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Abstract 

Gang Scheduling and related techniques are widely be- 
lieved to be necessary for  efficient job scheduling on dis- 
tributed memory parallel computers. This is hecause they 
minimize context switching overheads and permit the paral- 
lel job currently running to progress at the fastest possible 
rate. 

Howevec in the case of cluster computers, and panicu- 
larly those with COTS networks, these benefits can be out- 
weighed in the multiplejob time-sharing context by the loss 
the ability to utilize the CPUfor otherjobs when the current 
;oh is waiting for messages. 

Experiments on a L i n u  Beowulfcluster with IOOMb fast 
Ethernet switches are mnde comparing the Score buddy- 
based gang scheduling with local scheduling (pmvided by 
the L i n u  2.4 kernel with MPI implemented over TCP/IP). 
Results for communication-intensive numerical applications 
on 16 nodes reveal that gang scheduling results in 'slow- 
downs'up to a factor of two greaterfor 8 simultaneous jobs. 
This phenomenon is not due to any deficiencies in Score but 
due to the relarive costs of context switching versus message 
overhead, and we expect similar results will hold for any 
gang scheduling implementation. 

A performance analysis of local scheduling indicates that 
cache pollution due to context switching is more signijicant 
than the direct context switching overhead on the applica- 
tions studied. When this is taken into account, local schedul- 
ing behaviour comes close to achieving ideal slowdowns for 
finer-grained computations such as Linpack. The perfor- 
mance models also indicate that similar trends are to be 
expected for clusters with faster networks. 

Keywords: parallel computing, job scheduling, gang 
scheduling, cluster computing 

1 Introduction 

Gang scheduling [6], or one of its many variants [ I  I ,  
16, 191, is widely believed to be necessary for optimal dis- 
tributed memory multiprocessor resource utilization with 
time-shared jobs with medium- to fine-grained communi- 
cation patterns. 

These techniques require that, on each node, the processes 
related to a particular parallel task (gangs) are scheduled 
to run simultaneously. Gangs are packed together and are 
preempted and rescheduled as a unit. As well as reducing 
context switching overheads. this ensures messages associ- 
ated with a parallel job are received as soon as possible arter 
delively, and hence permits that parallel job to progress op- 
timally. 

Gang Scheduling (also known as explicit co-scheduling) 
normally requires considerable infrastructure to be added to 
cluster. Existing systems include Score [IO] and ParPar [9]. 

An alternative is implicit co-scheduling, where the pro- 
cesses in the gang are not explicitly coscheduled but should 
coschedule themselves through their behaviour and local 
scheduling policies, e.g. if a message arrives for a non- 
current job, a CPU might preempt the current job and sched- 
ule the new one [12,3]. These are potentially less complex 
to implement. In the context of more coarse-grained jobs 
(with infrequent communication phases) on clusters, it has 
been suggested that cc-scheduling can occur without any 
measures being taken, simply due to the fact that processes 
get higher priority when communicating [4]. 

However, the simplest technique of all to implement is 
(uncoordinated) local scheduling, where no measures are 
taken to coschedule processes in the gang. In this case, 
gangs may not be coscheduled at all. This would be the 
default scheduling policy on a raw Linux cluster. 

Issues with the choice of these techniques includes their 
complexity to implement (and, in practice, to deploy) on 
an actual cluster, and their potential for performance (e.g. 
in overall job throughput and fairness). This paper makes 
a comparison between the two extremes (gang and local 
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scheduling) on a COTS Beowulf cluster [2]. 
The main original contributions of this paper are as fol- 

lows. It gives a direct comparison of gang and local schedul- 
ing on a Beowulf-style cluster computer. It also uses real ap- 
plications to make this comparison, and demonstrates why 
the usc of these is important in evaluating scheduling poli- 
cies. Conclusions that can be drawn from the results of 
the paper do not seem to be reHected in the current liter- 
ature. Finally, it also provides a performance analysis for 
local scheduling, and proposes and evaluates an optimistic 
performance model for it. 

This paper is organized as follows. Related work is de- 
scribed in Section 2. Section 3 describes the Bunyip Beowulf 
cluster used in our experiments, and Section 4 describes the 
Score cluster management system. Our experimental setup 
and a comparison of gang and local scheduling is given using 
(non-synthetic) parallel applications in Section 5 .  The per- 
formance of local scheduling is further analyscd in Section 
6. Conclusions are given in Section 7. 

