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Abstract 

Modern computational science applications are becom- 
ing increasingly multi-disciplinaty involving widely dis- 
tributed research teams and their underlying computa- 
tional platforms. A common problem for the grid appli- 
cations used in these environments is the necessity to cou- 
ple multiple,. pamllel subsystems, with examples ranging 
from data exchanges between cooperating, linked paral- 
lel pmgmms, to concurrent data streaming to distributed 
storage engines. This paper presents the X Change,,, 
middlrware infrastructure for coupling componentized dis- 
tributed applications. XChange,,, implements the ba- 
sic functionality of well-known services like the CCA Fo- 
rum’s MxN pmject, by providing efficient data redistribu- 
tion acmss parallel application components. Beyond such 
basicfinctionaliv, however: XChange,,, also addresses 
MO of the problems faced by wide area scientific collabo- 
rations, which are ( I )  the need to deal with dynamic ap- 
plicatiodcomponent behaviors, such as dynamic arrivals 
and departures due to the availability of additional re- 
sources, and (2)  the need to ‘match’ data formats across 
disparate application components and research teams. In 
response to these needs, XChange,,, uses an anony- 
mous publisWsnbscribe model for  linking interacting com- 
ponents, and the data being exchanged is dynamically spe- 
cialized and transformed to match end point requirements. 
The pubhub paradigm makes it easy to deal with dynamic 
component arrivals and departures. Dynamic data trans- 
formation enables the ‘inflight’ correction ofdata or needs 
mismatches for cooperating components. This paper de- 
scribes the design and implementation of XChange,,,, 
and it evaluates its implementation compared to those of 
lessflexible transports like MPI. It also highlights the utility 
of XChange,,, s ’injlight’ data specialization, by apply- 
ing it to the SmartPointer parallel data visualization envi- 
mnment developed at our institution. Interestingly, using 
XChange,,, did not significantly affectpeljormnnce but 
led to a reduction in the size of the code base. 
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1. Introduction 

Computational science is a distributed wide-area enter- 
prise, rcquiring continuous interactions across geographi- 
cally scparated scientific data sources, across the computa- 
tional simulations that use their data, distributed data repos- 
itories, and the remote output devices and portals to inter- 
act with ongoing computations. With thc increasing size 
of simulation data, the demands on network bandwidth and 
storage capacity required by such applications arc growing 
to the point where it is becoming a challenge to efficiently 
transfer and replicate these large data sets to remote nodes 
for analysis [ 5 ] .  A particularly challenging application is 
the distributed Terrascale Supernova Initiative conducted by 
the Department of Energy (DOE) and university researchers 
in the United States [25], where the real-time interaction 
of dirtributed components and team members requires the 
sharing of data at Gbps rates across heterogeneous wide 
area networks. Similar characteristics may he observed for 
applications like earth simulations [27] or climate model- 
ing [IS], water contamination [22], and satellite data pro- 
cessing systems [9], which can easily consume the compu- 
tational resources of multiple, grid-linked supercomputers. 

One defining attribute of the large, multi-disciplinary 
applications described above is that they typically con- 
sist of multiple, parallel program components [2,7], often 
separately maintained and improved by different research 
groups (e.g., chemical vs. physical models in atmospheric 
simulation [18]). The resulting component interactions im- 
pose interesting new constraints on the mechanisms used for 
data exchanges: 

Diverse data formats. In contrast to single paral- 
lel programs sprcad across distributed computing plat- 
forms, components are designed to be useful for many 
different scientific investigations. Hence, there will 
likely be mismatches between the different data rep- 
resentations used by communicating components. For 
example, a set of components implementing a paral- 
lel molecular dynamics application may distribute data 
according to its spatial positions, but a visualization 

CLUSTER 2004 

mailto:eisen,adhilton}@cc.gatech.edu


component used by a rcsearch team may require data 
to be distributed according to atomic indices, or in a 
coupled atmospheric simulation the ocean model may 
provide data in a format different from that required 
by the climate model. A new role for a data exchange 
mechanisms, thercfore, is to offer efficient means of 
data translation or transformation for interacting com- 
ponents. 

