
Mixed Mode Matrix Multiplication

Meng-Shiou Wu Sxinivas Mum
Department of Electrical
and Computer Engineering

Scalable Computing Laboratory
Ames Laboratory, U.S. DOE

Ames, IA 5001 1
mswu @iastate.edu

Department of Electrical
and Computer Engineering

Department of Computer Science
Ames, IA 5001 1
duru @iasstate.edu

Ricky A. Kendall
Department of Computer Science
Scalable Computing Laboratory

Ames Laboratory, W.S. DOE
Ames, IA 5001 1

rickyk@ scl.arneslab.gov

Abstract

In modem clustering environments where the memory hi-
erarchy has many luyers (distributed memmy, shared mern-
u?y layer; cache, . . .), an important question is how to fully
utilize all available resources and identify the most domi-
nant layer in certain computation. When combining algo-
rithms on all layers together; what would be the best method
to get the bestpeflomtance out of all the resources we have?
Mixed mode programming model that uses threadprogrum-
ming on the shared memory layer and message passing pro-
gramming an the distributed memory layer is a method that
many researchers are using to utilize the memory resources.
In this papes we take an algorithmic approach that uses
matrix multiplication as a tool to ‘show how cache algo-
rithms affect the pe@ormance of both shared memoly and
distributed memory algorithms. We show that with good
underlying cache algorithm, overall perfarmance is sta-
ble. When underlying cache algorithm is bad, sqmlinear
speedup may OCCUI; and increasing number of threads may
also improve pegormance.

1. Memory Hierarchies in the modern cluster-
ing environments

Figure 1 shows the memory hierarchy that exists in most
nodes of modem clustering environments. Globally, many

nodes are linked together by a high-speed network; inside
each node there may be many processors; along with each
processor memory access is either to a high speed memory
unit “cache” or the low speed “main memory”.

In our mixed-mode programming model we use mes-
sage passing interface, MPI, for the data communication
between the global nodes. Inside each ME’I process we
have two choices, one is to use POSIX threads for creat-
ing threads, one or many threads may belong to the MPI
process mapped to the node. The other choice is again to
use MPI for local processes mapped to all processors of the
node. Inside each process we use different algorithms that
utilize the cache. Another option for threads that was not
explored in this project was to use the Ope- standard.
Based on the specific programming model, we selected sev-
eral matrix multiplication algorithms on each layer and im-
plemented them.

Bova et. al., [3] determined that, “On a 100-CFU ma-
chine, using 100 MPI workers to perform a 100-component
harbor simulation is inefficient due to inappropriate load
balance. It would be more efficient to have 25 MPI workers
create four OpenMP threads for each assigned wave compo-
nent.” In our experiments, we show that even in a perfectly
load balanced computation such as matrix multiplication,
the overall mixed mode performance is highly affected by
cache aIgorithms.

Our testing platform is the IBM SP system at the Na-
tional Energy Research Scientific Computing facility [13.

mailto:iastate.edu
mailto:iasstate.edu
http://scl.arneslab.gov

... ...

Figure 1. Mixed mode programming model

It is a distributed-memory parallel supercomputer with 184
compute nodes. Each node has 16 POWEM+ processors
and at least 16 GBytes of memory, thus at least 1 GBytes
of memory per processor. Each node has 64 D y t e s of L1
data cache and 8192 Kbytes of L2 cache. The nodes are
connected to each other with the IBM proprietary switching
network.

2. Cache layer matrix multiplication algo-
rithms

. The cache based algorithms used in our research vary
from those that have high cache misses to those that effec-
tively use cache. This is by no means a complete cover-
age of all possible cache algorithms but is representative of
those used and taught in the community. Also there is no
performance optimization beyond the definition of each al-
gorithm such as what is done in the ATLAS suite [16] where
an optimal impIementation is produce by balancing trade-
offs between operation count, memory access patterns, etc,.
and computed performance metrics. Different optimization
techniques can also be found in Crawford and Wadleigh [61

or Dowd and Severance [7].

2.1. SimpIe three Ioops algorithm

Figure 2(a), simple three Ioops algorithm: the figure
shows the memory access pattern of this algorithm. This
algorithm will incur the most cache misses among all other
cache algorithms introduced here. However, it is the al-
gorithm with fewest instruction count. LaMarca and Lad-
ner 111.1 as well as Chatterjee et. al. [5], mention that for a
cache algorithm to get the best performance, the recursion
should terminate whenever a block of data fits into cache
and then call the algorithm with fewest instruction count.
In our implementation, whenever data blocks fit>completely
in cache, this algorithm is used.

