
Predicting Memory-Access Cost Based on Data-Access Patterns

Surendra Byna Xian-He Sun William Gropp Rajeev Thakur
Illinois Institute of Technology Argonne National Laboratory
{renbyna, sun}@iit.edu {gropp, thakur}@mcs.anl.gov

Abstract

Improving memory performance at software level is
more effective in reducing the rapidly expanding gap
between processor and memory performance. Loop
transformations (e.g. loop unrolling, loop tiling) and
array restructuring optimizations improve the memory
performance by increasing the locality of memory
accesses. To find the best optimization parameters at
runtime, we need a fast and simple analytical model to
predict the memory access cost. Most of the existing
models are complex and impractical to be integrated in
the runtime tuning systems. In this paper, we propose a
simple, fast and reasonably accurate model that is
capable of predicting the memory access cost based on
a wide range of data access patterns that appear in
many scientific applications.

1. Introduction

Immense research effort has been spent on reducing
the performance gap between processor and memory.
Processor speed continues to increase every year. CPU
clock frequency is doubling every 18 months
complying with Moore’s Law. On the other hand main
memory (DRAM) speeds haven’t increased enough to
catch up with the processor speed. This performance
gap has been increasing for the last 20 years [13] and
the trend appears to continue in the near future.

Cache memories work on the principle of spatial
and temporal locality [17]. However, there are many
applications that lack locality in accessing the memory.
These applications spend a major fraction of execution
time waiting for data accesses. Cache memories are
exploited better if the cached blocks of data are reused
extensively before other cache blocks replace them.

Transforming and reordering the memory accesses
improve application performance [10, 7]. As loops are
the basic blocks, where most of time is spent in
applications, various loop optimization techniques
have been developed to enhance the memory hierarchy

utilization. Loop transformations (loop unrolling, loop
fusion, loop interchange, loop reversal and loop tiling)
are some of the most effective loop optimizations.

Some advanced compilers utilize these optimization
techniques. But, compilers alone are not sufficient to
achieve the best possible optimization [1]. Superior
manual optimizations require extensive knowledge of
the hardware architecture and data access patterns. The
developer needs to be aware of efficient optimization
techniques to be applied in the right place. Automating
the optimization process is needed to obtain consistent
performance.

Performance prediction of memory access cost is
required to automate the optimizations. Currently there
are a few automatic tuning software tools. One of the
most popular tools of optimization is Automatically
Tuned Linear Algebra Software (ATLAS) [19]. This
tool runs subroutines multiple times to obtain the best
optimization parameters by a trial and error method. A
prediction model can remove these multiple runs and
be extended to optimize more than just linear algebra
subroutines. This model should be simple and fast to
perform the optimization dynamically, at runtime,
based on the data access pattern and available memory
hierarchy.

Many researchers worked towards developing
accurate cache performance models. But most of these
models [2, 18, 6] lack generality. They are complex,
and are bounded to a few algorithms or data access
patterns. Jacob [6] extracts address traces from the
code, which requires execution of the program, and
consumes a lot of time if an optimization has to be
applied. We base our prediction model on various
access patterns, which are parameterized. This helps in
predicting the memory cost with very small complexity
and skips the costly process of tracing the references
every time a loop parameter is changed. Chatterjee et
al. [3] studies the exact analysis of cache misses based
on the polyhedral model, which is complex. The Cache
Miss Equations model (CME) [5] is the least costly
performance model to our knowledge. However, this
model also requires tracing the references to create the
reuse vectors and solve cache miss equations. These

models are accurate but expensive, and are better
choices for static analysis of cache behavior. Our
model fits better in choosing the optimization
parameters dynamically at runtime than CMEs.

Our model also focuses on wide range of data
access patterns with multiple array variables. Most of
the other cache analysis models hold good results for a
specific algorithm [2, 18] and fall short in acquiring
generality.

The rest of this paper is organized as follows.
Section 2 classifies various data access patterns that are
used in most of the scientific applications. Section 3
discusses the parameters of memory hierarchy. In
Section 4, we propose the memory access cost analysis
and prediction equations. Section 5 provides
experimental verification, and section 6 discusses an
application of our model and current projects. Section
7 concludes with further objectives.

2. Data Access Patterns

Loops and arrays are fundamental structures of
most numerical and scientific applications [14]. A
major share of the execution time of these applications
is spent in loops, accessing data from arrays.
Analyzing these access patterns is needed to find out
the hotspots and to optimize the performance by
reorganizing these memory references.

Data access patterns are classified based on the
stride between successive accesses. Modal model of
memory [11] categorize data accesses as constant,
strided and non-monotonic modes. Yan et al. [15]
classify memory access patterns into three types:
migratory, group and unpredictable patterns.

We classify data access patterns in scientific
applications as constant, contiguous and non-
contiguous. Non-contiguous patterns are further
divided into four patterns based on the size of data
blocks accessed with each reference and their
successive strides. Stride is the distance between the
previous reference and current reference.

Constant accesses are those where the same data
block is accessed repeatedly i.e., stride is equal to zero.
Contiguous access pattern is where the stride between
successive accesses is equal to the size of datatype.
These are divided further as fixed length block
accesses and variable length block accesses. Fixed
length block accesses refer to the same datatype in
consecutive references.