Dynamic behaviors. When constructing multi- 
disciplinary application codes, individual investigators 
cannot be assumed to know all details about the data 
formats or layouts used by individual components. In- 
stead, such knowledge is captured by explicit metadata 
associated with components. Further, just like in com- 
modity ‘plug and play’ applications where components 
arrive and depart at runtime, the meta-information it- 
self is acquired dynamically, for the specific compo- 

..... . nent instances used by a certain large-scale application. 

This paper describes the XChange,,, data exchange 
mechanism for efficiently coupling parallel program com- 
ponents. XChange,,, extends earlier work on M-by- 
N transports by implementing entirely dynamic compo- 
nent interactions, permitting components to establish link- 
ages whenever or wherever necessary on heterogeneous dis- 
tributed computing infrastructures. XChange,,, imple- 
ments the following dynamic functionality: 

1. Parallel M-by-N transport. XChange,,, uses 
a simple, global description of distributed data ex- 
changes, thereby accommodating multiple ways of dis- 
tributing data across varying numbers of parallel prn- 
cessing elements. 

2. Data differentiation. To exchange only the data 
needed by cooperating components, components can 
dynamically select the actual data elements to be ex- 
changed from the potential data exchanges. This is at- 
tained by permitting applications to insert dynamically 
generated data filters into communication streams. 

3. Data transformation. Application components store 
and represent data in formats best suited to the actual 
physical models under consideration. Potential mis- 
matches in representation require the transformation of 
data during exchange. Such transformations cannot be 
expressed statically (at compile time) because of the 
need to support evolving data formats. XChange,,, 
provides functionality that allows applications to dy- 
namically provide custom methods that transform an 
incoming data stream to the format or  representation 
needed by each component. 

Finally, XChange,,, provides an intuitive interface for 
( I )  specifying global data distribution, and (2) creating and 

deploying transformation functions and source side filtering 
capabilities. 

XChange,,, is part of the larger XChange effort 
to create resource-aware middlewarc services for scientific 
collaboration. A future version of XChange,,,, there- 
fore, will be able to dynamically adjust the data exchanges 
being undertaken to the resources available on the under- 
lying execution platforms, initially focused on network- 
awareness. 

This paper evaluates the capabilities of XChange,,, 
using the two application scenarios described in Section 2. 
The SmartPointer framework is an example of the visual- 
ization application, and we compare its performance with 
XChange,,, with its performance as native implementa- 
tion with the E c h o  middleware on which XChange,,, 
is based. Interactions between coupled parallel compo- 
nents are approximated with a simple matrix transpose 
benchmark, where we compare the performance attained 
by dynamic couplings realized with XChange,,, with 
the compile-time couplings established with MPI. Evalu- 
ation results are quite interesting. First, contrary to pop- 
ular conception, the dynamic coupling methods used in 
XChange, , ,  do not lead to much performance degrada- 
tion compared to static methods like MPI. In fact, the worst 
case additional overhead experienced by XChange,,, is 
only I58 larger than that attained by the static MPI imple- 
mentation. Second, the implementation of XChange,,, 
imposes almost no additional overheads on parallel data 
transport compared with a native implementation using 
the underlying E c h o  middleware. Third, XChange,,, 
leads to substantial reductions in code size compared to 
native Echo or MPI solutions due to the simplicity of the 
XChange,,, application interface. 

In the remainder of this paper, we first present relevant 
application scenarios in Section 2. Section 3 describes in 
detail how XChange,,, is implemented, with Section 4 
describing the API it exposes to applications. The frame- 
work is evaluated in Section 5 ,  and other related research 
is presented in Section 6. Conclusions and future research 
appear last. 

