
A Comparison of Local and Gang Scheduling on a Beowulf Cluster

Peter Strazdins and John Uhlmann,
Department of Computer Science, Australiun National University

Acton ACT 0200 AUSTRALIA
{Peter.Strazdins@cs.anu.edu.au,John.Uhlmann @anu.edu.au]

Abstract

Gang Scheduling and related techniques are widely be-
lieved to be necessary for efficient job scheduling on dis-
tributed memory parallel computers. This is hecause they
minimize context switching overheads and permit the paral-
lel job currently running to progress at the fastest possible
rate.

Howevec in the case of cluster computers, and panicu-
larly those with COTS networks, these benefits can be out-
weighed in the multiplejob time-sharing context by the loss
the ability to utilize the CPUfor otherjobs when the current
;oh is waiting for messages.

Experiments on a L i n u Beowulfcluster with IOOMb fast
Ethernet switches are mnde comparing the Score buddy-
based gang scheduling with local scheduling (pmvided by
the L i n u 2.4 kernel with MPI implemented over TCP/IP).
Results for communication-intensive numerical applications
on 16 nodes reveal that gang scheduling results in 'slow-
downs'up to a factor of two greaterfor 8 simultaneous jobs.
This phenomenon is not due to any deficiencies in Score but
due to the relarive costs of context switching versus message
overhead, and we expect similar results will hold for any
gang scheduling implementation.

A performance analysis of local scheduling indicates that
cache pollution due to context switching is more signijicant
than the direct context switching overhead on the applica-
tions studied. When this is taken into account, local schedul-
ing behaviour comes close to achieving ideal slowdowns for
finer-grained computations such as Linpack. The perfor-
mance models also indicate that similar trends are to be
expected for clusters with faster networks.

Keywords: parallel computing, job scheduling, gang
scheduling, cluster computing

1 Introduction

Gang scheduling [6], or one of its many variants [I I ,
16, 191, is widely believed to be necessary for optimal dis-
tributed memory multiprocessor resource utilization with
time-shared jobs with medium- to fine-grained communi-
cation patterns.

These techniques require that, on each node, the processes
related to a particular parallel task (gangs) are scheduled
to run simultaneously. Gangs are packed together and are
preempted and rescheduled as a unit. As well as reducing
context switching overheads. this ensures messages associ-
ated with a parallel job are received as soon as possible arter
delively, and hence permits that parallel job to progress op-
timally.

Gang Scheduling (also known as explicit co-scheduling)
normally requires considerable infrastructure to be added to
cluster. Existing systems include Score [IO] and ParPar [9].

An alternative is implicit co-scheduling, where the pro-
cesses in the gang are not explicitly coscheduled but should
coschedule themselves through their behaviour and local
scheduling policies, e.g. if a message arrives for a non-
current job, a CPU might preempt the current job and sched-
ule the new one [12,3]. These are potentially less complex
to implement. In the context of more coarse-grained jobs
(with infrequent communication phases) on clusters, it has
been suggested that cc-scheduling can occur without any
measures being taken, simply due to the fact that processes
get higher priority when communicating [4].

However, the simplest technique of all to implement is
(uncoordinated) local scheduling, where no measures are
taken to coschedule processes in the gang. In this case,
gangs may not be coscheduled at all. This would be the
default scheduling policy on a raw Linux cluster.

Issues with the choice of these techniques includes their
complexity to implement (and, in practice, to deploy) on
an actual cluster, and their potential for performance (e.g.
in overall job throughput and fairness). This paper makes
a comparison between the two extremes (gang and local

0-7803-8694-9/04/$20.00 0 2 0 0 4 IEEE 55 CLUSTER 2004

scheduling) on a COTS Beowulf cluster [2].
The main original contributions of this paper are as fol-

lows. It gives a direct comparison of gang and local schedul-
ing on a Beowulf-style cluster computer. It also uses real ap-
plications to make this comparison, and demonstrates why
the usc of these is important in evaluating scheduling poli-
cies. Conclusions that can be drawn from the results of
the paper do not seem to be reHected in the current liter-
ature. Finally, it also provides a performance analysis for
local scheduling, and proposes and evaluates an optimistic
performance model for it.