Non-contiguous access pattern is where the stride of
next reference is greater than the size of currently
accessed datatype. These can be further divided as
follows:

a) Fixed length block, with fixed stride: Stride
is similar through out the access pattern.
As shown Figure. 1.a., a block with a size
of constant block_size is copied into dest
from src. The next block is copied from
src+stride to dest+block_size, i.e. array src
is being accessed non-contiguously with a
fixed stride and array dest is being
accessed contiguously.

b) Fixed length block, with varying stride:
The stride varies between each access.
(Figure. 1.b.)

c) Variable size block, with fixed stride:
Accessing different or varying size
datatypes, where the strides of accesses are
similar. (Figure. 1.c.)

d) Variable size block, with variable stride:
Accessing different or varying size
datatypes, where the strides of accesses are
varying. (Figure. 1.d.)

In Section 4, we predict the memory access cost for
these data access patterns.

Figure. 1 NonFigure. 1 NonFigure. 1 NonFigure. 1 Non----contiguous dacontiguous dacontiguous dacontiguous data access ta access ta access ta access
patternspatternspatternspatterns

for (i=0; i < n; i += stride)
{
 memcpy(dest, src+i, block_size);
 dest += block_size;
}

Figure. 1.aFigure. 1.aFigure. 1.aFigure. 1.a

for (i=0, j=0; i < n; i += stride[j])
{
 memcpy(dest, src+i, block_size) ;
 j++ ;
 dest += block_size;
}

Figure. 1.bFigure. 1.bFigure. 1.bFigure. 1.b

for (i=0, j=0; i < n; i += stride)
{

memcpy(dest, src+i, block_size[j]) ;
 dest += block_size[j];

j++ ;
}

Figure. 1.cFigure. 1.cFigure. 1.cFigure. 1.c

for (i=0, j=0; i < n; i += stride[j])
{

memcpy(dest, src+i, block_size[j]) ;
 dest += block_size;

j++ ;
}

Figure. 1.dFigure. 1.dFigure. 1.dFigure. 1.d

3. Model parameters

To bridge the gap between processor and memory
performance, modern computer architectures include
multiple levels of memory hierarchies that consist of
cache memory and TLB. In this section, we discuss the
details of memory hierarchy parameters, which are
used in developing the prediction model.

A Cache memory is characterized by its size, line
size and associativity. Cache size (C) represents its
capacity in bytes. Caches are organized in cache lines.
When a cache miss occurs, a block of data of size
equal to cache line size (L) is fetched from the next
level of cache or memory. This property conforms to
the spatial locality. Associativity (A) of a cache helps
in deciding how many places are there to place a cache
line.

We treat the TLB as a level of memory hierarchy.
Its parameters are page size P (similar to cache line
size of a cache) and the capacity. The capacity of a
TLB is the amount of memory page mapping it can
store and is equal to number of page entries multiplied
by page size.

Table 1 summarizes the memory hierarchy
parameters. Subscript i of a parameter signifies the
level of that cache/TLB in the hierarchy of memory.
Cache memory at level i has three properties: its size in
bytes (Ci), cache line size (Li) and its associativity (Ai).
TLB is represented with the number of page table
entries (Ts), page size (Ps) and it associativity (AT).

M refers the total number of cache levels.
Cache misses are classified into three types [9].

They are compulsory misses, capacity misses and
conflict misses. Cache misses at level i are represented
with Mi.

c
ikM),(refers to the number of cache misses at

level k of memory hierarchy, in accessing ith array
(variable) contiguously. If it is being accessed non-
contiguously, it is represented by n

ikM),(.
Data access pattern parameters are shown in Table

2. The subscript i represents the ith array being
accessed. The parameters c

ikR),(and n
ikR),(represent

the number of contiguous and non-contiguous
references separately. iS is the fixed stride in accessing

the ith array and),(jiS is the variable stride. D is the

working set size and iW represents the block (word)
size of the ith array.

4. Memory access cost prediction

Our goal is to predict the memory access cost of a
basic block of loop with any type of data access
patterns discussed in section 2, and for multiple data
array variables. We assume LRU replacement policy
for cache and TLB. We assume that the memory
hierarchy is following inclusive property. The total
cost of accessing memory includes the access time and
the miss penalties of these levels in the hierarchy. If
there are k levels of cache memory and one level TLB
[13],

Table 1. Memory hierarchy parametersTable 1. Memory hierarchy parametersTable 1. Memory hierarchy parametersTable 1. Memory hierarchy parameters

kC Cache size at k th level cache of memory
hierarchy

kL Cache line size at k th level cache of
memory hierarchy

kA Associativity of k th level cache of memory
hierarchy

kM Number of cache misses at k th level
cache of memory hierarchy

c
ikM),(Number of cache misses at k th level

cache of memory hierarchy in accessing
i th array, contiguously.

n
ikM),(Number of cache misses at k th level

cache of memory hierarchy in accessing
i th variable, non-contiguously.

sT Number of page table entries (PTE) in TLB

sP Page size of each PTE

TA TLB associativity

M Number of cache levels in memory
hierarchy

Table 2. Data access parametersTable 2. Data access parametersTable 2. Data access parametersTable 2. Data access parameters
c

ikR),(
Number of contiguous references of ith
array at cache level k of the memory
hierarchy.

n
ikR),(

Number of non-contiguous references of ith
array at cache level k of the memory
hierarchy.

iW Fixed size of the data block being
accessed in i th array.

iS Fixed stride of accessing i th array non-
contiguously.

c
iW

Variable size of the data block being
contiguously accessed in i th array.

n
jiW),(Variable size of j th data block being non-

contiguously accessed in i th array.