2 Related work 

The studies establishing the belief that gang (or similar) 
scheduling policies are needed for efficient time-sharing in 
multiprocessors by making direct comparisons seem to be 
very few. The only one known to us that makes a direct eval- 
uation of gang scheduling (compared with local scheduling) 
is [6]; this uses a synthetic program (which repeatedly exe- 
cutes a computation loop followed by a barrier) on an early 
NUMA shared memory architecture. But shared memory 
parallel processors and older-style Massively Parallel Pro- 
cessors (MPPs) have relatively lower communication over- 
heads than for modem clusters. Furthermore, the assump- 
tion underlying gang scheduling: that any messages received 
are destined for the currently executing process, simplifies 
(and possibly speeds up) the implementation of communi- 
cation [161. 

In the only survey of job scheduling on clusters known 
to the authors, it is claimed that “Scheduhg  on [clusters] 
is essentially rhe same as on commercial M P P  systems” [4]. 
Clusters however are significantly different from traditional 
MPPs: they have a slower network, and normally have a 
standard OS residing on each node. Furthermore, cluster 
communication can be thought of as network VO; typically 
applications will block when waiting on messages. 

A recent paper [I81 introduced paired gang scheduling, 
in which the processes of two jobs are regarded as being in 
the same gang, and the local scheduler on each CPU chooses 
(the process corresponding to) the job to be run at any given 
time. While primarily motivated to improve CPU utilization 
when some of the processes are blocked for YO, paired Bang 
scheduling significantly out-performed gang scheduling for 
a dynamic workload on the ParPar cluster, even when the 

only 110 was that due to messaging. Here, a synthetic pro- 
gram (with a negligible memory footprint) similar to that 
in [6] was used to create the workload. The length of the 
compute loop was adjuhtcd so that the CPU utilization for a 
single such job was 45% [IS]. While the authors concluded 
that “paired gang scheduling seems to be a good compro- 
mise behveen the rxtreme alternatives of gang scheduling 
and uncourdinated local scheduling” [IS], no comparisons 
to local scheduling were madc. 

3 The Bunyip Beowulf Cluster 

The Beowulf cluster Bunyip [2] used in our experiments 
is a 96 node dual processor Pentium 111’s running at 550 
MHz. Bunyip runs a Linux 2.4.18 kemel. Each CPU in a 
node has a non-shared 256 KB direct-mapped second-level 
cache. 

Bunyip consists of 4 groups made up of 24 nodes each. 
The nodes each has three 100 Megabit NICs, each being con- 
nected to an intergroup switch Packard ProCurve 4000M); 
thus every node is directly connected to every other through 
one of these switches. 

Normally, two processes of a parallel job are spawned 
on each node; ideally, each will be scheduled to one of the 
node’s two CPUs at the same time. 

3.1 Multiple Jobs under Linux and LAM MPI 

LAM MPI 6.3.2 [ 151 is the version of MPI normally used 
by parallel programs on the Bunyip. Point-to-point message 
send and receive uses a TCPAP transport, unless the MPI 
processes are on the same node (in which case, i t  is per- 
formed by a sysv interprccess communication transport, 
which uses shared memory). 

Under theTCP/IPtransport, a ‘small’(in thiscase 5 n, = 
64KB) message is effectively non-blocking to the sender, 
and as soon as the message is buffered (ready to send), exe- 
cution of the calling application process resumes [ 151. If the 
message is larger than n,, it is broken down into packets of 
size n,, with an acknowledgement for the receiver required 
before each subsequent packet is sent. 

A message receive results in a recvf rom ( ) system call 
for eachrequiredpacket. Ifan appropriate packethas already 
arrived at the time of the call, the payload is copied into the 
user space receive buffer, and execution of the calling (ap- 
plication) process resumes. Otherwise, the calling process 
yields, and other processes may be scheduled by the kernel 
for execution. When an appropriate packet arrives, it gen- 
erates an interrupt and the calling process will be scheduled 
as runnable by the kernel. 

In the case of the sysv transport, if an appropriate packet 
has not yet arrived at the time of the call, it will poll for the 
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packet; if it does not arrive in a certain interval, the calling 
process similarly yields. 

Thus, if multiple MPI jobs are running over a subset of 
the nodes, when a process for one job is blocked waiting 
for a message, the node’s CPU can be utilized by running 
the process for another job. In other words, it is possible in 
principle to overlap the communication of one parallel job 
with the computation of another. 

