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Abstract 
 

Improving memory performance at software level is 
more effective in reducing the rapidly expanding gap 
between processor and memory performance. Loop 
transformations (e.g. loop unrolling, loop tiling) and 
array restructuring optimizations improve the memory 
performance by increasing the locality of memory 
accesses. To find the best optimization parameters at 
runtime, we need a fast and simple analytical model to 
predict the memory access cost. Most of the existing 
models are complex and impractical to be integrated in 
the runtime tuning systems. In this paper, we propose a 
simple, fast and reasonably accurate model that is 
capable of predicting the memory access cost based on 
a wide range of data access patterns that appear in 
many scientific applications.  
 
 
1. Introduction 
 

Immense research effort has been spent on reducing 
the performance gap between processor and memory. 
Processor speed continues to increase every year. CPU 
clock frequency is doubling every 18 months 
complying with Moore’s Law. On the other hand main 
memory (DRAM) speeds haven’t increased enough to 
catch up with the processor speed. This performance 
gap has been increasing for the last 20 years [13] and 
the trend appears to continue in the near future. 

Cache memories work on the principle of spatial 
and temporal locality [17].  However, there are many 
applications that lack locality in accessing the memory. 
These applications spend a major fraction of execution 
time waiting for data accesses. Cache memories are 
exploited better if the cached blocks of data are reused 
extensively before other cache blocks replace them.  

Transforming and reordering the memory accesses 
improve application performance [10, 7]. As loops are 
the basic blocks, where most of time is spent in 
applications, various loop optimization techniques 
have been developed to enhance the memory hierarchy 

utilization. Loop transformations (loop unrolling, loop 
fusion, loop interchange, loop reversal and loop tiling) 
are some of the most effective loop optimizations.  

Some advanced compilers utilize these optimization 
techniques. But, compilers alone are not sufficient to 
achieve the best possible optimization [1]. Superior 
manual optimizations require extensive knowledge of 
the hardware architecture and data access patterns. The 
developer needs to be aware of efficient optimization 
techniques to be applied in the right place. Automating 
the optimization process is needed to obtain consistent 
performance. 

Performance prediction of memory access cost is 
required to automate the optimizations. Currently there 
are a few automatic tuning software tools. One of the 
most popular tools of optimization is Automatically 
Tuned Linear Algebra Software (ATLAS) [19]. This 
tool runs subroutines multiple times to obtain the best 
optimization parameters by a trial and error method. A 
prediction model can remove these multiple runs and 
be extended to optimize more than just linear algebra 
subroutines. This model should be simple and fast to 
perform the optimization dynamically, at runtime, 
based on the data access pattern and available memory 
hierarchy.  

Many researchers worked towards developing 
accurate cache performance models. But most of these 
models [2, 18, 6] lack generality. They are complex, 
and are bounded to a few algorithms or data access 
patterns. Jacob [6] extracts address traces from the 
code, which requires execution of the program, and 
consumes a lot of time if an optimization has to be 
applied. We base our prediction model on various 
access patterns, which are parameterized. This helps in 
predicting the memory cost with very small complexity 
and skips the costly process of tracing the references 
every time a loop parameter is changed. Chatterjee et 
al. [3] studies the exact analysis of cache misses based 
on the polyhedral model, which is complex. The Cache 
Miss Equations model (CME) [5] is the least costly 
performance model to our knowledge. However, this 
model also requires tracing the references to create the 
reuse vectors and solve cache miss equations. These 



models are accurate but expensive, and are better 
choices for static analysis of cache behavior. Our 
model fits better in choosing the optimization 
parameters dynamically at runtime than CMEs.  

Our model also focuses on wide range of data 
access patterns with multiple array variables. Most of 
the other cache analysis models hold good results for a 
specific algorithm [2, 18] and fall short in acquiring 
generality.   

The rest of this paper is organized as follows. 
Section 2 classifies various data access patterns that are 
used in most of the scientific applications. Section 3 
discusses the parameters of memory hierarchy. In 
Section 4, we propose the memory access cost analysis 
and prediction equations. Section 5 provides 
experimental verification, and section 6 discusses an 
application of our model and current projects. Section 
7 concludes with further objectives.  
 
2. Data Access Patterns 
 

Loops and arrays are fundamental structures of 
most numerical and scientific applications [14]. A 
major share of the execution time of these applications 
is spent in loops, accessing data from arrays. 
Analyzing these access patterns is needed to find out 
the hotspots and to optimize the performance by 
reorganizing these memory references. 

