, one is to use POSIX threads for creat- 
ing threads, one or many threads may belong to the MPI 
process mapped to the node. The other choice is again to 
use MPI for local processes mapped to all processors of the 
node. Inside each process we use different algorithms that 
utilize the cache. Another option for threads that was not 
explored in this project was to use the Ope- standard. 
Based on the specific programming model, we selected sev- 
eral matrix multiplication algorithms on each layer and im- 
plemented them. 

Bova et. al., [3] determined that, “On a 100-CFU ma- 
chine, using 100 MPI workers to perform a 100-component 
harbor simulation is inefficient due to inappropriate load 
balance. It would be more efficient to have 25 MPI workers 
create four OpenMP threads for each assigned wave compo- 
nent.” In our experiments, we show that even in a perfectly 
load balanced computation such as matrix multiplication, 
the overall mixed mode performance is highly affected by 
cache aIgorithms. 

Our testing platform is the IBM SP system at the Na- 
tional Energy Research Scientific Computing facility [ 13. 
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Figure 1. Mixed mode programming model 

It is a distributed-memory parallel supercomputer with 184 
compute nodes. Each node has 16 POWEM+ processors 
and at least 16 GBytes of memory, thus at least 1 GBytes 
of memory per processor. Each node has 64 D y t e s  of L1 
data cache and 8192 Kbytes of L2 cache. The nodes are 
connected to each other with the IBM proprietary switching 
network. 

2. Cache layer matrix multiplication algo- 
rithms 

. The cache based algorithms used in our research vary 
from those that have high cache misses to those that effec- 
tively use cache. This is by no means a complete cover- 
age of all possible cache algorithms but is representative of 
those used and taught in the community. Also there is no 
performance optimization beyond the definition of each al- 
gorithm such as what is done in the ATLAS suite [16] where 
an optimal impIementation is produce by balancing trade- 
offs between operation count, memory access patterns, etc,. 
and computed performance metrics. Different optimization 
techniques can also be found in Crawford and Wadleigh [61 

or Dowd and Severance [7]. 

2.1. SimpIe three Ioops algorithm 

Figure 2(a), simple three Ioops algorithm: the figure 
shows the memory access pattern of this algorithm. This 
algorithm will incur the most cache misses among all other 
cache algorithms introduced here. However, it is the al- 
gorithm with fewest instruction count. LaMarca and Lad- 
ner 111.1 as well as Chatterjee et. al. [5],  mention that for a 
cache algorithm to get the best performance, the recursion 
should terminate whenever a block of data fits into cache 
and then call the algorithm with fewest instruction count. 
In our implementation, whenever data blocks fit>completely 
in cache, this algorithm is used. 

2.2. Blocking C algorithm. 

Figure 2(b), compute matrix C block by block. Since 
the algorithm computes according to the square patch of C, 
the corresponding portions ofmatrices A and B are not re- 
quired to be square. As the matrix dimensions increase, the 
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Figure 2. Pictorial Representation of Cache Level Algorithms. 

size of A and B patches also increase and thus incur more 
cache misses. This algorithm performs well when the sizes 
of matrices are smal1. If matrix B is transposed first in or- 
der to access elements in B consecutively, the performance 
is much better. The results presented in this work do not 
transpose matrix B. 

2.3. Blocking A algorithm 

Figure 2(c), fix a block of A or B: the figure outlines 
the memory access order of this algorithm. The algorithm 
keeps a square patch of matrix A in the cache as long as 
possible. For example, block A( 1) is computed with block 
B(1) and result put into C(l), then A(l) is multiplied by 
B(2) and stores the data in C(2). A(1) is then swapped out 
and replaced by A(2) to multiply B(3) and B(4), and so on. 

2.4. ’Ikansform and blocking A aIgodthm 

Figure 2(d), transform then blocking A: The memory 
partitioning scheme and computational order for this cache 
algorithm is the same as the previous algorithm. The only 
difference is that the layout of alI three matrices are trans- 
formed before computation starts. The layout of elements 
in each block is made consecutive by creating a block that is 
small enough to fit into cache and copying the appropriate 
portion to the newly allocated block. 