2. Application Scenarios 

Two classes of data exchanges between program com- 
ponents have driven our work on XChange,,,: (1) re- 
mote data visualization or storage, implying I-by-M or N- 
by-1 data exchanges, and (2) full M-by-N data exchanges 
between two explicitly pmllelized program components. 
Each of these application classes is described in some de- 
tail below. 
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2.1. Data Visualization 

When visualizing the data produced by parallel simu- 
lations, data is collected from multiple parallel program 
elements to some machine responsible for its display. 
XChange,,, can reduce the complexity of building visu- 
alization Servers because al' its built-in ability to deal with 
concurrent data transports. In addition, XChange,,, can 
deal with ( I )  the desire of end users to only visualize some 
of the output data (i.e., data of current interest) and (2) the 
different data representations used by visualization pack- 
ages. Sample packages studied in our work include the CU- 
MULVS [I71 and SmartPointer [29] systems. 

We illustrate the importance of data selection in conjunc- 
tion with its exchange with Georgia Tech's SmartPointer 
system [29], which can he divided into three different el- 
ements, illustrated in Figure l :  

DataSource. SmartPointer is designed to support 
parallel molecular dynamics applications. Its inputs, 
therefore, are received from a parallel code, resulting 
in an mxl data exchange. This paper's experimen- 
tation, however, uses precomputed data emitted by a 
single data source, to remove potential variability in 
XChange,,, performance due to MD performance 
behavior. 

BondServer. This stage in the processing pipeline pro- 
cesses the atom locations and outputs a list of all bonds 
between atoms. The processing time of the application 
is O(n') ,  and the space bounds are O(m'), where n 
is the total number of atoms in the system and m is 
the total number of atoms close enough to have a bond 
present (n >= m). The BondServer component is im- 
plemented as a cohort of parallel processes that jointly 
implement its functionality. 

Client. The client is a component implemented by a 
parallel cohort of processes that receive bond informa- 
tion from the BondServer and either display it (if it is 
a visualization client) or store it (if it is a file client). 
The client processes do not perform much processing 
other than discarding unneeded data. For example, a 
client may partition all atoms of the MD simulation 
into those above a specific cutting plane or below, and 
implement each of those as a separate process. Alter- 
natively, each process may filter out all atoms of a s ~ -  
cific type. 

SmartPointer exemplifies a general class applications 
that provide real-time visualization support for parallel pro- 
grams [15,24]. Data is generated by some parallelized pro- 
gram component, processed by additional parallel compo- 
nents, and then visualized using diverse displays or display 
packages. Efficient component coupling requires efficient 

Figure 1. SmartPointer overview 

support for parallel data transport and for data selection, so 
that particular components receive the data items they re- 
quire. As currently implemented, SmartPointer does not re- 
quire support for data transformation, but can benefit from 
it when receiving data from alternative data sources. 

2.2. Coupled Simulations 

Consider the case of an atmospheric modeling applica- 
tion that simulates both chemical and physical processes 
in the atmosphere. In realistic deployments, the two cou- 
pled simulations each run on different hardware platforms 
and will use different levels of parallclism in order to match 
each others' speeds. Data exchanges between both simula- 
tions are hi-directional, and data representations are likely 
to differ across these components, requiring data selection 
andor  transformation along with exchanges. Another inter- 
esting aspect of this scenario is that differences in the speeds 
of the two components (based on their levels of paralleliza- 
tion and their mappings to machines) imply the need for 
flexibility concerning 'where' such transformation actions 
are carried out. If chemistry is the bottleneck, then for data 
sent from physics to chemistry, data transformation should 
he performedon the sender side, whereas for data sent from 
chemistry to physics, transformations should be done at the 
receiver. For XChange,,,, this means that applications 
should be offered runtime choices on 'where' transforma- 
tions are performed. XChange,,, provides these choices, 
where transformation and filtering functions can he run at 
the data source or the data consumer. Such functionality 
can improve the performance of coupled simulations by re- 
ducing the impact of computational and processing power 
mismatches. 

3. Implementation 

The implementation of XChange,,, avoids the need 
for prior knowledge in components about their runtime in- 
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teraction. That is, at compile-time, components ncrd only 
include the XChange,,, library with their code, hut their 
decisions about which components they interact with, when 
such interactions occur, and how data exchanges and trans- 
formations are performed are made at runtime. 