Data access patterns are classified based on the 
stride between successive accesses. Modal model of 
memory [11] categorize data accesses as constant, 
strided and non-monotonic modes. Yan et al. [15] 
classify memory access patterns into three types: 
migratory, group and unpredictable patterns.  

We classify data access patterns in scientific 
applications as constant, contiguous and non-
contiguous. Non-contiguous patterns are further 
divided into four patterns based on the size of data 
blocks accessed with each reference and their 
successive strides. Stride is the distance between the 
previous reference and current reference. 

Constant accesses are those where the same data 
block is accessed repeatedly i.e., stride is equal to zero. 
Contiguous access pattern is where the stride between 
successive accesses is equal to the size of datatype. 
These are divided further as fixed length block 
accesses and variable length block accesses. Fixed 
length block accesses refer to the same datatype in 
consecutive references. 

Non-contiguous access pattern is where the stride of 
next reference is greater than the size of currently 
accessed datatype. These can be further divided as 
follows: 

a) Fixed length block, with fixed stride: Stride 
is similar through out the access pattern. 
As shown Figure. 1.a., a block with a size 
of constant block_size is copied into dest 
from src. The next block is copied from 
src+stride to dest+block_size, i.e. array src 
is being accessed non-contiguously with a 
fixed stride and array dest is being 
accessed contiguously. 

b) Fixed length block, with varying stride: 
The stride varies between each access. 
(Figure. 1.b.) 

c) Variable size block, with fixed stride: 
Accessing different or varying size 
datatypes, where the strides of accesses are 
similar. (Figure. 1.c.) 

d) Variable size block, with variable stride: 
Accessing different or varying size 
datatypes, where the strides of accesses are 
varying. (Figure. 1.d.) 

In Section 4, we predict the memory access cost for 
these data access patterns. 
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for (i=0; i < n; i += stride) 
{ 
 memcpy(dest, src+i, block_size); 
 dest += block_size; 
} 

Figure. 1.aFigure. 1.aFigure. 1.aFigure. 1.a    
 
for (i=0, j=0; i < n; i += stride[j]) 
{ 
 memcpy(dest, src+i, block_size) ; 
 j++ ; 
 dest += block_size; 
} 

Figure. 1.bFigure. 1.bFigure. 1.bFigure. 1.b    

for (i=0, j=0; i < n; i += stride) 
{ 

memcpy(dest, src+i, block_size[j]) ; 
 dest += block_size[j]; 

j++ ; 
} 

Figure. 1.cFigure. 1.cFigure. 1.cFigure. 1.c    
 
for (i=0, j=0; i < n; i += stride[j]) 
{ 

memcpy(dest, src+i, block_size[j]) ; 
 dest += block_size; 

j++ ; 
} 

Figure. 1.dFigure. 1.dFigure. 1.dFigure. 1.d    



 
3. Model parameters 
 

To bridge the gap between processor and memory 
performance, modern computer architectures include 
multiple levels of memory hierarchies that consist of 
cache memory and TLB. In this section, we discuss the 
details of memory hierarchy parameters, which are 
used in developing the prediction model. 

A Cache memory is characterized by its size, line 
size and associativity. Cache size ( C ) represents its 
capacity in bytes. Caches are organized in cache lines. 
When a cache miss occurs, a block of data of size 
equal to cache line size ( L ) is fetched from the next 
level of cache or memory. This property conforms to 
the spatial locality. Associativity ( A ) of a cache helps 
in deciding how many places are there to place a cache 
line.  

We treat the TLB as a level of memory hierarchy. 
Its parameters are page size P  (similar to cache line 
size of a cache) and the capacity. The capacity of a 
TLB is the amount of memory page mapping it can 
store and is equal to number of page entries multiplied 
by page size.  

Table 1 summarizes the memory hierarchy 
parameters. Subscript i of a parameter signifies the 
level of that cache/TLB in the hierarchy of memory. 
Cache memory at level i has three properties: its size in 
bytes (Ci), cache line size (Li) and its associativity (Ai). 
TLB is represented with the number of page table 
entries (Ts), page size (Ps) and it associativity (AT). 

M refers the total number of cache levels.  
Cache misses are classified into three types [9]. 