3.2 Message Performance under LAM MF’I 

Using aping-pong benchmark running under LAM MPI’s 
mpirun -c2c -0, the timetosendandreceiveamessage 
ofn doublesgiven by t(n) = a+On whereundertheTCP/IP 
transport: 

a = 8 0 ~ s :  = . 8 5 p  (1) 

and under the sysv transport: 

OL = 42ps,p = . lops  (2) 

To determine the Linux context switch overhead, cy,., 

we used a benchmark program which executed a (short) 
compute-loop followed by a process yield system call, re- 
peated y times. Using cyc = y, where t j  is defined in 
Section 5 .  I ,  yielded a value much smaller than a: 

ac = 2.5ps (3) 

4 The Score Cluster Management System 

The Score system is developed by the PC Cluster Consor- 
tium [IO]. It is freely available (including source code) and 
is in wide use in cluster installations world-wide. It consists 
of middleware that runs on top of full Linux kernels. The 
job scheduling algorithm is based on Distributed Hierarchi- 
cal Control [7], hut lacks the actual distributed hierarchical 
control aspect. This leaves a buddy-based gang scheduler 
with centralised control [8]. 

The scheduling in Score is done through the use of pri- 
ority queues. Each queue can have memory, disk and time 
limits and can be scheduled in either a time-shared (gang 
scheduling with a buddy node allocation) or exclusive fash- 
ion. The nodes are time-shared in a coordinated fashion 
between the jobs with a global synchronisation and Hush- 
ing of the network between time slices. In the case of dual 
nodes, two (consecutive) processes are allocated per node. 

Similar to LAM MPI, parallel jobs are run through the 
Score’s version of mpirun command which connects to a 
Score  daemon process. 

Score 5.4.0 [ I O ]  was installed on Bunyip; it in- 
cludes an implementation of MPI based on MPICH 1.4.0. 
Score includes a lightweight TCP/IP replacement called 
PMEthernet; this reduces internode communication latency, 

primarily due to the fact that the application busy-waits upon 
message receipt rather than yields (cf. Equation I ) ,  with the 
communication cost per double word also reduced slightly: 

cy = 7 0 p ,  p = .82ps (4) 

Like LAM MPI, Score is able to communicate between 
processes on the same SMP node using shared memory. 

5 Evaluation of Gang and Local Scheduling 
on the Bunyip 

This section gives an evaluation of the two scheduling 
policies on the Bunyip cluster for two numerical benchmark 
programs, a matrix multiply program and Linpack bench- 
mark. Preliminary versions of these results were reported in 

These programs use the DBLAS parallel BLAS library 
[I31 for all communications. The DBLAS library imple- 
ments all communication patterns in terms of @PI) send and 
receive calls; thus, the difference in single-job performance 
is entirely expressed in the differences between Equations 1 
and 4. 

5.1 Experimental Setup 

[171. 

In these experiments, j identical paralleljobs are spawned 
over the same subset of nodes. They are spawned in the 
background, i.e. as simultaneously as possible, via a con- 
trol program. CPU monitoring indicated that both policies 
time-shared the jobs fairly evenly, i.e. they gave fair individ- 
ual service to each job. Further experiments demonstrating 
fairness are reported in [ 171. 

Thus, packing issues are avoided in these experiments, 
with an identical number of processes allocated to each node 
in the subset. 

For these experiments, dedicated use of the cluster wa. 
obtained. 

Under these conditions, scheduling performance can be 
captured by taking t j ,  the elapsed execution time for all j 
jobs, and the job slowdown metric [5] reduces to: 

The memory footprint of each job was set to be x 6% of 
a Bunyip’s node’s available user memory; thus up to j = 8 
jobs could run simultaneously on each CPU without danger 
of performance degradation due to swapping. 

Score was installed on 16 nodes of Bunyip (it requires 
modifications to the Linux kernel). With p parallel pro- 
cesses, the programs use a logical P x Q processes grid, 
where p = PQ and, forp being a power of 2, either P = 2& 
or P = Q. With a row-major allocation of processes to 
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Figure 1. Score allocation o f p  = 32 processes 
to an 8 x 4 grid on a dual CPU cluster 

nodea, Score allocates two consecutive processes per node, 
as shown in Figure 1. This has the effect of effectively in- 
creasing vertical communication time (e.g. processes 0 and 
I compete with processes 8 and 9 for a single link between 
the same two nodes of the grid), and in some circumstances 
decreasing horizontal communication time (e.g. processes 
0 and I can communicate via faster shared memory trans- 
port). While this complicates program behaviour, Score 
forces such an allocation on a dual CPU system. LAM MPI 
options were chosen to match this allocation. 