To accommodate dynamic component coupling, we em- 
ploy the puhlishkubscrihe model of component interaction, 
using the Echo [ 141 realization of puhlsuh as an implemen- 
tation basis. Specifically, XChange,,, treats data trans- 
fers as events that are published by data sources to event 
channels and then sent to data consumers who subscribe to 
these channels. ‘Handlers’ can apply operations to events 
when they are scnt and when they are received. In fact, 
such handlers are the way in which XChange,,, extends 
the basic publsuh model to implement data distribution and 
transformations. That is, each event has associated meta- 
information that describes the layout of the data it contains 
and the way in which such data is to be distributed to sub- 
scribers. We next describe how data distributions are speci- 
fied and carried out. 

To specify the global distribution of a data packet [ l l ,  
13, 17,211, XChange,,,, represents this distribution as a 
quintuple {atart, end, stride, length}. Star? is the begin- 
ning coordinate of the data block, end is the final coordi- 
nate of the block, stride is the length of the gaps within the 
block and length is the size of each subsection of the block. 
XChange,,, computes the actual data distribution to be 
carried out using an extended version of the redistribution 
calculation algorithm presented in [ 1 I], to handle variable- 
in addition to fixed-size blocks. Handler code implements 
the distribution actions computed by this algorithm. 

There are several important attributes that distinguish 
XChange,,, from other implementations of mxn func- 
tionality: 

1. Component independence. This property states that 
each component need only know about its own data 
distribution in order to successfully exchange data with 
another component. No prior information ahout the 
other component andfor its data distribution is required 
for successfully exchanging data between both. The 
implementation of XChange,,, and of the under- 
lying pub/sub system are responsible for forming the 
appropriate network connections needed for efficient 
one-to-one data transmissions across the parallel pro- 
cesses (and the machines on which they run) that im- 
plement each component. 

2. Subscriher-driven data differentiation and filtering. To 
realize a specific inter-component data re-distribution, 
XChange,,, combines the provider’s distribution 
description with the consumers’ description, whenever 
a subscription is initiated. To efficiently implement the 
combined distribution actions, XChange,,, lever- 

Figure 2. XChange,,, overview 

ages the Echo’s ability to dynamically deploy han- 
dlers ‘into’ the address spaces of data providers, us- 
ing dynamic code generation techniques. This facility 
permits the data provider to publish data without con- 
sidering subscriber needs, but the actual data distribu- 
tion and transformations being carried out in the data 
provider’s address space do take into account those 
needs, thereby avoiding the expensive data copying 
or re-distribution actions required by concentrator- or 
overlay network-based realizations of mxn functional- 
ity. 

Figure 2 describes the flow of data and parameters 
in the XChange,,, framework. Once a data producer 
application registers its data and data distribution with 
XChange,,,, it then uses the XChange, , ,  api to suh- 
mit data for transmission. Such transmissions typically trig- 
ger the execution of handlers that operate on the data, fol- 
lowed by the distribution of data via the underlying puh/suh 
infrastructure. As stated earlier, handlers are created dy- 
namically, based on the additional distribution needs regis- 
tered by data subscribers. Such subscribers can also provide 
transformation functions to convert data to correct format in 
which they wish to receive it andor  to perform data filter- 
ing. In our current implementation, this implies ( I )  that the 
subscriber sends the distribution to the data provider (using 
parameter transmission mechanisms provided by the under- 
lying pub/sub infrastructure), (2) that a redistribution sched- 
ule is calculated and installed at the provider, (3) that in 
addition, a transformation function is installed, if desired, 
whereupon (4) all future events submitted by the provider 
are distributed and transformed for the subscriber as per its 
instructions. Finally, by integrating these actions into the 
implementation of the publsub system, all unnecessary data 
copying is avoided. This is demonstrated with performance 
measurements in Section 5. 
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4. Usage 

server = initservice (process-size, ‘“test”, 
process-id, SERVER) ; 

registerDistribution(server, no-tiles, 
distrib, sizeof (struct data) ) ; 

registerData(server, data-field-list, 
data-format-list,test-data); 

/*begin loop*/  
/*process data*/ 
sendData (server) ; 
updateDistribution(server, new-tiles, 

new-distrib) ; 
/*end loop*/  

Figure 3. Pmducer API. The producerfirst registers 
the data and its distribution and then publishes the 
data at the end ofeach timestep. 