This paper is organized as follows. Related work is de-
scribed in Section 2. Section 3 describes the Bunyip Beowulf
cluster used in our experiments, and Section 4 describes the
Score cluster management system. Our experimental setup
and a comparison of gang and local scheduling is given using
(non-synthetic) parallel applications in Section 5 . The per-
formance of local scheduling is further analyscd in Section
6. Conclusions are given in Section 7.

2 Related work

The studies establishing the belief that gang (or similar)
scheduling policies are needed for efficient time-sharing in
multiprocessors by making direct comparisons seem to be
very few. The only one known to us that makes a direct eval-
uation of gang scheduling (compared with local scheduling)
is [6]; this uses a synthetic program (which repeatedly exe-
cutes a computation loop followed by a barrier) on an early
NUMA shared memory architecture. But shared memory
parallel processors and older-style Massively Parallel Pro-
cessors (MPPs) have relatively lower communication over-
heads than for modem clusters. Furthermore, the assump-
tion underlying gang scheduling: that any messages received
are destined for the currently executing process, simplifies
(and possibly speeds up) the implementation of communi-
cation [161.

In the only survey of job scheduling on clusters known
to the authors, it is claimed that “Scheduhg on [clusters]
is essentially rhe same as on commercial M P P systems” [4].
Clusters however are significantly different from traditional
MPPs: they have a slower network, and normally have a
standard OS residing on each node. Furthermore, cluster
communication can be thought of as network VO; typically
applications will block when waiting on messages.

A recent paper [I81 introduced paired gang scheduling,
in which the processes of two jobs are regarded as being in
the same gang, and the local scheduler on each CPU chooses
(the process corresponding to) the job to be run at any given
time. While primarily motivated to improve CPU utilization
when some of the processes are blocked for YO, paired Bang
scheduling significantly out-performed gang scheduling for
a dynamic workload on the ParPar cluster, even when the

only 110 was that due to messaging. Here, a synthetic pro-
gram (with a negligible memory footprint) similar to that
in [6] was used to create the workload. The length of the
compute loop was adjuhtcd so that the CPU utilization for a
single such job was 45% [IS]. While the authors concluded
that “paired gang scheduling seems to be a good compro-
mise behveen the rxtreme alternatives of gang scheduling
and uncourdinated local scheduling” [IS], no comparisons
to local scheduling were madc.

3 The Bunyip Beowulf Cluster

The Beowulf cluster Bunyip [2] used in our experiments
is a 96 node dual processor Pentium 111’s running at 550
MHz. Bunyip runs a Linux 2.4.18 kemel. Each CPU in a
node has a non-shared 256 KB direct-mapped second-level
cache.

Bunyip consists of 4 groups made up of 24 nodes each.
The nodes each has three 100 Megabit NICs, each being con-
nected to an intergroup switch Packard ProCurve 4000M);
thus every node is directly connected to every other through
one of these switches.

Normally, two processes of a parallel job are spawned
on each node; ideally, each will be scheduled to one of the
node’s two CPUs at the same time.

3.1 Multiple Jobs under Linux and LAM MPI

LAM MPI 6.3.2 [151 is the version of MPI normally used
by parallel programs on the Bunyip. Point-to-point message
send and receive uses a TCPAP transport, unless the MPI
processes are on the same node (in which case, i t is per-
formed by a sysv interprccess communication transport,
which uses shared memory).

Under theTCP/IPtransport, a ‘small’(in thiscase 5 n, =
64KB) message is effectively non-blocking to the sender,
and as soon as the message is buffered (ready to send), exe-
cution of the calling application process resumes [151. If the
message is larger than n,, it is broken down into packets of
size n,, with an acknowledgement for the receiver required
before each subsequent packet is sent.

A message receive results in a recvf rom () system call
for eachrequiredpacket. Ifan appropriate packethas already
arrived at the time of the call, the payload is copied into the
user space receive buffer, and execution of the calling (ap-
plication) process resumes. Otherwise, the calling process
yields, and other processes may be scheduled by the kernel
for execution. When an appropriate packet arrives, it gen-
erates an interrupt and the calling process will be scheduled
as runnable by the kernel.

In the case of the sysv transport, if an appropriate packet
has not yet arrived at the time of the call, it will poll for the

56

packet; if it does not arrive in a certain interval, the calling
process similarly yields.