2.2. Blocking C algorithm.

Figure 2(b), compute matrix C block by block. Since
the algorithm computes according to the square patch of C,
the corresponding portions ofmatrices A and B are not re-
quired to be square. As the matrix dimensions increase, the

4

A B C

A B C

A C

A B C

A B C
. .

gorithm

Simple algorithm

0
af)

Figure 2. Pictorial Representation of Cache Level Algorithms.

size of A and B patches also increase and thus incur more
cache misses. This algorithm performs well when the sizes
of matrices are smal1. If matrix B is transposed first in or-
der to access elements in B consecutively, the performance
is much better. The results presented in this work do not
transpose matrix B.

2.3. Blocking A algorithm

Figure 2(c), fix a block of A or B: the figure outlines
the memory access order of this algorithm. The algorithm
keeps a square patch of matrix A in the cache as long as
possible. For example, block A(1) is computed with block
B(1) and result put into C(l), then A(l) is multiplied by
B(2) and stores the data in C(2). A(1) is then swapped out
and replaced by A(2) to multiply B(3) and B(4), and so on.

2.4. ’Ikansform and blocking A aIgodthm

Figure 2(d), transform then blocking A: The memory
partitioning scheme and computational order for this cache
algorithm is the same as the previous algorithm. The only
difference is that the layout of alI three matrices are trans-
formed before computation starts. The layout of elements
in each block is made consecutive by creating a block that is
small enough to fit into cache and copying the appropriate
portion to the newly allocated block.

2.5. Recursive algorithm

Figure 2(e), recursive layout: Chatterjee and coworkers
15, 41 and Frens and Wise [8] describe the recursive Iay-
out of matrix multiplication that the data is transformed into
layout according to different space-filling curve order [1.31;
then computations are done recursively according to that or-
der. Because of the recursion, data has to be a power of 2.
Different methods of Chatter@ et. al., [S, 41 and Frens and
Wise [SI are used to handle the case when data size is not
a power of 2. We implemented a simpIe version of the “U
layout” which works on only square matrices. The blocking
shell takes care of the case when data size are not a power
of 2.

2.6. Strassen’s algorithm

In theory Strassen’s algorithm [14, 151 has better run
time for matrix multiplication; it use additions and subtrac-
tions to reduce the times for multipIication. The algorithm
processes data in small blocks recursively, which make it
implicitly cache efficient.

Strassen’s algorithm, cache oblivious algorithm [9] or
Dag-consist algorithm 121 have the advantage that the pro-
grams do not need a threshold parameter to adjust the block
size. In our experiments we found that recursion down to
a single element reduced the petformance and terminating
the recursion at even a smdI block size increased the over-
all performance. For all of OUT implementations, we assign

1024 2048
Data size

1000 2000
Data size

Figure 3. Results of Cache Eased AIgorithms.

a cache size for each block of 10 Kbyks, which is available
for most computers at this point in time.

2.7. Result and performance analysis of cache algo-
r i thms

Algorithms such as Strassen’s algorithm work on square
matrices only, and the dimension has to be a power of 2 to
do recursion. When the dimension is not a power of two or
the shape of matrices are not square, we use another block-
ing shell to compute the matrices with square blocks, and
leave the rest parts that are not square to simple 3 loops aI-
gorithm. Figure 2(f) shows this blocking shell method. In
our implementation, three algorithms use this block shell -
Strassen’s algorithm, recursive algorithm and transform and
blocking A algorithm.

Our results are shown in Figures 3. In Figure 3(a), when
the matrix size is a power of 2, Strassen’s algorithm shows
the best performance. However, in a more realistic situ-
ation when we have to deal with the dimensions that are
not a power of 2, or the shapes of matrices are not square,
the cache misses caused by the block shell method and
copying overhead reduces the performance of three algo-
rithms - transform and bloclung A, recursive algorithm and
Strasen’s algorithm. The best performing algorithm is to
blocking A algorithm.

2.8. Programming issues

One issue to keep in mind is that, the result here is not to
show that one algorithm is absolutely better than the others.
It just means in our implementation, one algorithm shows
better performance than the other. During our research we
determined that programming cache algorithms is a nebu-
lous task. The same algorithm be implemented in different
ways giving a totaIly different performance. We use these
algorithms, coded directly as describe above, simpIy as a
basis to combine with algorithms in multiple layers of the
memory hierarchy. We do not give any conclusion about
which algorithm is optimal for the cache layer.