2.5. Recursive algorithm 

Figure 2(e), recursive layout: Chatterjee and coworkers 
15, 41 and Frens and Wise [8] describe the recursive Iay- 
out of matrix multiplication that the data is transformed into 
layout according to different space-filling curve order [ 1.31; 
then computations are done recursively according to that or- 
der. Because of the recursion, data has to be a power of 2. 
Different methods of Chatter@ et. al., [S, 41 and Frens and 
Wise [SI are used to handle the case when data size is not 
a power of 2. We implemented a simpIe version of the “U 
layout” which works on only square matrices. The blocking 
shell takes care of the case when data size are not a power 
of 2. 

2.6. Strassen’s algorithm 

In theory Strassen’s algorithm [14, 151 has better run 
time for matrix multiplication; it use additions and subtrac- 
tions to reduce the times for multipIication. The algorithm 
processes data in small blocks recursively, which make it 
implicitly cache efficient. 

Strassen’s algorithm, cache oblivious algorithm [9] or 
Dag-consist algorithm 121 have the advantage that the pro- 
grams do not need a threshold parameter to adjust the block 
size. In our experiments we found that recursion down to 
a single element reduced the petformance and terminating 
the recursion at even a smdI block size increased the over- 
all performance. For all of OUT implementations, we assign 
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Figure 3. Results of Cache Eased AIgorithms. 

a cache size for each block of 10 Kbyks, which is available 
for most computers at this point in time. 

2.7. Result and performance analysis of cache algo- 
r i thms 

Algorithms such as Strassen’s algorithm work on square 
matrices only, and the dimension has to be a power of 2 to 
do recursion. When the dimension is not a power of two or 
the shape of matrices are not square, we use another block- 
ing shell to compute the matrices with square blocks, and 
leave the rest parts that are not square to simple 3 loops aI- 
gorithm. Figure 2(f) shows this blocking shell method. In 
our implementation, three algorithms use this block shell - 
Strassen’s algorithm, recursive algorithm and transform and 
blocking A algorithm. 

Our results are shown in Figures 3. In Figure 3(a), when 
the matrix size is a power of 2, Strassen’s algorithm shows 
the best performance. However, in a more realistic situ- 
ation when we have to deal with the dimensions that are 
not a power of 2, or the shapes of matrices are not square, 
the cache misses caused by the block shell method and 
copying overhead reduces the performance of three algo- 
rithms - transform and bloclung A, recursive algorithm and 
Strasen’s algorithm. The best performing algorithm is to 
blocking A algorithm. 

2.8. Programming issues 

One issue to keep in mind is that, the result here is not to 
show that one algorithm is absolutely better than the others. 
It just means in our implementation, one algorithm shows 
better performance than the other. During our research we 
determined that programming cache algorithms is a nebu- 
lous task. The same algorithm be implemented in different 
ways giving a totaIly different performance. We use these 
algorithms, coded directly as describe above, simpIy as a 
basis to combine with algorithms in multiple layers of the 
memory hierarchy. We do not give any conclusion about 
which algorithm is optimal for the cache layer. 

3. Shared memory layer matrix multiplication 
algorithms 

We outline four possible shared memory matrix multi- 
plication dgorithms that can be easily implemented in the 
Pthreads programming model, represented in Figure 4. This 
is by no means an exhaustive set of shared memory algo- 
rithms but representative of those that are used by the com- 
munity. 

3.1. Overlapping matrix B 

Figure 4(a), overlapping matrix B: the algorithm divides 
matrix A into several rectangle blocks horizontally accord- 
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Figure 4. Pictorial Representation of Shared Memory Algorithms 

ing to the number of threads. Each thread computes cer- 
tain rectangle block of matrix A with whole matrix B and 
produces a complete contribution to a portion of matrix C. 
The algorithm has the possibility of causing read contention 
when different threads try to read matrix E. 