The Linpack program solved an iV x IV column-major 
dense linear system. using storage blocking with a block size 
of 60 [ 131. Such a computation has a O(iV lg P )  communi- 
cation startup cost, o(-) communication volume cost, 

and a e(%) computation cost [13]. For up to moderate 
values of N, such a computation can therefore be regardcd 
as fine-grained. 

The matrix multiply program performed the computation 
C + A* A + C, where A and C are N x N matrices. It has 
a Q(g + $) communication volume cost and an O ( 6 )  
computation cost. The program divides the inner indcx into 
blocks of k = 128, and repeatedly broadcasts vertically 
(horizontally) the next I ;  x N (iV x k )  segment o i  A, and 
uses these to perform a rank-k update on the local portion of 
C.  This program thus has a much coarser granularity, with 
distinct communication and computation phases. 

Both programs randomly generated input matrices, and 
discarded their output matrix. Only process 0 produced any 
output messages, which included the elapsed time for the 
main computational phase. 

5.2 Results 

Tables 1 and 2 show single job performance and slow- 
downs per multiple jobs, with (near-) constant memory per 
CPU for each job. All results were run with p processes on 
a logical P x Q grid. These were run on f nodes (within a 
single Bunyip group) in the fashion indicated in Figure I. 

Each timing result was averaged over 10 measurements; 
this ensured that there was a standard error of less than 3% 
in each sample. 

The %Mem values were the maximum memory utiliza- 
tion reponed by the Linux top  utility. As noted earlier, 

there should be no significant page swapping occurring. Thc 
Linux t i m e  utility was used to report both the percent CPU 
utilization and Ihe elapsed times for a single job. For j jobs, 
the t i m e  utility reported the elapsed time for all j jobs to 
complete, from which Equation 5 can be used to calculate 
the slowdowns. 

5.3 Discussion 

Score achieved slowdowns of very close to j for j jobs. 
As there is some overhead for central co-ordination, one 
would expect these to be slightly greater than j ;  that they are 
slightly lcss is likely to be duc to the fact that processes will 
still yield for normal VO. Even so, Score’s gang scheduling 
seems to have very low overhead, and its slowdowns are as 
low as can be expected of a gang scheduling system. 

For single job execution, Score is  somewhat faster for 
larger p ,  due to the fact that the process is busy-waiting, 
rather than yielding, when waiting for a message to he re- 
ceived (cf. Equations 4 and I). This is particularly the case 
for Linpack, where, for the problcm sizes selected, a signif- 
icant amount of overhead is due to small messages. 

However, for p 2 2 and j 2 2, local scheduling under 
LAMlLinux is faster in terms of absolute time, up to 80% 
faster for Linpack at j = 8 and p = 32. 

For LAMlLinux, the matrix multiply slowdowns were 
only modestly less than Score, and similarly were relatively 
insensitive to p .  However, it is interesting to note that for 
p = 2 (where all communication is via the sysv transport), 
the slowdowns were less than one would expect considering 
that a single job is fully utilizing both CPUs (and thus must 
he busy-waiting while waiting for messages). This indicates 
that with multiple jobs, there must be some yielding occur- 
ring when waiting for messages, permitting some overlap 
between jobs. 

However, the Linpack program showed reduced slow- 
downs as p (and hence the relative communication over- 
heads) increased, especially for larger j .  This seems to he 
only partially explainable by the fact that for j = 1, the CPU 
utilization is significantly less than for matrix multiply, Con- 
sidering that Linpack is considerably more fine-grained, this 
is a rather surprising result. 

6 Performance Analysis of Tine-Shared Par- 
allel Jobs 

In this section, we develop an optimistic performance 
model for time-sharing where aprocess waiting on a message 
is yielded, and compare LAMlLinux’s performance with that 
of the model. Using this, and a more detailed view of the 
experiments of Section 5 ,  wecanevaluate theassumptions of 
the model and the performance ofLAMLinux over the ideal. 
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p 

Table 1. N x N Matrix multiplication slowdowns, with p processes on p CPUs. 