They are compulsory misses, capacity misses and 
conflict misses. Cache misses at level i are represented 
with Mi. 

c
ikM ),( refers to the number of cache misses at 

level k of memory hierarchy, in accessing ith array 
(variable) contiguously. If it is being accessed non-
contiguously, it is represented by n

ikM ),( .  
Data access pattern parameters are shown in Table 

2. The subscript i represents the ith array being 
accessed. The parameters c

ikR ),(  and n
ikR ),(  represent 

the number of contiguous and non-contiguous 
references separately. iS is the fixed stride in accessing 

the ith array and ),( jiS is the variable stride. D  is the 

working set size and iW represents the block (word) 
size of the ith array. 

 
4. Memory access cost prediction 
 

Our goal is to predict the memory access cost of a 
basic block of loop with any type of data access 
patterns discussed in section 2, and for multiple data 
array variables. We assume LRU replacement policy 
for cache and TLB. We assume that the memory 
hierarchy is following inclusive property. The total 
cost of accessing memory includes the access time and 
the miss penalties of these levels in the hierarchy. If 
there are k levels of cache memory and one level TLB 
[13], 

Table 1. Memory hierarchy parametersTable 1. Memory hierarchy parametersTable 1. Memory hierarchy parametersTable 1. Memory hierarchy parameters  

kC  Cache size at k th level cache of memory 
hierarchy 

kL  Cache line size at k th level cache of 
memory hierarchy 

kA  Associativity of k th level cache of memory 
hierarchy 

kM  Number of cache misses at k th level 
cache of memory hierarchy 

c
ikM ),(  Number of cache misses at k th level 

cache of memory hierarchy in accessing 
i th array, contiguously. 

n
ikM ),(  Number of cache misses at k th level 

cache of memory hierarchy in accessing 
i th variable, non-contiguously. 

sT  Number of page table entries (PTE) in TLB 

sP  Page size of each PTE 

TA  TLB associativity 

M  Number of cache levels in memory 
hierarchy 

Table 2. Data access parametersTable 2. Data access parametersTable 2. Data access parametersTable 2. Data access parameters  
c

ikR ),(  
Number of contiguous references of ith 
array at cache level k of the memory 
hierarchy. 

n
ikR ),(  

Number of non-contiguous references of ith 
array at cache level k of the memory 
hierarchy. 

iW  Fixed size of the data block being 
accessed in i th array. 

iS  Fixed stride of accessing i th array non-
contiguously. 

c
iW  

Variable size of the data block being 
contiguously accessed in i th array. 

n
jiW ),(  Variable size of j th data block being non-

contiguously accessed in i th array. 

),( jiS  Variable stride of the j th data block being 

contiguously accessed in i th array. (stridej 
in stride signature) 

D  Size of working set 



Total Memory cost = (Number of TLB hits * Time to 
access TLB) + (Number of TLB misses * TLB miss 
penalty) + (Number of L1 hits) * (Time to access L1) + 
(L1 misses * L1 penalty) + (L2 misses * L2 penalty) + 
… + (Lk misses * Lk penalty)     (4.1) 

 
To predict this cost, we have to find the number of 

cache hits/misses at each level and TLB hit rate. We 
predict the cache and TLB misses based on the access 
pattern.  

Assuming that there are M levels of cache, the 
total miss penalty due to cache misses is the sum of 
miss penalty at each level. 

α−= ∑
=

M

k
kkm TMT

1
)*(    (4.2) 

where kM is the total number of cache misses and 

kT  is the miss penalty at level k cache. α  is the 
overlapping the cache misses with prefetching and 
other OS optimizations. 

Consider that there are m  array variables accessed 
contiguously and n  array variables accessed non-
contiguously, the total number of misses at cache level 
k  is the sum of misses caused in accessing 
contiguously accessed arrays and those of non-
contiguously accessed arrays. 
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c
ikM ),(  is the number of cache misses at k th level 

cache of memory hierarchy in accessing i th variable, 
contiguously.  n

ikM ),(  is the number of cache misses at 

k th level cache of memory hierarchy in accessing i th 
variable, non-contiguously.  

Now we count the number of cache misses based on 
the data access pattern.  