Thus, if multiple MPI jobs are running over a subset of
the nodes, when a process for one job is blocked waiting
for a message, the node’s CPU can be utilized by running
the process for another job. In other words, it is possible in
principle to overlap the communication of one parallel job
with the computation of another.

3.2 Message Performance under LAM MF’I

Using aping-pong benchmark running under LAM MPI’s
mpirun -c2c -0, the timetosendandreceiveamessage
ofn doublesgiven by t(n) = a+On whereundertheTCP/IP
transport:

a = 8 0 ~ s : = . 8 5 p (1)

and under the sysv transport:

OL = 42ps,p = . lops (2)

To determine the Linux context switch overhead, cy,.,

we used a benchmark program which executed a (short)
compute-loop followed by a process yield system call, re-
peated y times. Using cyc = y, where t j is defined in
Section 5 . I , yielded a value much smaller than a:

ac = 2.5ps (3)

4 The Score Cluster Management System

The Score system is developed by the PC Cluster Consor-
tium [IO]. It is freely available (including source code) and
is in wide use in cluster installations world-wide. It consists
of middleware that runs on top of full Linux kernels. The
job scheduling algorithm is based on Distributed Hierarchi-
cal Control [7], hut lacks the actual distributed hierarchical
control aspect. This leaves a buddy-based gang scheduler
with centralised control [8].

The scheduling in Score is done through the use of pri-
ority queues. Each queue can have memory, disk and time
limits and can be scheduled in either a time-shared (gang
scheduling with a buddy node allocation) or exclusive fash-
ion. The nodes are time-shared in a coordinated fashion
between the jobs with a global synchronisation and Hush-
ing of the network between time slices. In the case of dual
nodes, two (consecutive) processes are allocated per node.

Similar to LAM MPI, parallel jobs are run through the
Score’s version of mpirun command which connects to a
Score daemon process.

Score 5.4.0 [I O] was installed on Bunyip; it in-
cludes an implementation of MPI based on MPICH 1.4.0.
Score includes a lightweight TCP/IP replacement called
PMEthernet; this reduces internode communication latency,

primarily due to the fact that the application busy-waits upon
message receipt rather than yields (cf. Equation I) , with the
communication cost per double word also reduced slightly:

cy = 7 0 p , p = .82ps (4)

Like LAM MPI, Score is able to communicate between
processes on the same SMP node using shared memory.

5 Evaluation of Gang and Local Scheduling
on the Bunyip

This section gives an evaluation of the two scheduling
policies on the Bunyip cluster for two numerical benchmark
programs, a matrix multiply program and Linpack bench-
mark. Preliminary versions of these results were reported in

These programs use the DBLAS parallel BLAS library
[I31 for all communications. The DBLAS library imple-
ments all communication patterns in terms of @PI) send and
receive calls; thus, the difference in single-job performance
is entirely expressed in the differences between Equations 1
and 4.

5.1 Experimental Setup

[171.

In these experiments, j identical paralleljobs are spawned
over the same subset of nodes. They are spawned in the
background, i.e. as simultaneously as possible, via a con-
trol program. CPU monitoring indicated that both policies
time-shared the jobs fairly evenly, i.e. they gave fair individ-
ual service to each job. Further experiments demonstrating
fairness are reported in [171.

Thus, packing issues are avoided in these experiments,
with an identical number of processes allocated to each node
in the subset.

For these experiments, dedicated use of the cluster wa.
obtained.

Under these conditions, scheduling performance can be
captured by taking t j , the elapsed execution time for all j
jobs, and the job slowdown metric [5] reduces to:

The memory footprint of each job was set to be x 6% of
a Bunyip’s node’s available user memory; thus up to j = 8
jobs could run simultaneously on each CPU without danger
of performance degradation due to swapping.

Score was installed on 16 nodes of Bunyip (it requires
modifications to the Linux kernel). With p parallel pro-
cesses, the programs use a logical P x Q processes grid,
where p = PQ and, forp being a power of 2, either P = 2&
or P = Q. With a row-major allocation of processes to

57

0 11 2 3 4 5 1 6 7
8 n I 1 0 11 I 12 13 I 14 15

16 17 118 19 1 2 0 21 122 2S
24 25 I2G 27 128 29 I 3 0 31

Figure 1. Score allocation o f p = 32 processes
to an 8 x 4 grid on a dual CPU cluster

nodea, Score allocates two consecutive processes per node,
as shown in Figure 1. This has the effect of effectively in-
creasing vertical communication time (e.g. processes 0 and
I compete with processes 8 and 9 for a single link between
the same two nodes of the grid), and in some circumstances
decreasing horizontal communication time (e.g. processes
0 and I can communicate via faster shared memory trans-
port). While this complicates program behaviour, Score
forces such an allocation on a dual CPU system. LAM MPI
options were chosen to match this allocation.