client = initservice (process-size, ‘“test”, 
process-id, CLIENT) ; 

registerDistribution(client, no-tiles, 
distrib, sizeof (struct data) 1 ; 

registerRcvData(client, data-field-list, 
data-format-list, filter, 
(unsigned char*) test-data) ; 

addTransform(client, transform) ; 
/*begin loop*/ 
rcvData (client) ; 
/*process data*/ 
updateDistribution(client, new-tiles, 

/*end loop*/  
new-distrib) ; 

Figure 4. Consumer API. The consumer registers 
data similar to the server but can also specifj, an ad- 
ditional transform function. 

XChange,,, exposes a simple API to the applica- 
tions, involving data registration and description. Figure 3 
shows the steps required by the data producer. The pro- 
ducer application initializes XChange,,, with the init- 
Service calls allowing other applications to dynamically 
discover the producer. It then registers the data and its dis- 
tribution using the registerData and registerDistribution 
calls. The distribution is described as an array of distStride 
smctures encapsulating the afore mentioned quintuple of 
{first, last, stride, length}. Once the data and the dis- 
tribution have been successfully registered, the application 
can initiate data transfer using the sendData call. This is 
a blocking call and returns only when all the data has been 

/*convert length to cm from inches*/ 
input.length = output.length 2.5; 
/*convert mass from kg to lbs*/ 
input.mass = output.mass 2.2; 

Figure 5. A simple transformationfunction to con- 
vert u n i t s f ”  the metric system to the imperial sys- 
tem 

sent, thereby allowing the application to modify the data 
buffer after it returns. Note that the call does not block until 
the data is delivered, to allowing a measure of asynchronoc- 
ity between the producer and the consumer. 

The data consumer also follows the same initialization 
and registration steps, but it has the added ability to specify 
one or more transform functions. These transform functions 
process the data before it is delivered to the client and can be 
executed either at the data source (thus reducing the load on 
the consumer and/or reducing the network bandwidth con- 
sumed by data transmission) or the data client (thus reduc- 
ing the load on the producer). The client issues a rcvData 
call to get the data. This call is blocking and returns once the 
data has been collected from all participating data sources. 
Both the producer and the consumer can update their distri- 
butions at runtime using the updateDstnbution function. 

Transform functions are among the more interesting 
components of XChange,,, functionality. They may be 
written in ECL (a subset of C), which then results in their 
runtime installation via dynamic binary code generation on 
the target machine (we support most common computer ar- 
chitectures, including SPARC, MIPS, IA32, and in the near 
future IA64). Altematively, resulting in some level of oper- 
ating system dependence, they may be exported as dynami- 
cally loadable modules. In either case, the processing times 
of transform functions depend on their innate complexities. 
A simple transform is shown in Figure 4. This function per- 
forms a unit conversion. A more complex transform shown 
in Figure 4 performs image downsampling. 

Transform functions have two uses. First, they can he 
used to change data so that the recipient gets it in the form 
desired, thereby avoiding additional data copying or ma- 
nipulation to correct data mismatches. Second, they can 
be used as data filters, which allows applications to per- 
form dynamic data differentiation. Such methods have been 
shown useful in the HPC community [ 5 ]  for reducing net- 
work traffic [ IY] ,  for reducing loads on storage or U0 sub- 
systems, and for controlling the data volumes to which ap- 
plications and end users are exposed. 

The current implementation of XChange,,, asumes  
that transform functions are written by application devel- 
opers. Our future work is automating their generation, by 
declaratively describing each component’s data representa- 
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. . .  
/*ip is the input event 
op is the output event*/ 
for (row = 0; row < ip->height; ++row) I 
for ( col = 0; col < ip->width; ++col) I 
op->data[aut-indxl = 
((0.299 ip->data[indxl t 
0.587 * ip->data[indxtll t 
0.114 * ip->data[indxtZI) + 0.5 1 ;  

indx += 3; 
+tout-indx; 
) 

1 
return 1; 

Figure 6. Filterfunction to converta 24bit color im- 
age to lbit black and white image 

tion via XML schemas and then using XML-level descrip- 
tions of the representational changes associated with com- 
ponent communications to create efficient binary codes that 
implement those changes. 