Constant access pattern: In this type of accesses, 
once a word is loaded into the cache, the following 
accesses to the same word cause no extra cache misses. 
If the word size of a variable is iW and there are the 

number of cache misses is equal to  )/( ki LW . (4.4) 
Contiguous access pattern: In this pattern the 

stride between successive accesses is the same as data 
size. All the cache misses caused in this pattern are 
compulsory misses. Each reference fetches a cache line 
into the cache. Cache line contains more than one word 
of data. This is to assure spatial locality property of 
using cache memory. If the cache line size is more than 
the data type accessed, the next reference utilizes the 
prefetched data from the cache. Each reference causes 

 )/( ki LW  misses, i.e. if the word size is more that 
cache line size, then it causes more than one miss, 
otherwise just one miss occurs for every  )/( ik WL  
references. If there are n  references, the number of 
cache misses caused at cache level k  in accessing 
variable i  is:   )/(*),( ki

c
ik LWnM =         (4.5) 

If i th variable has c
ikR ),(  references, the number of 

cache misses is:  





= )(*),(),(

k

c
ic

ik
c

ik L
WRM         (4.6) 

where c
iW is size of the data block being 

contiguously accessed in i th variable. 
The number of cache references at level k  ( c

ikR ),( ) 
is the number of cache misses at the lower level cache, 
i.e. c

jk
c

ik MR ),1(),( −= .          (4.7) 
Non-contiguous access patterns: As described in 

section 2, there are four main types of access patterns. 
These patterns are classified based on the variability of 
stride and data block size. The occurrence of cache 
misses is categorized into four regions based on the 
working set size, similar to Saavedra and Smith [16]. 
First region is the one where all the working set fits in 
the cache. As long as the working set size is less than 
the cache size, the total data fits into the cache. All the 
cache misses are compulsory misses. This number is 
equal to  )/(*),( ki

n
ik LWnM =  at level k  of 

memory hierarchy in accessing i th variable non-
contiguously. This number is the same for all types of 
non-contiguous access patterns. 

When size of the data working set exceeds the cache 
size, three regions of memory operations are defined. 
The first region is when the stride ( S ) is between 1 
and cache line size ( kLS ≤<1 ). The second region 

is kk ADSL /≤< , where kA  is the associativity of 

k th level cache of memory hierarchy. The third region 
is 2// DSAD k ≤< . In this last case, although the 

kCD > , only kASD </  amount of data is needed 
for access. In the last region the number of references 
mapping to a single set is less than the set associativity. 
Thus, only compulsory misses are caused in the third 
access pattern, i.e.  

 )/(*),( ki
n

ik LWnM =    (4.8) 



where n  is the number of data accesses. Thus, we 
set our focus on the first two regions to count the 
number of cache misses.  

First we find the cache misses for a fixed size of 
data block accesses of one variable, with a fixed stride.  

If the stride (fixed) is less than the cache line size, 
one cache miss occurs for ( SLk / ) references. If there 
are n references, the number of cache misses is: 

)/(* kLSn , where n  is the number of data accesses. 
If the stride (fixed) is more than the cache line size, 

each reference causes   )1,/(max( ki LW cache 
misses, i.e. each access causes one miss when the word 
size is less than kL . If word size is more than kL , 

each reference causes  ki LW /  misses. If there are 
n  references, the number of cache misses is equal to 

  )1,/(max(* ki LWn . 

  )1,/(max(*),(),( ki
n

ik
n

ik LWRM =      (4.9) 
For variable stride with fixed size block accesses, 

the cache misses have to be counted for each stride. If 
the stride is less than kL , it does not cause a cache 
miss as the pre-fetched line of data is reused. The 
number of cache misses is: 

*))0),/min(((
),(

1
),(),( ∑

=
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n

ikR

j
kji

n
ik LSM  

                       ))1,/(max( ),( k
n

ji LW           (4.10) 
c

ikM ),( is the number of cache misses at k th level 

cache of memory hierarchy in accessing i th variable, 
non-contiguously, ),( jiS  is variable stride of the data 

block being contiguously accessed in i th variable. 
n

ikR ),(  is the number of non-contiguous references of ith 

array at cache level k  of the memory hierarchy. 
n

jiW ),(  is the size of j th data block being non-

contiguously accessed in i th variable. In this pattern 
when the stride ),( jiS  is less than the cache line size, 
we assume that the cache line has already been fetched 
into the cache. However when this stride is causing to 
fetch a new cache line, then this formula misses to 
count that cache miss. This can be corrected by 
maintaining the history of cache line that has been 
fetched recently. 