),(jiS Variable stride of the j th data block being

contiguously accessed in i th array. (stridej
in stride signature)

D Size of working set

Total Memory cost = (Number of TLB hits * Time to
access TLB) + (Number of TLB misses * TLB miss
penalty) + (Number of L1 hits) * (Time to access L1) +
(L1 misses * L1 penalty) + (L2 misses * L2 penalty) +
… + (Lk misses * Lk penalty) (4.1)

To predict this cost, we have to find the number of

cache hits/misses at each level and TLB hit rate. We
predict the cache and TLB misses based on the access
pattern.

Assuming that there are M levels of cache, the
total miss penalty due to cache misses is the sum of
miss penalty at each level.

α−= ∑
=

M

k
kkm TMT

1
)*((4.2)

where kM is the total number of cache misses and

kT is the miss penalty at level k cache. α is the
overlapping the cache misses with prefetching and
other OS optimizations.

Consider that there are m array variables accessed
contiguously and n array variables accessed non-
contiguously, the total number of misses at cache level
k is the sum of misses caused in accessing
contiguously accessed arrays and those of non-
contiguously accessed arrays.

∑∑
==

+=
n

i

n
ik

m

i

c
ikk MMM

1
),(

1
),((4.3)

c
ikM),(is the number of cache misses at k th level

cache of memory hierarchy in accessing i th variable,
contiguously. n

ikM),(is the number of cache misses at

k th level cache of memory hierarchy in accessing i th
variable, non-contiguously.

Now we count the number of cache misses based on
the data access pattern.

Constant access pattern: In this type of accesses,
once a word is loaded into the cache, the following
accesses to the same word cause no extra cache misses.
If the word size of a variable is iW and there are the

number of cache misses is equal to  )/(ki LW . (4.4)
Contiguous access pattern: In this pattern the

stride between successive accesses is the same as data
size. All the cache misses caused in this pattern are
compulsory misses. Each reference fetches a cache line
into the cache. Cache line contains more than one word
of data. This is to assure spatial locality property of
using cache memory. If the cache line size is more than
the data type accessed, the next reference utilizes the
prefetched data from the cache. Each reference causes

 )/(ki LW misses, i.e. if the word size is more that
cache line size, then it causes more than one miss,
otherwise just one miss occurs for every  )/(ik WL
references. If there are n references, the number of
cache misses caused at cache level k in accessing
variable i is:  )/(*),(ki

c
ik LWnM = (4.5)

If i th variable has c
ikR),(references, the number of

cache misses is:





=)(*),(),(

k

c
ic

ik
c

ik L
WRM (4.6)

where c
iW is size of the data block being

contiguously accessed in i th variable.
The number of cache references at level k (c

ikR),()
is the number of cache misses at the lower level cache,
i.e. c

jk
c

ik MR),1(),(−= . (4.7)
Non-contiguous access patterns: As described in

section 2, there are four main types of access patterns.
These patterns are classified based on the variability of
stride and data block size. The occurrence of cache
misses is categorized into four regions based on the
working set size, similar to Saavedra and Smith [16].
First region is the one where all the working set fits in
the cache. As long as the working set size is less than
the cache size, the total data fits into the cache. All the
cache misses are compulsory misses. This number is
equal to  )/(*),(ki

n
ik LWnM = at level k of

memory hierarchy in accessing i th variable non-
contiguously. This number is the same for all types of
non-contiguous access patterns.

When size of the data working set exceeds the cache
size, three regions of memory operations are defined.
The first region is when the stride (S) is between 1
and cache line size (kLS ≤<1). The second region

is kk ADSL /≤< , where kA is the associativity of

k th level cache of memory hierarchy. The third region
is 2// DSAD k ≤< . In this last case, although the

kCD > , only kASD </ amount of data is needed
for access. In the last region the number of references
mapping to a single set is less than the set associativity.
Thus, only compulsory misses are caused in the third
access pattern, i.e.

 )/(*),(ki
n

ik LWnM = (4.8)

where n is the number of data accesses. Thus, we
set our focus on the first two regions to count the
number of cache misses.

First we find the cache misses for a fixed size of
data block accesses of one variable, with a fixed stride.

If the stride (fixed) is less than the cache line size,
one cache miss occurs for (SLk /) references. If there
are n references, the number of cache misses is:

)/(* kLSn , where n is the number of data accesses.
If the stride (fixed) is more than the cache line size,

each reference causes  )1,/(max(ki LW cache
misses, i.e. each access causes one miss when the word
size is less than kL . If word size is more than kL ,

each reference causes  ki LW / misses. If there are
n references, the number of cache misses is equal to

 )1,/(max(* ki LWn .