The Linpack program solved an iV x IV column-major
dense linear system. using storage blocking with a block size
of 60 [131. Such a computation has a O(iV lg P) communi-
cation startup cost, o(-) communication volume cost,

and a e(%) computation cost [13]. For up to moderate
values of N, such a computation can therefore be regardcd
as fine-grained.

The matrix multiply program performed the computation
C + A* A + C, where A and C are N x N matrices. It has
a Q(g + $) communication volume cost and an O (6)
computation cost. The program divides the inner indcx into
blocks of k = 128, and repeatedly broadcasts vertically
(horizontally) the next I ; x N (iV x k) segment o i A, and
uses these to perform a rank-k update on the local portion of
C. This program thus has a much coarser granularity, with
distinct communication and computation phases.

Both programs randomly generated input matrices, and
discarded their output matrix. Only process 0 produced any
output messages, which included the elapsed time for the
main computational phase.

5.2 Results

Tables 1 and 2 show single job performance and slow-
downs per multiple jobs, with (near-) constant memory per
CPU for each job. All results were run with p processes on
a logical P x Q grid. These were run on f nodes (within a
single Bunyip group) in the fashion indicated in Figure I.

Each timing result was averaged over 10 measurements;
this ensured that there was a standard error of less than 3%
in each sample.

The %Mem values were the maximum memory utiliza-
tion reponed by the Linux top utility. As noted earlier,

there should be no significant page swapping occurring. Thc
Linux t i m e utility was used to report both the percent CPU
utilization and Ihe elapsed times for a single job. For j jobs,
the t i m e utility reported the elapsed time for all j jobs to
complete, from which Equation 5 can be used to calculate
the slowdowns.

5.3 Discussion

Score achieved slowdowns of very close to j for j jobs.
As there is some overhead for central co-ordination, one
would expect these to be slightly greater than j ; that they are
slightly lcss is likely to be duc to the fact that processes will
still yield for normal VO. Even so, Score’s gang scheduling
seems to have very low overhead, and its slowdowns are as
low as can be expected of a gang scheduling system.

For single job execution, Score is somewhat faster for
larger p , due to the fact that the process is busy-waiting,
rather than yielding, when waiting for a message to he re-
ceived (cf. Equations 4 and I). This is particularly the case
for Linpack, where, for the problcm sizes selected, a signif-
icant amount of overhead is due to small messages.

However, for p 2 2 and j 2 2, local scheduling under
LAMlLinux is faster in terms of absolute time, up to 80%
faster for Linpack at j = 8 and p = 32.

For LAMlLinux, the matrix multiply slowdowns were
only modestly less than Score, and similarly were relatively
insensitive to p . However, it is interesting to note that for
p = 2 (where all communication is via the sysv transport),
the slowdowns were less than one would expect considering
that a single job is fully utilizing both CPUs (and thus must
he busy-waiting while waiting for messages). This indicates
that with multiple jobs, there must be some yielding occur-
ring when waiting for messages, permitting some overlap
between jobs.

However, the Linpack program showed reduced slow-
downs as p (and hence the relative communication over-
heads) increased, especially for larger j . This seems to he
only partially explainable by the fact that for j = 1, the CPU
utilization is significantly less than for matrix multiply, Con-
sidering that Linpack is considerably more fine-grained, this
is a rather surprising result.

6 Performance Analysis of Tine-Shared Par-
allel Jobs

In this section, we develop an optimistic performance
model for time-sharing where aprocess waiting on a message
is yielded, and compare LAMlLinux’s performance with that
of the model. Using this, and a more detailed view of the
experiments of Section 5 , wecanevaluate theassumptions of
the model and the performance ofLAMLinux over the ideal.

58

p

Table 1. N x N Matrix multiplication slowdowns, with p processes on p CPUs.