The number of cache references at level k  ( n
ikR ),( ) 

is the number of cache misses at the lower level cache, 
i.e. n

jk
n

ik MR ),1(),( −= .     (4.11) 

For fixed or variable stride with variable size block 
accesses, the cache misses have to be counted for each 
block size. In this case, we assume that the stride is 
always more than kL . If the data block size is less 

than kL , it does not cause a cache miss as the pre-
fetched line of data is reused. The number of cache 
misses is: 

  )1,/(max(
),(

1
),(),( ∑

=

=
n

ikR

j
k

n
ji

n
ik LWM   (4.12) 

Refer Table 3 and Table 4 (at the end of this 
document) for a summary of formulae to calculate the 
cache misses for all data access patterns. Using (4.3) 
total number of cache misses in accessing contiguous 
and non-contiguous data is calculated. Formula 4.2 
gives the total memory access cost. 
 
5. Performance verification 
 

This section presents performance measurements to 
verify the predicted memory access cost with the 
measured cost on various architectures. We measure 
the performance of loops with all the data access 
patterns mentioned above and compare that 
performance with the predicted performance.  

We took the measurements on a Sun Solaris based 
cluster called Sunwulf, which is located at the Scalable 
Computer Software Lab of Illinois Institute of 
Technology. Sunwulf is composed of a four-processor 
E450 server and 63 high-end workstations. We run our 
experiments on one of the nodes. Each node is a SUN 
Blade-100 workstation with one UltraSparc-IIe, 
500MHz CPU. The L1 cache is 16KB, with a 16-byte 
cache line size. The L2 cache has a capacity of 8MB 
and its line size is 64 bytes. It also has a TLB with 
4KB page size and 48 entries. We used a 
microbenchmark to find the average access time and 
miss penalty of each level of memory hierarchy. This 
is similar to the microbenchmark proposed by 
Saavedra and Smith [16].  

Another platform we used for experiments is a 32-
node Beowulf, located at University of South Carolina. 
Each node consists of 933MHz, Pentium III processor. 
It has 16 KB L1 cache and 256KB L2 cache. Both 
these caches are on the die, and the average penalty for 
load misses is measured as 7 cycles and 70 cycles for 
L1 and L2 respectively.  We chose these processors, as 
they apply inclusive property in the memory hierarchy 
with less aggressive pre-fetching.  

We used the loops similar to Figure.1 and measured 
the time to execute those loops. In all these loops, two 
array variables are accessed with different access 
patterns. We chose these loops since many applications 



contain loop blocks where the data accesses are similar 
to the access patterns discussed above in section 2. We 
can apply the same prediction model for any number of 
arrays. Execution time of these loops contains only the 
data access cost, without any computation cost. We 
used pointer-to-pointer copy to avoid the cost of 
memcpy. In these experiments we ran many iterations 
of the program to find the minimum cost. We also 
flushed the cache after measuring the time for an 
iteration to replace any cache blocks that are reusable. 
We compiled these programs using gcc 3.0 and padded 
the arrays to avoid any cache thrashing. The 
comparison of predicted cost and measured memory 
access cost is presented in the following paragraphs. 
The memory access cost is presented as a ratio of 
execution time to the number of memory references. 
This normalization is done to fit all the data into the 
graph. The performance is better for lower values. 

Figure 2 and Figure 3 compare the predicted 
memory access cost with measured cost in running the 
loops in various data access patterns explained in 
section 2 (Figure.1) on Sunwulf cluster. For contiguous 

data accesses (Figure 2.a.), the predicted cost is 
constant per reference. The prediction error reduced as 
the number of references increased. The error was 
mainly due to the approach of counting cache misses 
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Non-Contiguous accesses with 64byte strides
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Performance verification (non-contiguous accesses with 
variable stride)
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pessimistically without taking prefetching into 
consideration. The prediction error was below 20% for 
small data and below 4% for large data with this data 
access pattern. 

To test the non-contiguous access pattern 
performance we used three sizes of fixed strides 
(16bytes, 32 bytes and 64 bytes) that are equal to L1 
cache line size, more than L1 line size and that of equal 

to L2 line size. For non-contiguous accesses, with 
stride equal to L1 cache line size, the prediction error 
reduced as the data size increase.  It can be seen from 
Figure 2.b and Figure 3.a, that the utilization of caches 
are more effective when the data size is less than L2 
cache size. Overall the error is below 20% in most of 
the cases. For the remaining two non-contiguous 
access patterns with fixed strides, the prediction error 
is below 10% for larger data sizes.  