 )1,/(max(*),(),(ki
n

ik
n

ik LWRM = (4.9)
For variable stride with fixed size block accesses,

the cache misses have to be counted for each stride. If
the stride is less than kL , it does not cause a cache
miss as the pre-fetched line of data is reused. The
number of cache misses is:

*))0),/min(((
),(

1
),(),(∑

=

=
n

ikR

j
kji

n
ik LSM

  ))1,/(max(),(k
n

ji LW (4.10)
c

ikM),(is the number of cache misses at k th level

cache of memory hierarchy in accessing i th variable,
non-contiguously,),(jiS is variable stride of the data

block being contiguously accessed in i th variable.
n

ikR),(is the number of non-contiguous references of ith

array at cache level k of the memory hierarchy.
n

jiW),(is the size of j th data block being non-

contiguously accessed in i th variable. In this pattern
when the stride),(jiS is less than the cache line size,
we assume that the cache line has already been fetched
into the cache. However when this stride is causing to
fetch a new cache line, then this formula misses to
count that cache miss. This can be corrected by
maintaining the history of cache line that has been
fetched recently.

The number of cache references at level k (n
ikR),()

is the number of cache misses at the lower level cache,
i.e. n

jk
n

ik MR),1(),(−= . (4.11)

For fixed or variable stride with variable size block
accesses, the cache misses have to be counted for each
block size. In this case, we assume that the stride is
always more than kL . If the data block size is less

than kL , it does not cause a cache miss as the pre-
fetched line of data is reused. The number of cache
misses is:

 )1,/(max(
),(

1
),(),(∑

=

=
n

ikR

j
k

n
ji

n
ik LWM (4.12)

Refer Table 3 and Table 4 (at the end of this
document) for a summary of formulae to calculate the
cache misses for all data access patterns. Using (4.3)
total number of cache misses in accessing contiguous
and non-contiguous data is calculated. Formula 4.2
gives the total memory access cost.

5. Performance verification

This section presents performance measurements to
verify the predicted memory access cost with the
measured cost on various architectures. We measure
the performance of loops with all the data access
patterns mentioned above and compare that
performance with the predicted performance.

We took the measurements on a Sun Solaris based
cluster called Sunwulf, which is located at the Scalable
Computer Software Lab of Illinois Institute of
Technology. Sunwulf is composed of a four-processor
E450 server and 63 high-end workstations. We run our
experiments on one of the nodes. Each node is a SUN
Blade-100 workstation with one UltraSparc-IIe,
500MHz CPU. The L1 cache is 16KB, with a 16-byte
cache line size. The L2 cache has a capacity of 8MB
and its line size is 64 bytes. It also has a TLB with
4KB page size and 48 entries. We used a
microbenchmark to find the average access time and
miss penalty of each level of memory hierarchy. This
is similar to the microbenchmark proposed by
Saavedra and Smith [16].

Another platform we used for experiments is a 32-
node Beowulf, located at University of South Carolina.
Each node consists of 933MHz, Pentium III processor.
It has 16 KB L1 cache and 256KB L2 cache. Both
these caches are on the die, and the average penalty for
load misses is measured as 7 cycles and 70 cycles for
L1 and L2 respectively. We chose these processors, as
they apply inclusive property in the memory hierarchy
with less aggressive pre-fetching.

We used the loops similar to Figure.1 and measured
the time to execute those loops. In all these loops, two
array variables are accessed with different access
patterns. We chose these loops since many applications

contain loop blocks where the data accesses are similar
to the access patterns discussed above in section 2. We
can apply the same prediction model for any number of
arrays. Execution time of these loops contains only the
data access cost, without any computation cost. We
used pointer-to-pointer copy to avoid the cost of
memcpy. In these experiments we ran many iterations
of the program to find the minimum cost. We also
flushed the cache after measuring the time for an
iteration to replace any cache blocks that are reusable.
We compiled these programs using gcc 3.0 and padded
the arrays to avoid any cache thrashing. The
comparison of predicted cost and measured memory
access cost is presented in the following paragraphs.
The memory access cost is presented as a ratio of
execution time to the number of memory references.
This normalization is done to fit all the data into the
graph. The performance is better for lower values.

Figure 2 and Figure 3 compare the predicted
memory access cost with measured cost in running the
loops in various data access patterns explained in
section 2 (Figure.1) on Sunwulf cluster. For contiguous

data accesses (Figure 2.a.), the predicted cost is
constant per reference. The prediction error reduced as
the number of references increased. The error was
mainly due to the approach of counting cache misses

Contiguous accesses (1 byte stride)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M

of references

tim
e/

re
fe

re
nc

e
(n

se
c)

predicted

measured

Figure 2.a.Figure 2.a.Figure 2.a.Figure 2.a.
Non-contiguous, (16 byte stride)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

of references

tim
e/

re
fe

re
nc

e
(n

se
c)

predicted

measured

Figure 2.b.Figure 2.b.Figure 2.b.Figure 2.b.
Fig.2. Comparison of measured andFig.2. Comparison of measured andFig.2. Comparison of measured andFig.2. Comparison of measured and
predicted memory access cost. Thepredicted memory access cost. Thepredicted memory access cost. Thepredicted memory access cost. The
access patterns are: 2.a. Contiguousaccess patterns are: 2.a. Contiguousaccess patterns are: 2.a. Contiguousaccess patterns are: 2.a. Contiguous
data access (word size: 1byte, stride:data access (word size: 1byte, stride:data access (word size: 1byte, stride:data access (word size: 1byte, stride:
1byte). 2.b. Non1byte). 2.b. Non1byte). 2.b. Non1byte). 2.b. Non----contcontcontcontiguous dataiguous dataiguous dataiguous data
access with fixed word size and strideaccess with fixed word size and strideaccess with fixed word size and strideaccess with fixed word size and stride
(word size: 8 bytes, stride: 16 bytes)(word size: 8 bytes, stride: 16 bytes)(word size: 8 bytes, stride: 16 bytes)(word size: 8 bytes, stride: 16 bytes)