Single job Simultaneous jobs
N %CPU I %Mem I Time(s) I 2 I 4 1 6 I 8

p

59

Single job Simultaneous jobs
N %CPU I %Mem 1 Time(s) I 2 I 4 I 6 I 8

Finally, we will use the model toextrapolate performance to
a fastcr cluster than Bunyip.

6.1 An Optimistic Performance Model

With a parallel job's execution time bcing given by
t I (a:p), where n and are defined as in Section 3.1, the
execution time for j > 1 simultaneous such jobs can be
modelled by:

t j = max(t,,jt,(a,+acpu,PcPu)j (6)

wherea, is thecostofacontext switch, a n d a c p u + @ c p u n
is the amount of process time spent in the CPU in the trans-
mission of a message of length n. Tkese can be determined
by measuring the % CPU time spent in the ping-pong bench-
mark. Such experiments for LAM MPI using the Bunyip's
TCP/IP transport yielded:

acpu = 2 8 p , pcpu = . 1 4 p (7)

Note that for the single job case, the context switch over-
heads when waiting on a message will form part of the mea-
sured value of n; it needs to be explicitly included in Equa-
tion 6, as it will not contribute to the measured value of
a c p u .

The model makes the following assumptions:

I . j is sufficiently largc so that whenever a process waiting
for a message is yielded, there is another process ready
to run. This assumption implies a total CPU utilization
of 100% ovcr the j jobs

2. performance degradation due to cache misses occurring
on swappedjobs can be neglected.

6.2 Single Job Execution Time Models

Execution time of the (dominant) multiply computation
of the matrix multiply program described in Section 5.1 is
given by:

expt, job:
expt, % C P U

In the first term, 7 3 is the cost per (BLAS Level 3) Hoat-
ing point operation ($ corresponds to 403 MFLOPs on the
Bunyip).

The second term corresponds to the vertical and horizon-
tal broadcast1, via a ring-shift all-gather operation [14]. @,,
and @h are the vertical and horizontal communication costs

20.9 1.83 3.59 5.24 6.96
1.86 3.49 5.15 6.87

expt, job:
expt, % C P U
% err, A. 2
expt, LU:
model, LU:
% err, total
% err, A. I

61.8 1.58 2.41 3.24 3.95
1.56 2.27 2.96 3.66
1% 6% 9% 7%

58.6 1.56 2.35 3.09 3.83
56.2 1.00 1.69 2.54 3.38

36% 28% 18% 12%
35% 22% 9% 5%

Table 3. Experimental and model execution
time and slowdowns (and percentage errors
between slowdown measures), for bench-
marks under LAMlLinux on an 8 x 4 grid on
the Bunyip cluster

per word taking into account the asymmetries when a P x Q
logical grid is allocated on the Bunyip (cf. Figure 1). While
in principle it would be possible to form expressions of these
in terms of the @ values for the TCPAP and sysv transports
(Equations I and 2), we use a benchmark program perform-
ing the same all-gather operation on an 8 x 4 grid to directly
yield:

flu = 1.73ps,,& = 1 . 0 3 ~ ~ (9)

However, for j > 1 jobs, the effect of these asymmetries
will be small if Assumption 1 holds, and both these values
can be replaced by that of &U.

In a similar way, the LU factorization computation with
storuge hlucking, the dominant computation in the Linpack
program, is modelled; the details have been published pre-
viously [13]. Noting that here, there should be somewhat
less scope for contention in vettical communications than
for matrix multiply (cf. Equation 9). we estimate the effect
of the asymmetries to be:

@e = @h = 1 . o p S (10)

Comparison of Model to Experimental Re-
sults

6.3

'Far the simplicity of pmentation. we have omitted the communication
s t m p (a) term in Equation 8, as this makes < 1% contribution for the
problem and grid sizes of interest.

Table 3 gives various slowdowns for the p = 32 results
from Tables 1 and 2. From dividing the observed total %

60

CPU utilization for 1 job by that across j jobs, we have a
measure of slowdown which takes into account the actual
degree of overlap of inter-job computation with communi-
cation, hut not effects from cache pollution when process
are switchcd. From this, we can estimate the validity of
Assumption 2 (third row): it causes an error of the model
within 10% forLU,andanalmost negligihleerrorformavix
multiply.