For non-contiguous access pattern with variable 
strides, we initialized an array that contains strides of 
accesses. Prediction cost of this access pattern contains 
the cost of accessing non-contiguous arrays as well as 
the cost of accessing the array of strides. The 
prediction error is below 15% (Figure 3.c). This error 
is caused by missing some of the cache misses in non-
contiguous accesses, which requires maintaining the 
history of the length of cache lines that are already 
been fetched into the cache. Another reason for 
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Non-contiguous accesses with 16 byte strides
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Non-contiguous accesses with 32 byte strides
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Performance verification (Non-contiguous accesses with 
variable strides)
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prediction error for all these access patterns is that we 
are using average miss penalties, which may not be 
accurate. 

We observe the similar results on Pentium III 
processor on Beowulf cluster (Fig 4 and 5). The 
prediction error is slightly high for small data sizes 
where the prefetching of this processor is effective. As 
the working set size increase, the L2 misses increase 
and the prediction error is below 20% in these cases.  

We also verified the performance of the loops in 
NAS Parallel benchmarks that are performing matrix 
transpose operation. We have measured the 
performance two variations of matrix transpose 
algorithms from NAS Parallel benchmarks’ Fast 
Fourier Transform program. The first algorithm is a 

simple matrix transpose of copying rows of one matrix 
to columns of another matrix. The second algorithm 
uses cache-blocking optimization to improve the 
performance. Both algorithms fit into the data access 
patterns explained in section 2. The data working set of 
the first algorithm increases with the dimension of the 
matrices. Due to the row major ordering of arrays (in C 
or column major ordering in Fortran), one matrix is 
accessed contiguously and the other is accessed non-
contiguously with fixed stride. The second algorithm 
makes sure that a block of data is fully utilized before 
replacing it from the cache. In this algorithm, the two 
matrices are accessed non-contiguously with fixed 
strides. However, as the whole data block is reused 
before it is being replaced, and we chose the block size 
such that it fits into the cache, the number of cache 
misses is very less compared to the unoptimized 
version of matrix transpose. These experiments are 
performed on Sun UltraSparc IIe processor node.  

As expected, the performance (time/reference) 
increases as the data size increases for the unoptimized 
transpose algorithm (Fig 6). Predicted values of 
performance are slightly different from the measured 
values. The error is around 13%. In the second 
algorithm, the performance is improved for the 
transpose algorithm due to the cache-blocking 
optimization (Fig 7). The performance error was below 
5% for most of the data sizes, but increased for large 
data sizes. This is mainly due the increase in average 
time per memory reference for the large data sizes. 
 
6. An application of the model 
 

Parallel communication models such as LogP [4] 
focus on network communication, with limited 
consideration of memory communication. Recently, 
the LogP model was extended to incorporate memory-
communication cost. The memory-LogP model 
formally characterizes the memory-communication 
cost under four parameters: l: the effective latency, 
defined as the length of time the processor is engaged 
in transmission or reception of a message due to the 
influence of data size (D) and distribution also called 
as strides (S), l=f(D,S); o: the overhead, defined as the 
length of time the processor is engaged in transmission 
or reception of an ideally distributed (contiguous) 
message (during this time, the processor cannot 
perform other operations); g: the gap, defined as the 
minimum time interval between consecutive message 
receptions at the processor (the reciprocal of g 
corresponds to the available per processor bandwidth 
for a given implementation of data transfer on a given 
system); and P: the number of processor/memory 
modules (point-to-point communication in the memory 
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hierarchy implies P=1). Detailed information about the 
memory-LogP model can be found in [8].  

The memory-communication cost for sending a data 
segment depends on architectural parameters, such as 
cache capacity, and code characteristics, such as data 
distribution, as explained in the memory-LogP model. 
In general, the overall communication cost includes 
data-collection overhead, the cost of data copying to 
the network buffer, the cost of data forwarding to the 
receiver (network-communication cost), and other 
costs added by the middleware implementation. When 
data distribution in memory is noncontiguous, the data 
is typically collected into a contiguous buffer before 
being copied to the network buffer. This process adds 
extra buffering overhead to the overall communication 
cost and is implementation dependent. The memory 
access cost predicted in this paper is a part of the 
latency (l) parameter of the memory-logP model. 