Non-Contiguous (32byte stride)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M

of references

tim
e

(n
se

c)

predicted

measured

Figure. 3.a.Figure. 3.a.Figure. 3.a.Figure. 3.a.
Non-Contiguous accesses with 64byte strides

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

of references

tim
e/

re
fe

re
nc

e
(n

se
c)

predicted measured

Figure. 3.b.Figure. 3.b.Figure. 3.b.Figure. 3.b.

Performance verification (non-contiguous accesses with
variable stride)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

of references

tim
e/

re
fe

re
nc

e

predicted measured

 Figure. 3.c. Figure. 3.c. Figure. 3.c. Figure. 3.c.
Figure.3. Comparison of measuredFigure.3. Comparison of measured Figure.3. Comparison of measuredFigure.3. Comparison of measured
and predicted memory access cost.and predicted memory access cost. and predicted memory access cost.and predicted memory access cost.
The access patterns are: 3.a. NonThe access patterns are: 3.a. NonThe access patterns are: 3.a. NonThe access patterns are: 3.a. Non----
contiguous data access with fixedcontiguous data access with fixed contiguous data access with fixedcontiguous data access with fixed
word size and stride (word size: 8word size and stride (word size: 8 word size and stride (word size: 8word size and stride (word size: 8
bytes, stribytes, stribytes, stribytes, stride: 32 bytes) 3.b. Nonde: 32 bytes) 3.b. Nonde: 32 bytes) 3.b. Nonde: 32 bytes) 3.b. Non----
contiguous data access with fixedcontiguous data access with fixed contiguous data access with fixedcontiguous data access with fixed
word size and stride (word size: 8word size and stride (word size: 8 word size and stride (word size: 8word size and stride (word size: 8
bytes, stride: 64 bytes) , 3.c. nonbytes, stride: 64 bytes) , 3.c. nonbytes, stride: 64 bytes) , 3.c. nonbytes, stride: 64 bytes) , 3.c. non----
contiguous data access with fixedcontiguous data access with fixed contiguous data access with fixedcontiguous data access with fixed
word size and variable strides (wordword size and variable strides (word word size and variable strides (wordword size and variable strides (word
size: 8 bytes, stride varies from 1 tosize: 8 bytes, stride varies from 1 to size: 8 bytes, stride varies from 1 tosize: 8 bytes, stride varies from 1 to
128 bytes periodic128 bytes periodic128 bytes periodic128 bytes periodically)ally)ally)ally)

pessimistically without taking prefetching into
consideration. The prediction error was below 20% for
small data and below 4% for large data with this data
access pattern.

To test the non-contiguous access pattern
performance we used three sizes of fixed strides
(16bytes, 32 bytes and 64 bytes) that are equal to L1
cache line size, more than L1 line size and that of equal

to L2 line size. For non-contiguous accesses, with
stride equal to L1 cache line size, the prediction error
reduced as the data size increase. It can be seen from
Figure 2.b and Figure 3.a, that the utilization of caches
are more effective when the data size is less than L2
cache size. Overall the error is below 20% in most of
the cases. For the remaining two non-contiguous
access patterns with fixed strides, the prediction error
is below 10% for larger data sizes.

For non-contiguous access pattern with variable
strides, we initialized an array that contains strides of
accesses. Prediction cost of this access pattern contains
the cost of accessing non-contiguous arrays as well as
the cost of accessing the array of strides. The
prediction error is below 15% (Figure 3.c). This error
is caused by missing some of the cache misses in non-
contiguous accesses, which requires maintaining the
history of the length of cache lines that are already
been fetched into the cache. Another reason for

Contiguous accesses

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

of references

tim
e/

re
fe

re
nc

e
(u

se
c)

predicted measured

Figure 4.a.Figure 4.a.Figure 4.a.Figure 4.a.

Non-contiguous accesses with 16 byte strides

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

of references

tim
e/

re
fe

re
nc

e
(u

se
c)

predicted measured

Figure. 4.b.Figure. 4.b.Figure. 4.b.Figure. 4.b.
Non-contiguous accesses with 32 byte strides

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

of references

tim
e/

re
fe

re
nc

e
(u

se
c)

predicted measured

Figure 4.c.Figure 4.c.Figure 4.c.Figure 4.c.