Comparing the experimental multiply and LU times with
that of the models, we see a reasonably close agreement,
indicating they are calibrated fairly accurately on the Bunyip.

Comparing these slowdowns gives the total error of the
model (row 6); subtracting that of row 3 from this gives the
error in the model due to Assumption I (row 7). This gives
an upper hound on what improvement can he expectcddue to
improving local scheduling policies. For LU, Linux’s local
scheduling comes quite close to this f o r j = 8. However, for
matrix multiply, the degree of concurrency achieved is far
lower than what seems possible in principle, and furthermore
seems to level out at j = 4.

Why the matrix multiply program did not achieve the
slowdowns that the Linpack program did is still unclear. Us-
ing smaller values of iV, using smaller values of IC and using
an all-gather algorithm based on pipelined or tree broadcasts
[141 onlyreduced the slowdowns marginally. Ourconjecture
is that multiply matrix multiply jobs will tend to synchro-
nize at their communication stages; hence most times when
a process is waiting on communication, the other processes
will he similarly waiting, and CPU utilization will remain
low.

For j = 8, the contribution due to the context switch
component aC of the model is effectively zero for both matrix
multiply and LU.

The results of Table 3 were also generated for smaller
data sizes (N = 3000 for matrix multiply and fV = 4000
for LU). The j = 1 CPU utilizations were 5% and 15%
respectively; this permitted smaller slowdowns: at j = 8,
these were 6.44 and 3.69 respectively. Apart from this, all
other trends were very similar to those in Table 3.

Apart from the fact that the Bunyip has a slow commu-
nication network, the models predict similar kinds of slow-
downs for other kinds of clusters, for application having a
similar proportion of communication to computation (in-
dicted by single job CPU utilization) on the data and grid
sizes of interest. For example, if we scale down communi-
cation volume coefficients by 10 and all other coefficients by
4 (roughly corresponding to a cluster with 2 GHz CPUs and
I Gh network), the LU component of Linpack at N = 6000
on an 8 x 4 grid would have a 45% CPU utilization for a
single job, with a predicted slowdown of5.4 at j = 8.

7 Conclusions

Our studies have shown that on cluster computers. due to
the fact that communication is treated as a form of VO, local
scheduling can significantly out-perform strict gang schedul-
ing on some applications, in terms of overall throughput of
multiple jobs. This is because the latter is not able to take
advantage of the potential concurrency between simultane-
ous jobs, For this effect to occur, the application need not
he coarse-grained, as in the case of Linpack; however, the
presence of some large messages may he needed to gain a
sufficient degree of concurrency.

For the Bunyipcluster, the effectof(direct) context switch
overheads was negligible; those resulting overhead from
cache pollution are shown to he more significant. Taking
these into account, near-ideal scheduling behaviour, as pre-
dicted by our simple performance model, was achieved by
the Linux kernel for the Linpack benchmark.

Furthermore, the two applications studied showed that,
when considering scheduling policies, both (cache) memory
usage and communication patterns have an important effect
on overall throughput. These factors should not he neglected
in future studies.

This is not to say that gang scheduling is not a valuable
component of cluster management systems such as Score;
it is still useful for efficient job packing (space-sharing). A
useful extension of this in such systems would he to limit the
active (i.e. ready-to-run) jobs based on total memory utiliza-
tion [I]. Ultimately, by extending paired gang scheduling
[181 to gangs of several jobs, high overall throughput could
also be achieved.

However, a cluster management system that merely se-
lected the hest set of nodes for a new job (based on cur-
rent load and memory considerations) and relied on local
scheduling would he almost as uscful in practice, and much
simpler to implement and deploy.

Future work would include more comprehensive evalua-
tions, e.g. more applications, jobs of mixed running times,
memory footprint and communication patterns. For a more
complete understanding of local scheduling behaviour, the
(Linux) kernel need some extensions to improve infrastruc-
ture such as more accurate recording of CPU time for a
process, implemcnting counts of events such as how often
a process is yielded for VO, and logging information on
scheduling-related data. This would also form a framework
for investigating how to optimize local scheduling strategies
and techniques, such as setting optimal timeout values for
wait-on-communication loops, and the immediate waking
up of a process when message arrives.