Currently we apply this model in improving the 
performance of MPI derived datatypes by optimizing 
the memory access cost [1]. The MPI Standard [12] 
supports derived datatypes, which allow users to 
describe noncontiguous memory layout and 
communicate noncontiguous data with a single 
communication function. This feature enables an MPI 
implementation to optimize the transfer of 
noncontiguous data. In practice, however, few MPI 
implementations provide derived datatypes in a way 
that performs better than what the user can achieve by 
manually packing data into a contiguous buffer and 
then calling an MPI function. Memory access cost has 
been the reason for this performance bottleneck. We 
use memory-logP model with the help of prediction 
formulae to predict this cost and apply memory access 
optimization techniques to improve the performance. 
Due to space restriction, we cannot explain the 
optimization method here. Refer to [1] for full details. 
 
7. Conclusion 
 

Loop transformations and loop access reordering 
techniques improve the memory access performance. 
To obtain these loop optimization parameters, a simple, 
fast and accurate memory access cost prediction model 
is necessary. This improves the standard of application 
level optimizations and reduces the burden on the 
programmers to learn the rapidly improving processor 
and computer architecture technology. Towards 
achieving this goal, in this paper we proposed an 
analytical model to predict the memory access cost 
based on the data access patterns. We first classified 
the most common data access patterns in scientific 
computing applications. We then proposed a model to 
predict the memory access cost. We verified this model 

with measurements and showed that this model is 
practical. The accuracy of our model is reasonable 
given its simplicity. We also applied this model to 
matrix transpose routines in Fast Fourier Transform 
program of NAS benchmarks, which was implemented 
in different memory access patterns. 

Our model is simple, effective, and easy to be 
incorporated into memory cost tuning tools, where 
optimization parameters are to be found at runtime. 
The prediction errors of 10% to 20% exist, they are 
reasonably accurate in making optimization decisions. 
We are currently utilizing this model to improve the 
performance of MPI derived datatypes, by optimizing 
the memory access cost. This cost prediction is a part 
of our memory-logP model, which emphasizes the 
importance of memory communication performance in 
point-to-point communication. Our model is practical 
because of its simplicity. We are able to fit this easily 
into any optimization library to choose optimization 
parameters dynamically at runtime. This is not possible 
with the existing models due to their complexity.  

We plan to extend this work in various aspects. We 
will extend this model to include external and internal 
conflict misses. We will broaden this model for 
replacement policies other than LRU, such as FIFO, 
LFU, MRU, MFU etc. We plan to incorporate this 
model in an automatic performance tuning system that 
improves the application performance by optimizing 
the memory access cost. 
 
8. Acknowledgements 
 

This work was supported by the Mathematical, 
Information, and Computational Sciences Division 
subprogram of the Office of Advanced Scientific 
Computing Research, Office of Science, U.S. 
Department of Energy, under Contract W-31-109-
ENG-38, and in part by a grant from the Office of 
Advanced Simulation and Computing, National 
Nuclear Security Administration, U.S. Department of 
Energy. The U.S. Government retains for itself, and 
others acting on its behalf, a paid-up, nonexclusive, 
irrevocable worldwide license in said article to 
reproduce, prepare derivative works, distribute copies 
to the public, and perform publicly and display 
publicly, by or on behalf of the Government. 
 
9. References 
 
[1] Surendra Byna, William Gropp, Xian-He Sun, and Rajeev 
Thakur, "Improving the Performance of MPI Derived 
Datatypes by Optimizing Memory-Access Cost," IEEE 
International Conference on Cluster Computing, Hong 
Kong, December 2003 