Single job Simultaneous jobs 
N %CPU I %Mem I Time(s) I 2 I 4 1 6 I 8 

p 
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Single job Simultaneous jobs 
N %CPU I %Mem 1 Time(s) I 2 I 4 I 6 I 8 



Finally, we will use the model toextrapolate performance to 
a fastcr cluster than Bunyip. 

6.1 An Optimistic Performance Model 

With a parallel job's execution time bcing given by 
t I (a:p),  where n and are defined as in Section 3.1, the 
execution time for j > 1 simultaneous such jobs can be 
modelled by: 

t j  = max(t,,jt,(a,+acpu,PcPu)j (6) 

wherea, is thecostofacontext switch, a n d a c p u + @ c p u n  
is the amount of process time spent in the CPU in the trans- 
mission of a message of length n. Tkese can be determined 
by measuring the % CPU time spent in the ping-pong bench- 
mark. Such experiments for LAM MPI using the Bunyip's 
TCP/IP transport yielded: 

acpu = 2 8 p ,  pcpu = . 1 4 p  (7) 

Note that for the single job  case, the context switch over- 
heads when waiting on a message will form part of the mea- 
sured value of n; it needs to be explicitly included in Equa- 
tion 6, as it will not contribute to the measured value of 
a c p u .  

The model makes the following assumptions: 

I .  j is sufficiently largc so that whenever a process waiting 
for a message is yielded, there is another process ready 
to run. This assumption implies a total CPU utilization 
of 100% ovcr the j jobs 

2. performance degradation due to cache misses occurring 
on swappedjobs can be neglected. 

6.2 Single Job Execution Time Models 

Execution time of the (dominant) multiply computation 
of the matrix multiply program described in Section 5.1 is 
given by: 

expt, job: 
expt, % C P U  

In the first term, 7 3  is the cost per (BLAS Level 3) Hoat- 
ing point operation ($ corresponds to 403 MFLOPs on the 
Bunyip). 

The second term corresponds to the vertical and horizon- 
tal broadcast1, via a ring-shift all-gather operation [14]. @,, 
and @h are the vertical and horizontal communication costs 

20.9 1.83 3.59 5.24 6.96 
1.86 3.49 5.15 6.87 

expt, job: 
expt, % C P U  
% err, A. 2 
expt, LU: 
model, LU: 
% err, total 
% err, A. I 

61.8 1.58 2.41 3.24 3.95 
1.56 2.27 2.96 3.66 
1% 6% 9% 7% 

58.6 1.56 2.35 3.09 3.83 
56.2 1.00 1.69 2.54 3.38 

36% 28% 18% 12% 
35% 22% 9% 5% 

Table 3. Experimental and model execution 
time and slowdowns (and percentage errors 
between slowdown measures), for bench- 
marks under LAMlLinux on an 8 x 4 grid on 
the Bunyip cluster 

per word taking into account the asymmetries when a P x Q 
logical grid is allocated on the Bunyip (cf. Figure 1). While 
in principle it would be possible to form expressions of these 
in terms of the @ values for the TCPAP and sysv transports 
(Equations I and 2), we use a benchmark program perform- 
ing the same all-gather operation on an 8 x 4 grid to directly 
yield: 

flu = 1.73ps,,& = 1 . 0 3 ~ ~  (9) 

However, for j > 1 jobs, the effect of these asymmetries 
will be small if Assumption 1 holds, and both these values 
can be replaced by that of &U. 

In a similar way, the LU factorization computation with 
storuge hlucking, the dominant computation in the Linpack 
program, is modelled; the details have been published pre- 
viously [13]. Noting that here, there should be somewhat 
less scope for contention in vettical communications than 
for matrix multiply (cf. Equation 9). we estimate the effect 
of the asymmetries to be: 

@e = @h = 1 . o p S  (10) 

Comparison of Model to Experimental Re- 
sults 

6.3 

'Far the simplicity of pmentation. we have omitted the communication 
s t m p  (a) term in Equation 8, as this makes < 1% contribution for the 
problem and grid sizes of interest. 

Table 3 gives various slowdowns for the p = 32 results 
from Tables 1 and 2. From dividing the observed total % 
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CPU utilization for 1 job by that across j jobs, we have a 
measure of slowdown which takes into account the actual 
degree of overlap of inter-job computation with communi- 
cation, hut not effects from cache pollution when process 
are switchcd. From this, we can estimate the validity of 
Assumption 2 (third row): it causes an error of the model 
within 10% forLU,andanalmost negligihleerrorformavix 
multiply. 