Figure 4. Figure 4. Figure 4. Figure 4. Comparison of measured andComparison of measured andComparison of measured andComparison of measured and
prepreprepredicted memory access cost on Pentiumdicted memory access cost on Pentiumdicted memory access cost on Pentiumdicted memory access cost on Pentium
III processor. The access patterns are: 4.a.III processor. The access patterns are: 4.a.III processor. The access patterns are: 4.a.III processor. The access patterns are: 4.a.
Contiguous data access (word size: 1byte,Contiguous data access (word size: 1byte,Contiguous data access (word size: 1byte,Contiguous data access (word size: 1byte,
stride: 1byte). 4.b. Nonstride: 1byte). 4.b. Nonstride: 1byte). 4.b. Nonstride: 1byte). 4.b. Non----contiguous datacontiguous datacontiguous datacontiguous data
access with fixed word size and stride (wordaccess with fixed word size and stride (wordaccess with fixed word size and stride (wordaccess with fixed word size and stride (word
size: 8 bytes, stride: 16 bytes), 4.c. Nonsize: 8 bytes, stride: 16 bytes), 4.c. Nonsize: 8 bytes, stride: 16 bytes), 4.c. Nonsize: 8 bytes, stride: 16 bytes), 4.c. Non----
conconconcontiguous data access with fixed word sizetiguous data access with fixed word sizetiguous data access with fixed word sizetiguous data access with fixed word size
and stride (word size: 8 bytes, stride: 32and stride (word size: 8 bytes, stride: 32and stride (word size: 8 bytes, stride: 32and stride (word size: 8 bytes, stride: 32
bytes) bytes) bytes) bytes)

Non-contiguous accesses with 64 byte strides

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

of references

tim
e

/ r
ef

er
en

ce
 (u

se
c)

predicted measured

Figure. 5.a.Figure. 5.a.Figure. 5.a.Figure. 5.a.

Performance verification (Non-contiguous accesses with
variable strides)

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

of references

tim
e

/ r
ef

er
en

ce
 (u

se
c)

predicted measured

Figure 5.b.Figure 5.b.Figure 5.b.Figure 5.b.

Figure.5. Comparison of measured andFigure.5. Comparison of measured and Figure.5. Comparison of measured andFigure.5. Comparison of measured and
predicted memory access cost on Pentiumpredicted memory access cost on Pentium predicted memory access cost on Pentiumpredicted memory access cost on Pentium
IIIIIIIIIIII processor. The access patterns are: 5.a.processor. The access patterns are: 5.a. processor. The access patterns are: 5.a.processor. The access patterns are: 5.a.
NonNonNonNon----contiguous data access with fixedcontiguous data access with fixed contiguous data access with fixedcontiguous data access with fixed
word size and stride (word size: 8 bytes,word size and stride (word size: 8 bytes, word size and stride (word size: 8 bytes,word size and stride (word size: 8 bytes,
stride: 64 bytes), 5.b. for nonstride: 64 bytes), 5.b. for nonstride: 64 bytes), 5.b. for nonstride: 64 bytes), 5.b. for non----contiguouscontiguous contiguouscontiguous
data access with fixed word size anddata access with fixed word size and data access with fixed word size anddata access with fixed word size and
variable strides (word size: 8 bytes, stridevariable strides (word size: 8 bytes, stride variable strides (word size: 8 bytes, stridevariable strides (word size: 8 bytes, stride
varies frvaries frvaries frvaries from 1 to 128 bytes periodically)om 1 to 128 bytes periodically)om 1 to 128 bytes periodically)om 1 to 128 bytes periodically)

prediction error for all these access patterns is that we
are using average miss penalties, which may not be
accurate.

We observe the similar results on Pentium III
processor on Beowulf cluster (Fig 4 and 5). The
prediction error is slightly high for small data sizes
where the prefetching of this processor is effective. As
the working set size increase, the L2 misses increase
and the prediction error is below 20% in these cases.

We also verified the performance of the loops in
NAS Parallel benchmarks that are performing matrix
transpose operation. We have measured the
performance two variations of matrix transpose
algorithms from NAS Parallel benchmarks’ Fast
Fourier Transform program. The first algorithm is a

simple matrix transpose of copying rows of one matrix
to columns of another matrix. The second algorithm
uses cache-blocking optimization to improve the
performance. Both algorithms fit into the data access
patterns explained in section 2. The data working set of
the first algorithm increases with the dimension of the
matrices. Due to the row major ordering of arrays (in C
or column major ordering in Fortran), one matrix is
accessed contiguously and the other is accessed non-
contiguously with fixed stride. The second algorithm
makes sure that a block of data is fully utilized before
replacing it from the cache. In this algorithm, the two
matrices are accessed non-contiguously with fixed
strides. However, as the whole data block is reused
before it is being replaced, and we chose the block size
such that it fits into the cache, the number of cache
misses is very less compared to the unoptimized
version of matrix transpose. These experiments are
performed on Sun UltraSparc IIe processor node.

As expected, the performance (time/reference)
increases as the data size increases for the unoptimized
transpose algorithm (Fig 6). Predicted values of
performance are slightly different from the measured
values. The error is around 13%. In the second
algorithm, the performance is improved for the
transpose algorithm due to the cache-blocking
optimization (Fig 7). The performance error was below
5% for most of the data sizes, but increased for large
data sizes. This is mainly due the increase in average
time per memory reference for the large data sizes.