5. Evaluation 

Two different types of benchmarks are used to evaluate 
the XGhange,,, system. The first are microbenchmarks 
to validate the basic performance of XChange,,, and to 
analyze the overheads associated with redistribution pro- 
cesses. The second uses the SmartPointer framework [29] 
as a realistic use case for the XChange,,, interface. All 
of the measurements reported in this paper are performed on 
a Linux cluster with gigabit Ethernet interfaces and Pentium 
nI Xeon processors. 

5.1. Matrix Transpose Microbenchmark 

A simple and common method of data redishihution is 
matrix transposition. Our experiments use a matrix of size 
NxN that is shared by two components, each composed of 
a parallel cohort of Pf2 processors. Emulating differences 
in data layout and representation, in one of the components, 
the matrix is stored striped over its columns, and in the other 
over its rows. At each iteration step, the column data is 
redistributed to the rows. Thus, each process Pi sends a 
chunk of size 2N2/P to each of the other processes in the 
row component. 

Measurements use two versions of this application, built 
with XChange,,, and MPI. The MPI code utilizes a cus- 
tom MPI type that sends the correct data to the correct pro- 
cess with a single MPI call. Aside from the marshalling 
of data, no additional computation is carried out. The 

XChange,,, version is implementcd using the system’s 
generic redistribution mechanism. 

Figure 7 shows the times taken for the transpose for van- 
ous data sizes. Looking at thc trend line, it is clear that both 
implementations approach an asymptotic value for large 
data sizes from which we can calculate the effective hand- 
width usage of the data transfer. This bandwidth is neces- 
sarily lower than the total available bandwidth because we 
ignore the marshalling and unmarshalling overheads in the 
system. However, it can be seen that the performance differ- 
ence between the two implementation is less than 15%. Ad- 
ditionally, in the small data regime (message size less than 
20 kB), the XChange,,, performance meets or exceeds 
that of the MPI solution. Further, for a fixed global data 
size, the smaller message size corresponds to a larger num- 
ber of parallel processors, which shows that XChange,,, 
should have good scalability to large numbers of processors. 

The higher overheads in XChange,,, compared to 
MPI can be attributed to the additional processing required 
for handling dynamic data exchanges. The MPI implemen- 
tation uses a priori knowledge to realize appropriate data 
transfer schedules, which XChange,,, cannot do. We 
posit, however, that even in this case, the performance dif- 
ferences with using XChange,,, may be offset by the 
progammatic ease with which data distribution is handled. 

5.2. The SmartPointer Benchmark 

5.2.1 Comparison with Echo 

To demonstrate the low overheads experienced by 
XChange,,,, we next compare the performance of the 
XChange,,, version of SmartPointer with its original 
Echo implementation. Both versions use dynamic source- 
side filtering to handle the distribution of atom data from 
the DataSource to the Bondserver. The XChange,,, ver- 
sion, however, bas a much smaller code base, because of 
its more intuitive mechanism for describing the distribution 
and transfer of data. 

Two cases are o f  interest. In Figure 8(a), we show the 
performance of both implementations when the computa- 
tion time is significantly greater than the network vms- 
fer time. In Figure 8(b), we show the performance when 
the network transfer time dominates total time. Both cases 
illustrate that the overhead of using XChange,,, as an 
abstraction over E c h o  is quite small. In fact, in the case 
of a simple I-by-1 transfer, XChange,,, is significantly 
faster. This is due to two factors: (1) XChange,,, uses la- 
tency hiding to overlap computation with network transfers 
and (2) XChange,,, has several additional optimizations 
for the special case in which all data is sent to a single node 
(the M-by-l case). 
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6 -  

Figure 7. A comparison of the effective bandwidth utilization between the static MPI solution and XChange,,,. 
We interpolate bandwidth by only considering the size of the data set and the time taken to transfer the data, ignoring 
marshalling and redistribution overheads. The effective bandwidth for MPI at large data sizes is I IS Mbits/s and for 
XChange,,,, it is 102 Mbits/s. Note that at small data sizesnarge numbers ofpmcessors, XChange,,, and MPl 
have no appreciable difference in performance. 