61

Acknowledgements

The authors would like to thank Bob Edwards for provid-
ing system administration support, and Joseph Antony for
installing Score 5.4.0 on the Bunyip.

References

[I] A. Batat and D. G. Feitelson. Gang scheduling with mem-
ory considerations. In 14rh lnremnrional Parullel and Dis-
rribured Processing Symposium. 2000.

121 The . Bunyip (Beowulf) Project.
http://tux.anu.edu.au/Projects/Bcowulf/.

[3] F. A. B. da Silva and 1. D. Scherson. Improving parallel job
scheduling using runtime measurements. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Par-
d e l Processing, pages 18-38. Springer Verlag, 2000. Lect.
Notes Comput. Sci. vol. 191 I.

[4] D. G. Feitelson. Scheduling parallel jobs on clusten. In
R. Buyya, editor, High Performance Clusrer Computing, Vol
I : ArchirecruresandSysrems, pages SI 9-.533. Prentice-Hall.
1999.

Metrics for parallel job scheduling and
their convergence. In D. G. Feitelson and L. Rudolph. edi-
tors, Jobscheduling SrralegiesforParallel Processing, pages
188-205. Springer Verlag. 2001. Lcct. Notes Comput. Sci.
vol. 2221.

[6] D. G. Feitelson and L. Rudolph. Gang Scheduling Perfor-
mance Benefits for Fine-Grained Synchronization. Joumal
of Parallel and Disrributed Compuring, 16(4):306318, De-
cember 1992.

[7] D. G. Feitelson andL. Rudolph. Evaluation ofdesignchoices
for gang scheduling using distributed hierarchical control.
Joumal of Parallel and Distributed Compuring. 3.5(1):18-
34, 1996.

[E] A. Hon. H. Teruka. Y. Ishikawa. N. Soda, H. Konaka. and
M. Maeda. Implcmentation of gang-scheduling on worksta-
tion cluster. In JSSPP, pages 126139, 1996.

[9] The Hebrew Univeristy - Parallel Systems Lab. the ParPar
project. http://www.cs.huji.ac.il~ah~parallel/.

[I O] PC Cluster Consortium. Score cluster system software.
http://www.pcluster.org/.

[I I] U. Schwiegelshohn and R. Yahyapour. Fairness in parallel
job scheduling. In Joumal of Scheduling, volume 3(5). pages

[5] D. G. Feitelson.

?97-320,2000.
[I21 P. G. Sobalvarro and W. E. Weihl. Demand-basedcoschedul-

ing of parallel jobs on multiprogrammed multiprocessors.
In D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies forParalle1 Processing, pages 106126. Springer-
Verlag. 1995. Lect. Notes Comput. Sci. vol. 949.

[131 P. Strazdins. A Comparison of Lookahead and Algorith-
mic Blocking Techniques for Parallel Matrix Factorization.
4(1):2635,Apr. 2001.

[I41 W. B. Tan and P. Strazdins. The Analysis and Optimization
of Collective Communications on a Beowulf Cluster. In The
2W2 lnremnrional Conference on Parallel and Disrribured
Svsrems, pages 659-666, Taipei, Dec. 2002. IEEE Press.

[IS] The LAM MPI Team. LAMIMPI users guide.
http://www.lam-mpi.or~. Sept. 2003.

[I61 A.Tridgell, P. Mackerras. D. Sitsky. and D. Walsh. APILinux
-A modemOS for the APIOOO+. In Sixth Parallel Compuring
Worhhop. Kawasaki, Nov. 1996. Fujitsu Parallel Computing
Rescarch Center.

[I71 J. Uhlmann. Efficient Job Scheduling on Cluster Comput-
ers. Honours Thesis. Department of Computer Science, Aus-
tralian National University, Nov. 2002.

Paired gang schedul-
ing. IEEE Trunsacrions on Parallel and Dihrribured Sysrems,
14(6):591-592, June 2003.

[I91 B.B.Zhou. R.P. Brent. D.Walsh,andK.Suzaki. Jobschedul-
ing strategies for networks of workstations. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Srraregies for Paral-
lel Processing. pages 143-157. Springer Verlag. 1998. Lect.
Notes Comput. Sci. vol. 1459.

[I81 Y. Wiseman and D. G. Feitelson.

62

http://tux.anu.edu.au/Projects/Bcowulf
http://www.pcluster.org