6. An application of the model

Parallel communication models such as LogP [4]
focus on network communication, with limited
consideration of memory communication. Recently,
the LogP model was extended to incorporate memory-
communication cost. The memory-LogP model
formally characterizes the memory-communication
cost under four parameters: l: the effective latency,
defined as the length of time the processor is engaged
in transmission or reception of a message due to the
influence of data size (D) and distribution also called
as strides (S), l=f(D,S); o: the overhead, defined as the
length of time the processor is engaged in transmission
or reception of an ideally distributed (contiguous)
message (during this time, the processor cannot
perform other operations); g: the gap, defined as the
minimum time interval between consecutive message
receptions at the processor (the reciprocal of g
corresponds to the available per processor bandwidth
for a given implementation of data transfer on a given
system); and P: the number of processor/memory
modules (point-to-point communication in the memory

Performance comparison of matrix transpose (without
optimization)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

32
*3

2
64

*6
4

12
8*

12
8

25
6*

25
6

51
2*

51
2

10
24

*1
02

4

20
48

*2
04

8

40
96

*4
09

6

matrix dimension

tim
e/

re
fe

re
nc

e
(u

se
c)

Predicted Measured

Fig.6. Comparison of measured andFig.6. Comparison of measured andFig.6. Comparison of measured andFig.6. Comparison of measured and
predicted memory access cost Matrixpredicted memory access cost Matrixpredicted memory access cost Matrixpredicted memory access cost Matrix
transpose algorithm without cachetranspose algorithm without cachetranspose algorithm without cachetranspose algorithm without cache
blocking optimization blocking optimization blocking optimization blocking optimization

Performance comparison of matrix transpose (with
cache blocking optimization)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

32*32 64*64 128*128 256*256 512*512 1024*1024 2048*2048 4096*4096

matrix dimension

tim
e/

re
fe

re
nc

e
(u

se
c)

Predicted Measured

Fig.7. Comparison of measured andFig.7. Comparison of measured andFig.7. Comparison of measured andFig.7. Comparison of measured and
prprprpredicted memory access cost Matrixedicted memory access cost Matrixedicted memory access cost Matrixedicted memory access cost Matrix
transpose algorithm with cache blockingtranspose algorithm with cache blockingtranspose algorithm with cache blockingtranspose algorithm with cache blocking
optimization optimization optimization optimization

hierarchy implies P=1). Detailed information about the
memory-LogP model can be found in [8].

The memory-communication cost for sending a data
segment depends on architectural parameters, such as
cache capacity, and code characteristics, such as data
distribution, as explained in the memory-LogP model.
In general, the overall communication cost includes
data-collection overhead, the cost of data copying to
the network buffer, the cost of data forwarding to the
receiver (network-communication cost), and other
costs added by the middleware implementation. When
data distribution in memory is noncontiguous, the data
is typically collected into a contiguous buffer before
being copied to the network buffer. This process adds
extra buffering overhead to the overall communication
cost and is implementation dependent. The memory
access cost predicted in this paper is a part of the
latency (l) parameter of the memory-logP model.

Currently we apply this model in improving the
performance of MPI derived datatypes by optimizing
the memory access cost [1]. The MPI Standard [12]
supports derived datatypes, which allow users to
describe noncontiguous memory layout and
communicate noncontiguous data with a single
communication function. This feature enables an MPI
implementation to optimize the transfer of
noncontiguous data. In practice, however, few MPI
implementations provide derived datatypes in a way
that performs better than what the user can achieve by
manually packing data into a contiguous buffer and
then calling an MPI function. Memory access cost has
been the reason for this performance bottleneck. We
use memory-logP model with the help of prediction
formulae to predict this cost and apply memory access
optimization techniques to improve the performance.
Due to space restriction, we cannot explain the
optimization method here. Refer to [1] for full details.

7. Conclusion

Loop transformations and loop access reordering
techniques improve the memory access performance.
To obtain these loop optimization parameters, a simple,
fast and accurate memory access cost prediction model
is necessary. This improves the standard of application
level optimizations and reduces the burden on the
programmers to learn the rapidly improving processor
and computer architecture technology. Towards
achieving this goal, in this paper we proposed an
analytical model to predict the memory access cost
based on the data access patterns. We first classified
the most common data access patterns in scientific
computing applications. We then proposed a model to
predict the memory access cost. We verified this model

with measurements and showed that this model is
practical. The accuracy of our model is reasonable
given its simplicity. We also applied this model to
matrix transpose routines in Fast Fourier Transform
program of NAS benchmarks, which was implemented
in different memory access patterns.

Our model is simple, effective, and easy to be
incorporated into memory cost tuning tools, where
optimization parameters are to be found at runtime.
The prediction errors of 10% to 20% exist, they are
reasonably accurate in making optimization decisions.
We are currently utilizing this model to improve the
performance of MPI derived datatypes, by optimizing
the memory access cost. This cost prediction is a part
of our memory-logP model, which emphasizes the
importance of memory communication performance in
point-to-point communication. Our model is practical
because of its simplicity. We are able to fit this easily
into any optimization library to choose optimization
parameters dynamically at runtime. This is not possible
with the existing models due to their complexity.

We plan to extend this work in various aspects. We
will extend this model to include external and internal
conflict misses. We will broaden this model for
replacement policies other than LRU, such as FIFO,
LFU, MRU, MFU etc. We plan to incorporate this
model in an automatic performance tuning system that
improves the application performance by optimizing
the memory access cost.

8. Acknowledgements

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-
ENG-38, and in part by a grant from the Office of
Advanced Simulation and Computing, National
Nuclear Security Administration, U.S. Department of
Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display
publicly, by or on behalf of the Government.