’ 
Bandwidth usage ~ 

6 -  

5.2.2 Data-driven Distribution 

This section’s experiments demonstrate the advantage of us- 
ing the XChange,,, approach to data-driven distribution, 
by allowing the Dataclient to customize data emitted by the 
BondServer. 

7 

c 

Dataclient performance 

10x1 perfarmance - 
10x10 performance - 20 

’ Bandwidthusage 

c 

Figure 9. Data-driven distribution performance. 
Low overhead of redistribution is demonstrated by 
comparing the performance of a 10x1 and a 10x10 
interaction 

It is not unusual for Dataclients (including restart files 
and visualization clients) to require only parts of the data 
being published by a source. We measure the improvement 
in  performance for two possible solutions to this problem. A 
client can either discard data locally after receiving it (thus 
allowing the source to continue unfettered), or the source 
can discard data while sending it. We term the first scenario 
“local discard and the secund “remote discard”. Figure 9 
shows the performance improvements obtained by using re- 
mute discard. 

A potential issue with remote discard is the need to per- 
form additional processing at the data source, thereby po- 
tentially causing a slowdown of the data source. We mea- 
sure this slowdown by comparing its performance with a 
single client (thus running only a single function at the 
source) against I O  clients. It is evident from our measure- 
ments that changes in data distribution (i.e., the customiza- 
tion of distributions to different client needs) do not result in 
substantial server-side overheads. Of course, this does not 
hold for complex per-client customizations via transforma- 
tion functions (e.g., data compression via general compres- 
sion methods [28]. For such cases, we plan to introduce the 
additional notion of overlay networks into a future imple- 
mentation of XChange,,,. 

A potential advantage of performing remote discard is a 
reduction in network overhead at the data source. In our 
experiments, we noticed a very slight increase in the time 
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Figure 8 .  Sman Pointer performance comparison between the original Echo-based implementation and the 
XChange,,,  implementation 

per iteration for the Bondserver moving from I client to 10 
clients, hut a marked reduction in moving from local discard 
to remote discard. This is because of the reduced number of 
executions ofthe network protocol stack at the server due to 
reduced data volumes. More generally, by giving applica- 
tions the ability to make their own choices about the trans- 
formation functions to he used and the locations at which 
they are used (i.e., in sender or in receiver), XChange,,,  
provides to end users a tlexible framework for implementing 
M-by-N data exchanges that best match the computational 
platforms they are currently using. 

6. Related Work 

There have been several previous efforts at creating 
general tinmeworks for high performance data distribution 
mechanisms. Highly efficient, domain-specific architec- 
tures lor redistributing data between parallel applications 
are described in [ 10,20,23,26]. In [ 161, an ‘M-by-N dis- 
tribution mechanism for the efficient visualization of par- 
allel data is proposed and evaluated. Generalizing from 
such domain-specific solutions, the PAWS system [3] pro- 
vides a coupling mechanism for parallel applications that 
provides collective invocation as well as parallel data re- 
distribution. The problem domain addressed by this effort 
is that of coupled parallel applications and hence, does not 
address large-scale scientific experiments in which the num- 
ber of components changes dynamically or where different 
types of client? dynamically attach to data sources. In [ I  I ] ,  
the authors propose a more dynamic solution to the problem 

initially addressed in [3]. The distributions can be varied dy- 
namically, but no support is provided for differing types of 
distributions or differing data formats. 