3. Shared memory layer matrix multiplication
algorithms

We outline four possible shared memory matrix multi-
plication dgorithms that can be easily implemented in the
Pthreads programming model, represented in Figure 4. This
is by no means an exhaustive set of shared memory algo-
rithms but representative of those that are used by the com-
munity.

3.1. Overlapping matrix B

Figure 4(a), overlapping matrix B: the algorithm divides
matrix A into several rectangle blocks horizontally accord-

A €3

All

A
Thread
Thread
Thread
Thread

A

Figure 4. Pictorial Representation of Shared Memory Algorithms

ing to the number of threads. Each thread computes cer-
tain rectangle block of matrix A with whole matrix B and
produces a complete contribution to a portion of matrix C.
The algorithm has the possibility of causing read contention
when different threads try to read matrix E.

3.2. Non-overlapping algorithm

Figure 4@), non-overlapping: the algorithm divides ma-
trix A horizontally and matrix B vertically into blocks. Each
thread first computes a block of matrix A multiplied by a
block matrix B thus produces a full contribution of a square
block of matrix C. In the next stage every thread still use
the same block of matrix A, but shifts to another block of
matrix B, thus producing another full contribution to a dif-
ferent square Mock of matrix C. In this way, if all threads
are executed concurrently then different threads have less
chance of accessing the elements of matrix B at the same
t h e when the number of threads is Iess than the number of
blocks of A and B pairs.

3.3. Blocking algorithm

Figure 4(c), blocking: the algorithm divides all three
rnaMces into smaller square blocks, and each thread com-
putes a square block of matrix A with a square block of
3 thus producing a partial square contribution to matrix C.
The block computation order is the same as element corn-
putation order in simple 3-loop algorithm. Care must be
taken to update matrix C atomically with mutex locks or as-
sign the contributions required for the full bIock of C being
computed to a single thread.

3.4. Transform and blocking algorithm

Transform and blocking: the algorithm has the same
computation order and work on the same shapes of matri-
ces as the previous algorithm, except before. the computa-
tion begins, dl three matrices are transfonned into blocks
of consecutive data as in the cache algorithm delineated in
section 2.4, and each thread works on three square patches
with consecutive dements.

3.5. Resdts and performance analysis of shared
memory algorithms

Our results are presented in Figure 5(a) to S(f) . Figure
5(c) to Figure 5(f) show that, with a good underlying cache
algorithm, the performance of all four shared memory al-
gorithms are similar. An increase in the number of threads
does not substantially affect the overall performance.

On the other hand, Figure 5(a) and figure 5(b) show that,
a "bad" cache algorithm combined with a shared memory
algorithm that is insensitive to cache, has poor performance
as the number of threads is increased, However, when a
cache sensitive shared memory algorithm is combined with
a "bad" cache algorithm, there is a performancegain with an
increased number of threads. The performance can almost
meet that of a good cache algorithm. This is due to the
fact that as we increase the number of threads the smaller
block size per thread actually fits into cache thus reducing
the cache misses.

16 25 i 6 64

16 ZI 36 H

16 a 5 6 ' 64

Figure 5. ResuIts of Shared Memory Based Algorithms

4. Distributed memory layer matrix multipli-
cation algorithms

Here we focus on two common distributed matrix mul-
tiplication algorithms. Many more are available but these
represent a common denominator of many algorithms.

4.1. Broadcasting algorithm

Tbo dimensional broadcasting algorithm: According to
the number of physical nodes and physical grid, if the phys-
ical grid is p x q, then matrices are partitioned into least
common multiples of p and q parts. Each node takes turns
broadcast the part of matrix A vertically or B horizontally
or both, and computes according to the data it receives.

4.2. Cannon9s algorithm

The algorithm is described in almost every parallel al-
gorithm book such as Kumar et. al., [lo]. We use a gen-
eralized Cannon's algorithm similar to Lee and Fortes [121
instead of the original algorithm that requires the number
of processors to form a certain square. In our implemen-
tation, we first form a grid using the available processors,
then depending on the shape of the grid, we distribute data
accordingly. If the grid is square, we distribute data as in
Cannon's original algorithm. If the grid is rectangular, find
the least common multiple of two dimensions, use the least
common multiple as the dimension of a virtual square grid
and then distribute data according to this virtual grid.

.

Figure 6. Results of Mixed Mode Algorithms

4.3. Result and performance analysis of Distributed
Memory and Mixed Algorithms

In our observations, when using the same number of
processors, ME’I algorithms exhibit better per€omance than
Pthreads dgorithms when the underlying cache algorithm
is “bad.” The reason is that the distributed memory MPI
algorithms always partition data into smaller blocks while
shared memory algorithms work on a bulk data, and thus
causing more cache misses.