3.2. Non-overlapping algorithm 

Figure 4@), non-overlapping: the algorithm divides ma- 
trix A horizontally and matrix B vertically into blocks. Each 
thread first computes a block of matrix A multiplied by a 
block matrix B thus produces a full contribution of a square 
block of matrix C. In the next stage every thread still use 
the same block of matrix A, but shifts to another block of 
matrix B, thus producing another full contribution to a dif- 
ferent square Mock of matrix C. In this way, if all threads 
are executed concurrently then different threads have less 
chance of accessing the elements of matrix B at the same 
t h e  when the number of threads is Iess than the number of 
blocks of A and B pairs. 

3.3. Blocking algorithm 

Figure 4(c), blocking: the algorithm divides all three 
rnaMces into smaller square blocks, and each thread com- 
putes a square block of matrix A with a square block of 
3 thus producing a partial square contribution to matrix C. 
The block computation order is the same as element corn- 
putation order in simple 3-loop algorithm. Care must be 
taken to update matrix C atomically with mutex locks or as- 
sign the contributions required for the full bIock of C being 
computed to a single thread. 

3.4. Transform and blocking algorithm 

Transform and blocking: the algorithm has the same 
computation order and work on the same shapes of matri- 
ces as the previous algorithm, except before. the computa- 
tion begins, dl three matrices are transfonned into blocks 
of consecutive data as in the cache algorithm delineated in 
section 2.4, and each thread works on three square patches 
with consecutive dements. 

3.5. Resdts and performance analysis of shared 
memory algorithms 

Our results are presented in Figure 5(a) to S(f) .  Figure 
5(c) to Figure 5(f) show that, with a good underlying cache 
algorithm, the performance of all four shared memory al- 
gorithms are similar. An increase in the number of threads 
does not substantially affect the overall performance. 

On the other hand, Figure 5(a) and figure 5(b) show that, 
a "bad" cache algorithm combined with a shared memory 
algorithm that is insensitive to cache, has poor performance 
as the number of threads is increased, However, when a 
cache sensitive shared memory algorithm is combined with 
a "bad" cache algorithm, there is a performancegain with an 
increased number of threads. The performance can almost 
meet that of a good cache algorithm. This is due to the 
fact that as we increase the number of threads the smaller 
block size per thread actually fits into cache thus reducing 
the cache misses. 
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Figure 5. ResuIts of Shared Memory Based Algorithms 

4. Distributed memory layer matrix multipli- 
cation algorithms 

Here we focus on two common distributed matrix mul- 
tiplication algorithms. Many more are available but these 
represent a common denominator of many algorithms. 

4.1. Broadcasting algorithm 

Tbo dimensional broadcasting algorithm: According to 
the number of physical nodes and physical grid, if the phys- 
ical grid is p x q, then matrices are partitioned into least 
common multiples of p and q parts. Each node takes turns 
broadcast the part of matrix A vertically or B horizontally 
or both, and computes according to the data it receives. 

4.2. Cannon9s algorithm 

The algorithm is described in almost every parallel al- 
gorithm book such as Kumar et. al., [lo]. We use a gen- 
eralized Cannon's algorithm similar to Lee and Fortes [ 121 
instead of the original algorithm that requires the number 
of processors to form a certain square. In our implemen- 
tation, we first form a grid using the available processors, 
then depending on the shape of the grid, we distribute data 
accordingly. If the grid is square, we distribute data as in 
Cannon's original algorithm. If the grid is rectangular, find 
the least common multiple of two dimensions, use the least 
common multiple as the dimension of a virtual square grid 
and then distribute data according to this virtual grid. 
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Figure 6. Results of Mixed Mode Algorithms 

4.3. Result and performance analysis of Distributed 
Memory and Mixed Algorithms 

In our observations, when using the same number of 
processors, ME’I algorithms exhibit better per€omance than 
Pthreads dgorithms when the underlying cache algorithm 
is “bad.” The reason is that the distributed memory MPI 
algorithms always partition data into smaller blocks while 
shared memory algorithms work on a bulk data, and thus 
causing more cache misses. 