[2] S. Chatterjee and S. Sen, “Cache-Efficient Matrix 
Transposition”, Proceedings of the 6th International 
Symposium on High-Performance Computer Architecture, 
Toulouse, France, January 2000, pages 195-205. 
[3] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, 
"Exact Analysis of the Cache Behavior of Nested Loops", 
Proceedings of the ACM SIGPLAN 2001 Conference on 
Programming Language Design and Implementation, 
Snowbird, UT, June 2001 
[4] D.E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. 
Santos, K. E. Schauser, R. Subramonian, and T. von Eicken 
“LogP: A Practical Model of parallel computation”, 
Communications of the ACM, vol. 39, pp. 78-85, 1996 
[5] Somnath Ghosh , Margaret Martonosi , Sharad Malik, 
“Cache miss equations: a compiler framework for analyzing 
and tuning memory behavior”, ACM Transactions on 
Programming Languages and Systems (TOPLAS), v.21 n.4, 
p.703-746, July 1999 
[6] B.L. Jacob, “An analytical model for designing memory 
hierarchies”, IEEE Transaction on Computers, volume 45, 
pp. 83-105, 1996. 
[7] M. Kandemir, J. Ramanujam and A. Choudhary, “Cache 
Locality by a Combination of Loop and Data 
Transformations,” IEEE Transactions on Computers (TC) 
48(2): 159–167, February 1999. 
[8] Kirk W. Cameron, Xian-He Sun, “Quantifying Locality 
Effect in Data Access Delay: Memory logP,” in Proceedings 
of the 17th International Parallel and Distributed Processing 
Symposium (IPDPS '03), April 2003. 
[9] Hill, M.D. “Aspects of cache memory and instruction 
buffer performance”, Ph.D. Thesis, University of California, 
Berkeley, 1987. 
[10] K.S. McKinley, S.Carr, and C.W. Tseng, “Improving 
data locality with loop transformations”, ACM TOPLAS, 
18(4): 424-453. July 1996 
[11] N. Mitchell, L. Carter, and J. Ferrante, “A modal model 
of memory”. In V.N.Alexandrov, J.J. Dongarra, Computer 
Science. Springer, May 28-30, 2001 
 [12] Message Passing Interface Forum, “MPI-2: A message 
passing interface standard”, High Performance Computing 
Applications, 12(1-2):1-299, 1998 
[13] D. A. Patterson and J. L. Hennessy, “Computer 
Architecture: A quantitative approach”, 2nd edition. San 
Fancisco, CA: Morgan Kaufmann Publishers, 1996. 
[14] Y. Paek, J. Hoeflinger, and D. Padua, “Simplification of 
Array Access Patterns for Compiler Optimizations”. In 
Proceedings of the ACM SIGPLAN 98 Conference on 
Programming Language Design and Implementation, June 
1998. 23 
[15] Rong Yan and Seth C, “Goldstein Mobile Memory: 
Improving Memory Locality in Very Large Reconfigurable 
Fabrics”, FCCM '02, Napa Valley, CA, April 2002 
 
 
 
 
 
 
 
 
 

[16] Rafael H. Saavedra and Alan Jay Smith, “Measuring 
Cache and {TLB} Performance and Their Effect on 
Benchmark Runtimes”, IEEE Transactions on Computers, 
Volume: 44, number: 10, p1223-1235, 1995. 
[17] A.J. Smith, "Cache Memories", Computing Surveys, 
14(3), p.473, September 1982 
[18] S. Sen and S. Chatterjee, “Towards a theory of Cache 
efficient algorithms”, SODA, 2000 
[19] R. Clint Whaley, Antoine Petitet, and Jack Dongarra, 
“Automated Empirical Optimizations of Software and the 
ATLAS Project”, Parallel Computing, Volume 27, Numbers 
1-2, pp 3-25, 2001 

 
 
  

Table 3. Number of cache misses for data Table 3. Number of cache misses for data Table 3. Number of cache misses for data Table 3. Number of cache misses for data 
access patternsaccess patternsaccess patternsaccess patterns    

Data access 
pattern 

Number of cache misses 

Constant 




= )(),(

k

c
ic

ik L
WM  

Contiguous 




= )(*),(),(

k

c
ic

ik
c

ik L
WRM  

Non-contiguous 
( kCD < ) 



= )(*),(),(

k

c
ic

ik
c

ik L
WRM  

Table 4. Number of cache misses for nonTable 4. Number of cache misses for nonTable 4. Number of cache misses for nonTable 4. Number of cache misses for non----
contiguous data access patterns with varying contiguous data access patterns with varying contiguous data access patterns with varying contiguous data access patterns with varying 

stride and data sizestride and data sizestride and data sizestride and data size 
Stride Number of cache misses 

kLS ≤<1  




= )(*),(),(

k

n
ik

n
ik L

SRM  

kk ADSL /≤<    )1,/(max(*),(),( k
n

i
n

ik
n

ik LWRM =  

Variable 
stride, fixed 
data block size 

*))0),/min(((
),(

1
),(),( ∑

=

=
n

ikR

j
kji

n
ik LSM

  ))1,/(max( ),( k
n

ji LW          
Variable stride 

kk ADSL /≤< , 
variable data 
block size 

  )1,/(max(
),(

1
),(),( ∑

=

=
n

ikR

j
k

n
ji

n
ik LWM  

2// DSAD k <<
 



= )(*),(),(

k

n
in

ik
n

ik L
WRM  