Comparing the experimental multiply and LU times with 
that of the models, we see a reasonably close agreement, 
indicating they are calibrated fairly accurately on the Bunyip. 

Comparing these slowdowns gives the total error of the 
model (row 6); subtracting that of row 3 from this gives the 
error in the model due to Assumption I (row 7). This gives 
an upper hound on what improvement can he expectcddue to 
improving local scheduling policies. For LU, Linux’s local 
scheduling comes quite close to this f o r j  = 8. However, for 
matrix multiply, the degree of concurrency achieved is far 
lower than what seems possible in principle, and furthermore 
seems to level out at j = 4. 

Why the matrix multiply program did not achieve the 
slowdowns that the Linpack program did is still unclear. Us- 
ing smaller values of iV, using smaller values of IC and using 
an all-gather algorithm based on pipelined or tree broadcasts 
[ 141 onlyreduced the slowdowns marginally. Ourconjecture 
is that multiply matrix multiply jobs will tend to synchro- 
nize at their communication stages; hence most times when 
a process is waiting on communication, the other processes 
will he similarly waiting, and CPU utilization will remain 
low. 

For j = 8, the contribution due to the context switch 
component aC of the model is effectively zero for both matrix 
multiply and LU. 

The results of Table 3 were also generated for smaller 
data sizes ( N  = 3000 for matrix multiply and fV = 4000 
for LU). The j = 1 CPU utilizations were 5% and 15% 
respectively; this permitted smaller slowdowns: at j = 8, 
these were 6.44 and 3.69 respectively. Apart from this, all 
other trends were very similar to those in Table 3. 

Apart from the fact that the Bunyip has a slow commu- 
nication network, the models predict similar kinds of slow- 
downs for other kinds of clusters, for application having a 
similar proportion of communication to computation (in- 
dicted by single job CPU utilization) on the data and grid 
sizes of interest. For example, if we scale down communi- 
cation volume coefficients by 10 and all other coefficients by 
4 (roughly corresponding to a cluster with 2 GHz CPUs and 
I Gh network), the LU component of Linpack at N = 6000 
on an 8 x 4 grid would have a 45% CPU utilization for a 
single job, with a predicted slowdown of5.4 at j = 8. 

7 Conclusions 

Our studies have shown that on cluster computers. due to 
the fact that communication is treated as a form of VO, local 
scheduling can significantly out-perform strict gang schedul- 
ing on some applications, in terms of overall throughput of 
multiple jobs. This is because the latter is not able to take 
advantage of the potential concurrency between simultane- 
ous jobs, For this effect to occur, the application need not 
he coarse-grained, as in the case of Linpack; however, the 
presence of some large messages may he needed to gain a 
sufficient degree of concurrency. 

For the Bunyipcluster, the effectof(direct) context switch 
overheads was negligible; those resulting overhead from 
cache pollution are shown to he more significant. Taking 
these into account, near-ideal scheduling behaviour, as pre- 
dicted by our simple performance model, was achieved by 
the Linux kernel for the Linpack benchmark. 

Furthermore, the two applications studied showed that, 
when considering scheduling policies, both (cache) memory 
usage and communication patterns have an important effect 
on overall throughput. These factors should not he neglected 
in future studies. 

This is not to say that gang scheduling is not a valuable 
component of cluster management systems such as Score; 
it is still useful for efficient job packing (space-sharing). A 
useful extension of this in such systems would he to limit the 
active (i.e. ready-to-run) jobs based on total memory utiliza- 
tion [I]. Ultimately, by extending paired gang scheduling 
[ 181 to gangs of several jobs, high overall throughput could 
also be achieved. 

However, a cluster management system that merely se- 
lected the hest set of nodes for a new job (based on cur- 
rent load and memory considerations) and relied on local 
scheduling would he almost as uscful in practice, and much 
simpler to implement and deploy. 

Future work would include more comprehensive evalua- 
tions, e.g. more applications, jobs of mixed running times, 
memory footprint and communication patterns. For a more 
complete understanding of local scheduling behaviour, the 
(Linux) kernel need some extensions to improve infrastruc- 
ture such as more accurate recording of CPU time for a 
process, implemcnting counts of events such as how often 
a process is yielded for VO, and logging information on 
scheduling-related data. This would also form a framework 
for investigating how to optimize local scheduling strategies 
and techniques, such as setting optimal timeout values for 
wait-on-communication loops, and the immediate waking 
up of a process when message arrives. 
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