However, with good underlying cache algorithm, the
choice of how many MPI tasks combined with how many
threads does not seem to be so important. Figure 6(a) to 6(f)
show our result of computing matrices of size 2000x2000
using 6 and 12 nodes, with different combinations of algo-

rithms, MFI tasks and thread tasks.
Figure 6(a) and 6@) show that when bad cache algo-

rithm combines with distributed algorithms or bad cache
algorithm combines with shared memory algorithms, run
time is not stable and doubling number of processors some-
times has superlinear speedup. Figure 6(c) and 6(d) show
mixed algorithms of three layers and doubling number of
processors have a speedup of 2. Figure 6(e) and 6(f) show
mixed algorithms together and doubling number of proces-
sors when superhear speedup happen again. With good
underIying cache algorithm, performance are stable.

From Figure 6(a) to 6(f), we observed that, doubling the
number of processors, good cache algorirhms give speedup
of two whiIe bad cache algorirhms combines with dgo-
rithms from other layers that do not partition data small

’erformance gain horn improving MPI dgorx’thm
~trformance gain Eom improving cache aJgorithm

Combined performance gain
Penhmioe gain

pmmtw

lo00’; 2000 40001 8000 16000
0.431 0.244 1348 8 12
0.071 0.251 114 1018 > 6000

Figure 7. Percentage of Performance Gain from Cache Layer and Distributed Memory Layer

enough, dso give speed up of two. On the ofher hand, per-
formance of bad underling cache algorithms have superlin-
em speedup when data is partitioned small enough by algo-
rithms from the other two layers.

These resuIts show that, without a good cache algorithm,
timings fluctuate. Different combinations of MPI tasks and
numbers of threads exhibit different performance. The main
dependence is on how the algorithms divide data and thus
make good use of cache as the chunk size decreases. On the
other hand, if the undedying cache algorithms is “good,”
the way data is partitioned matters much less.

We use a simple model to show the effects of cache al-
gorithms:

TTatal = TCornp -k
Tcornm +
TPenalty

where T=,,tal is the total time, Tcomp is the computational
time, Tcornm is the communication time, and Tpenalty is
the time associated with cache misses. Tcomp + Tcamm
is the normal “total time” for many parallel computational
models as described in Kumar et. al., [IO], and for Tcomp +
Tpene[ty mode1 we refer EO the two layers model of Matteo
et. al., [9]. For matrix multiplication, communication cost
is at most O(n2) whiIe cache misses range from O(n2) to

O(n3> depending on the algorithms. When data size are
smalI, we can almost ignore cache misses penalty; when
data size increases, cache misses penaIity becomes a fac-
tor that affects total run time. When the data size is huge,
0(n3) cache misses is now the bottleneck for the perfor-
mance.

Figure 7 shows the fraction of improvement coming
from modifying the underIying cache algorithm for the dis-
tributed memory aigorithms. We measured the total perfor-
mance gain and the percentage that distributed layer algo-
rithms and cache layer aIgorithms contribute. The data size
are from 1000 to 16000, using 64 nodes. Sharedmemory al-
gorithms are not used here since we don’t have a node of 64
processors. As shown in figure 7, when data size are small,
all data block can fit into cache, the major improvement is
from good distributed algorithms that reduce communica-
tion time. When data size increase, data block size also in-
crease, incurring more cache misses, and cache algorithms
became dominate contributer of performance gain. Even-
tually, cache layer algorithms contribute almost all perfor-
mance gain when data size are very large.

5. ConcIusion
. . .

I[n this paper we use different matrix multiplication algo-
rithms on different layers to show how performance will be
affected in mixed mode programming without a good cache
algorithm, even when the work load is perfectly balanced.
Since the core of parallel computations are still sequential
computations, to improve the overall performance, not only
do we need a model to utilize memory on every layer, but
also good sequential core algorithms to achieve high per-
formance. From our experiments, we believe that cache al-
gorithms play a dominate role in many high performance
computations, especialIy when processing large segments
of data. If the computations is divided into many stages,
and each stages only works on small data size, improving
distributed algorithms improve the performance since cache
misses do not matter much on computing small data size.
On the other hand, if the computation has to work on large
chucks of data, it is important to combine a good cache al-
gorithms with an increase in the number of processors. Fur-
thermore, parallel algorithms with “bad” underlying cache
algorithms utilized in a mixed programming mode, the sat-
uration of the thread space beyond the total number of com-
puting threads equal to the number of available processors
should provide a modest performance enhancement.