MetaChaos [ 131 provides generic functionality for con- 
necting separately developed applications. MetaChaos re- 
quires the builder of a data parallel library to provide lin- 
earization functions for the parallel data. This approach 
works well when no data transformations are required 
between the data source and data sink, but the lack of 
data transformation and reduction limits its ability to cou- 
ple applications with different data requirements. Its no- 
tion of data linearization is an interesting precursor to the 
XChange,,, mechanism’s ability to dynamically install 
custom data filters and transformers. Datacutter [ 5 ]  allows 
a developer to perform jiltering of data at or near (in net- 
work terms) a data source. This is accomplished by provid- 
ing functionality for running filters on the data at the source, 
but there is no support for dynamic data redistribution. Fi- 
nally, the Common Component Architecture (CCA [2, 71) 
is developing a generic interface for coupling parallel ap- 
plications [SI. We intend for the XChange,,,, middle- 
ware to conform to these specifications when they have been 
completed, hut we note that this initiative does not currently 
address the unique problems associated with coupling for- 
mat translations with component interactions. NetFx [I21 is 
a combination of compiler and runtime enhancements that 
allow applications to describe and distribute data in paral- 
le1 applications. Unlike NetFx, XChange,,, uses only a 
runtime extension and provides additional support for data 
filtering and transformation. 
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Loose couplings like those targetcd by XChanye,,, 
are an important part of web services infrastructures in en- 
terprise computing. Middleware packages such as COMA, 
DCOM and Java RMI don't allow interactions between ap- 
plications that don't support the same data type. However, 
there have been efforts to allow applications to evolve their 
message f o r "  and interoperate between differing mes- 
sage formats [1,6]. There has also been a drive towards 
transformation languages such as XSLT and fxt [4]. XML is 
not designed as a high performance transport, thereby mak- 
ing its use difficult for scientific applications. Furthermore, 
no support is provided for addressing the different levels of 
parallelism that exist in scientific applications, nor is there 
any push for reducing network traffic by filtering out un- 
needed data at the server. XChanye,,, seeks to address 
these problems of loose coupling and application evolution 
in the high performance domain. 

7. Conclusion 

This paper presents a framework for dynamically cou- 
pling applications in the high performance and scientific 
computing domains. The importance of addressing this is- 
sue is derived from the growing complexity of modem high 
performance applications. This bas caused developers to 
move to a compuncnt-based approach, with each compo- 
nent potentially using different intemal data representations 
and panllelization methods. This results in the need to ef- 
ficiently distribute and re-distribute data across communi- 
cating, parallel components running on heterogeneous un- 
derlying computing platforms. Such platforms range from 
sets of clusten connected via commodity networks to su- 
percomputers linked with specialized high end networks. 

The XChange,,, middleware implements mecha- 
nisms for the efficient coupling of parallel components 
across distributed computing infrastructures. Additional 
flexibility compared to previous work on M-by-N inter- 
changes is provided via a 'blind' publishlsubscribe in- 
terface, enabling entirely dynamic component couplings, 
whenever and wherever desired. The middleware also per- 
mits the data-driven customization of such component in- 
teractions, and in addition, clients can transform the for- 
mats of incoming data. The idea is to implement efficient 
couplings even across somewhat mismatched components, 
thereby broadening the utility and applicability of the mid- 
dleware mechanisms. 

The need for integrating dynamic data distribution, dif- 
ferentiation and even transformation into an efficient par- 
allel data transport is demonstrated with multiple parallel 
applications. XChange,,, is evaluated with microbench- 
marks and with a multi-component framework for scien- 
tific modeling and real-time collaboration, termed Smart- 
Pointer. Measurements show that XChanye,,, performs 

well when compared to current static solutions for com- 
ponent coupling (i.e., MPI), and it can outperform static 
solutions due to its ability to control the locations of the 
data transformation and filters associated with parallel data 
transports. 

Our future work will concentrate on developing more in- 
tuitive descriptions for the distribution and re-distribution 
of data structures, pcrhaps using a high level structured lan- 
guage like XML. In addition, we are working on the auto- 
matic generation of the required transformation code, in or- 
der to minimize necessary user involvement. An interesting 
topic is the addition of QoS support to the framework. At 
prescnt, two coupled applications with a two way data ex- 
change will not perform optimally whcn there is adifference 
in the resources available to each application. An approach 
to solving this problem is to dynamically vary the distri- 
bution of data to optimize application interactions. One 
element of that solution would be the addition of commu- 
nication schedules to reduce network congestion between 
coupled applications. The combination of generating trans- 
formation code with resource-awareness in the framework 
would be a powerful solution to the problem of dynamic 
application coupling. 
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