9. References

[1] Surendra Byna, William Gropp, Xian-He Sun, and Rajeev
Thakur, "Improving the Performance of MPI Derived
Datatypes by Optimizing Memory-Access Cost," IEEE
International Conference on Cluster Computing, Hong
Kong, December 2003

[2] S. Chatterjee and S. Sen, “Cache-Efficient Matrix
Transposition”, Proceedings of the 6th International
Symposium on High-Performance Computer Architecture,
Toulouse, France, January 2000, pages 195-205.
[3] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck,
"Exact Analysis of the Cache Behavior of Nested Loops",
Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation,
Snowbird, UT, June 2001
[4] D.E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E.
Santos, K. E. Schauser, R. Subramonian, and T. von Eicken
“LogP: A Practical Model of parallel computation”,
Communications of the ACM, vol. 39, pp. 78-85, 1996
[5] Somnath Ghosh , Margaret Martonosi , Sharad Malik,
“Cache miss equations: a compiler framework for analyzing
and tuning memory behavior”, ACM Transactions on
Programming Languages and Systems (TOPLAS), v.21 n.4,
p.703-746, July 1999
[6] B.L. Jacob, “An analytical model for designing memory
hierarchies”, IEEE Transaction on Computers, volume 45,
pp. 83-105, 1996.
[7] M. Kandemir, J. Ramanujam and A. Choudhary, “Cache
Locality by a Combination of Loop and Data
Transformations,” IEEE Transactions on Computers (TC)
48(2): 159–167, February 1999.
[8] Kirk W. Cameron, Xian-He Sun, “Quantifying Locality
Effect in Data Access Delay: Memory logP,” in Proceedings
of the 17th International Parallel and Distributed Processing
Symposium (IPDPS '03), April 2003.
[9] Hill, M.D. “Aspects of cache memory and instruction
buffer performance”, Ph.D. Thesis, University of California,
Berkeley, 1987.
[10] K.S. McKinley, S.Carr, and C.W. Tseng, “Improving
data locality with loop transformations”, ACM TOPLAS,
18(4): 424-453. July 1996
[11] N. Mitchell, L. Carter, and J. Ferrante, “A modal model
of memory”. In V.N.Alexandrov, J.J. Dongarra, Computer
Science. Springer, May 28-30, 2001
 [12] Message Passing Interface Forum, “MPI-2: A message
passing interface standard”, High Performance Computing
Applications, 12(1-2):1-299, 1998
[13] D. A. Patterson and J. L. Hennessy, “Computer
Architecture: A quantitative approach”, 2nd edition. San
Fancisco, CA: Morgan Kaufmann Publishers, 1996.
[14] Y. Paek, J. Hoeflinger, and D. Padua, “Simplification of
Array Access Patterns for Compiler Optimizations”. In
Proceedings of the ACM SIGPLAN 98 Conference on
Programming Language Design and Implementation, June
1998. 23
[15] Rong Yan and Seth C, “Goldstein Mobile Memory:
Improving Memory Locality in Very Large Reconfigurable
Fabrics”, FCCM '02, Napa Valley, CA, April 2002

[16] Rafael H. Saavedra and Alan Jay Smith, “Measuring
Cache and {TLB} Performance and Their Effect on
Benchmark Runtimes”, IEEE Transactions on Computers,
Volume: 44, number: 10, p1223-1235, 1995.
[17] A.J. Smith, "Cache Memories", Computing Surveys,
14(3), p.473, September 1982
[18] S. Sen and S. Chatterjee, “Towards a theory of Cache
efficient algorithms”, SODA, 2000
[19] R. Clint Whaley, Antoine Petitet, and Jack Dongarra,
“Automated Empirical Optimizations of Software and the
ATLAS Project”, Parallel Computing, Volume 27, Numbers
1-2, pp 3-25, 2001

Table 3. Number of cache misses for data Table 3. Number of cache misses for data Table 3. Number of cache misses for data Table 3. Number of cache misses for data
access patternsaccess patternsaccess patternsaccess patterns

Data access
pattern

Number of cache misses

Constant




=)(),(

k

c
ic

ik L
WM

Contiguous




=)(*),(),(

k

c
ic

ik
c

ik L
WRM

Non-contiguous
(kCD <) 



=)(*),(),(

k

c
ic

ik
c

ik L
WRM

Table 4. Number of cache misses for nonTable 4. Number of cache misses for nonTable 4. Number of cache misses for nonTable 4. Number of cache misses for non----
contiguous data access patterns with varying contiguous data access patterns with varying contiguous data access patterns with varying contiguous data access patterns with varying

stride and data sizestride and data sizestride and data sizestride and data size
Stride Number of cache misses

kLS ≤<1




=)(*),(),(

k

n
ik

n
ik L

SRM

kk ADSL /≤<  )1,/(max(*),(),(k
n

i
n

ik
n

ik LWRM =

Variable
stride, fixed
data block size

*))0),/min(((
),(

1
),(),(∑

=

=
n

ikR

j
kji

n
ik LSM

 ))1,/(max(),(k
n

ji LW
Variable stride

kk ADSL /≤< ,
variable data
block size

 )1,/(max(
),(

1
),(),(∑

=

=
n

ikR

j
k

n
ji

n
ik LWM

2// DSAD k <<
 



=)(*),(),(

k

n
in

ik
n

ik L
WRM