6. Acknowledgements

-.’ This work was performed under the auspices of the
Department of Energy under contract under contract W-
7405-ENG-82 at Ames Laboratory operated by the Iowa
State University of Science and Technology. Funding was
provided by the Mathematical, Information, and Computa-
tional Sciences division of the Office of Advanced Scientific
Computing Research, Office of Science, US. Department
of Energy. We would also like to acknowledge the support
of Iowa State University and the University Research Grant
program which funded a segment of this work. This re-
search was performed in part using computational resources
in the Scalable Computing Laboratory which were partially
donated from IBM Corporation under the Shared University
Research grant program. This research also used computa-
tional resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Sci-
ence of the W.S. Department of Energy under Contract No.
DE-ACO3-76SFOOO98 with the University of California.

. ,
=

.

References

111 http://hpcf.nersc.gov/computers/SP.
[2] R. D. Blumofe, M. Frigo, C. E Joerg, C. E. Leisemon, and

K. H. Randall. Dag-consistent distributed shared memory. In

Proceedings of the Eighth ACM Symposium on Parallel Al-
gorithm and Architecmres(SPM), pages 297-308, Pauda,
Italy, June 1996.

[3] S, W. Bova, C. P. Breshws, H. Gabb, B. Kuhn, B. Magro,
R. Eigenmann, G. Gaertner, S. Salvini, and H. Scott. Parallel
Programming with Message Passing and Directives. Com-
puting in Science and Engineering, 3(5):22-37,2001.

[4] S. Chattejee, V. V. Yain, A. R. Lebeck, S. Mundlm, and
M. Thottethodi. Nonlinear may layouts for hierarchical
memory systems. In Proceedings of 1999 ACM Inter-
national Conference on Supercomputing, pages 444-453,
Rhodes, Greece, June 1999.

[5] S. Chattejee, A. R. Lebeck, P. K. Patnala, and M. Thot-
tethodi. Recursive array layouts and fast parallel matrix
multiplication. h Proceedings of the 11th ACM Symposium
on Parallel Algorithms and Architectures, pages 222-231,
Saiht-Mdo, France, June 19 1999,

[6] I. L. Crawford and K. R. Wadleigh. Sofrwnre Optimization
for High Pe?fobnnance: Creating Faster Applications. Pren-
tice Hall FTR, 2000. JSBN0130170089.

High P e r f o m c e Corn-
puting, 2nd Edition. O’Reilly & Associates, 1998.
ISBN:156592312X.

Auto-blocking matrix-
multiplication or tracking bIas3 performance from source
code. In Proceedings of the Sixth ACM S I G P U N S Y M ~ O -
siim on Principles and Practice of Parallel Programming,
pages 206-216, Las Vega, NV, June 1997.

[9] M. Frigo, C. E. kiserson, H. Prokop, and S. Ramachan-
&an. Cache oblivious algorithms, In Proceedings of the
40th Annual Symposium on Foundation of Computer Sci-
eme(FOCS’99), pages 285-298, 1999.

In-
troduction to Parallel Computing: Design and Analysis
of Parallel Algorithms. Addison-Wesley Pub Co., 1994.
ISBN:O80533 1700.

[l 11 A. LaMarca and R. E. Ladner. The influence of caches on
the performance of sorting. In Proceedings of the 8th ACM-
SIAM Symposium on Discrete Algorithm, pages 370-379.
SLAM press, 1997.

[l2] H.J. Lee, J. P. Robertson, and J. Fortes. Generalized can-
non’s algorithm for parallel matrix multiplication, b Pro-
ceedings of the I1 th ACM Interntiom1 Conference on Su-
pcrcompuring, pages 44-51, Kenna, Austria, July 1997.

1131 H. Sagan. Space-FilZihg Curves. Springer-Verlag, 1994.
ISBN0387942653.

[14] V. Strassen. Gaussian elimination is not optimal. Nu-
merische Mathemniik, 13:354-356, 1969.

[lS] M. Thottethodi, S . Chatterjee, and A. R. Lebeck. Tuning
strassen’s mabix multiplication for memory efficiency. In
Proceedings of SC98, High Pelfonnance Neiworking and
Computing, Orlando, Ronda, November 1998.

[161 R. C. Whaley and J. J. Dong- Automatically tuned linear
algebra software. Technical Report UT-CS-97-366, Univer-
sity of Tennessee, 1997.

[7] K. Dowd and C. Severance.

181 3. D. Fens and D.. S. Wise.

[IO] V. Kumar, A. Grama, A. Gupta, and G. Kaqpis.

http://hpcf.nersc.gov/computers/SP

...