However, with good underlying cache algorithm, the 
choice of how many MPI tasks combined with how many 
threads does not seem to be so important. Figure 6(a) to 6(f) 
show our result of computing matrices of size 2000x2000 
using 6 and 12 nodes, with different combinations of algo- 

rithms, MFI tasks and thread tasks. 
Figure 6(a) and 6@) show that when bad cache algo- 

rithm combines with distributed algorithms or bad cache 
algorithm combines with shared memory algorithms, run 
time is not stable and doubling number of processors some- 
times has superlinear speedup. Figure 6(c) and 6(d) show 
mixed algorithms of three layers and doubling number of 
processors have a speedup of 2. Figure 6(e) and 6(f) show 
mixed algorithms together and doubling number of proces- 
sors when superhear speedup happen again. With good 
underIying cache algorithm, performance are stable. 

From Figure 6(a) to 6(f), we observed that, doubling the 
number of processors, good cache algorirhms give speedup 
of two whiIe bad cache algorirhms combines with dgo- 
rithms from other layers that do not partition data small 
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Figure 7. Percentage of Performance Gain from Cache Layer and Distributed Memory Layer 

enough, dso give speed up of two. On the ofher hand, per- 
formance of bad underling cache algorithms have superlin- 
em speedup when data is partitioned small enough by algo- 
rithms from the other two layers. 

These resuIts show that, without a good cache algorithm, 
timings fluctuate. Different combinations of MPI tasks and 
numbers of threads exhibit different performance. The main 
dependence is on how the algorithms divide data and thus 
make good use of cache as the chunk size decreases. On the 
other hand, if the undedying cache algorithms is “good,” 
the way data is partitioned matters much less. 

We use a simple model to show the effects of cache al- 
gorithms: 

TTatal = TCornp -k 
Tcornm + 
TPenalty  

where T=,,tal is the total time, Tcomp is the computational 
time, Tcornm is the communication time, and Tpenalty is 
the time associated with cache misses. Tcomp + Tcamm 
is the normal “total time” for many parallel computational 
models as described in Kumar et. al., [IO], and for Tcomp + 
Tpene[ty mode1 we refer EO the two layers model of Matteo 
et. al., [9]. For matrix multiplication, communication cost 
is at most O(n2) whiIe cache misses range from O(n2) to 

O(n3> depending on the algorithms. When data size are 
smalI, we can almost ignore cache misses penalty; when 
data size increases, cache misses penaIity becomes a fac- 
tor that affects total run time. When the data size is huge, 
0(n3)  cache misses is now the bottleneck for the perfor- 
mance. 

Figure 7 shows the fraction of improvement coming 
from modifying the underIying cache algorithm for the dis- 
tributed memory aigorithms. We measured the total perfor- 
mance gain and the percentage that distributed layer algo- 
rithms and cache layer aIgorithms contribute. The data size 
are from 1000 to 16000, using 64 nodes. Sharedmemory al- 
gorithms are not used here since we don’t have a node of 64 
processors. As shown in figure 7, when data size are small, 
all data block can fit into cache, the major improvement is 
from good distributed algorithms that reduce communica- 
tion time. When data size increase, data block size also in- 
crease, incurring more cache misses, and cache algorithms 
became dominate contributer of performance gain. Even- 
tually, cache layer algorithms contribute almost all perfor- 
mance gain when data size are very large. 



5. ConcIusion 
. . .  

I[n this paper we use different matrix multiplication algo- 
rithms on different layers to show how performance will be 
affected in mixed mode programming without a good cache 
algorithm, even when the work load is perfectly balanced. 
Since the core of parallel computations are still sequential 
computations, to improve the overall performance, not only 
do we need a model to utilize memory on every layer, but 
also good sequential core algorithms to achieve high per- 
formance. From our experiments, we believe that cache al- 
gorithms play a dominate role in many high performance 
computations, especialIy when processing large segments 
of data. If the computations is divided into many stages, 
and each stages only works on small data size, improving 
distributed algorithms improve the performance since cache 
misses do not matter much on computing small data size. 
On the other hand, if the computation has to work on large 
chucks of data, it is important to combine a good cache al- 
gorithms with an increase in the number of processors. Fur- 
thermore, parallel algorithms with “bad” underlying cache 
algorithms utilized in a mixed programming mode, the sat- 
uration of the thread space beyond the total number of com- 
puting threads equal to the number of available processors 
should provide a modest performance enhancement. 
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