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Abstract

Research interest in Grid computing has grown significantly
over the past five years. Management of distributed resources
is one of the key issues in Grid computing. Central to man-
agement of resources is the effectiveness of resource allocation
as it determines the overall utility of the system. The current
approaches to superscheduling in a grid environment are non-
coordinated since application level schedulers or brokersmake
scheduling decisions independently of the others in the system.
Clearly, this can exacerbate the load sharing and utilization prob-
lems of distributed resources due to suboptimal schedules that
are likely to occur. To overcome these limitations, we pro-
pose a mechanism for coordinated sharing of distributed clus-
ters based on computational economy. The resulting environ-
ment, calledGrid-Federation, allows the transparent use of re-
sources from the federation when local resources are insufficient
to meet its users’ requirements. The use of computational econ-
omy methodology in coordinating resource allocation not only
facilitates the QoS based scheduling, but also enhances utility
delivered by resources. We show by simulation, while some
users that are local to popular resources can experience higher
cost and/or longer delays, the overall users’ QoS demands across
the federation are better met. Also, the federation’s average case
message passing complexity is seen to be scalable, though some
jobs in the system may lead to large numbers of messages before
being scheduled. Our simulations show that the user population
profile comprising 70% seeking optimize for cost and 30% seek-
ing optimize for time, is a good population mix for the proposed
system, as in this case every resource owner in the federation
earns significant incentive. Further the total message count in
this case is much lower when compared to other population pro-
files having greater percentage of the users seeking optimize for
time.

∗extended version of the conference paper published at IEEE Clus-
ter’05, Boston, MA

1 Introduction

Clusters of computers have emerged as mainstream paral-
lel and distributed platforms for high-performance, high-
throughput and high-availability computing. Grid[23]
computing extends the cluster computing idea to wide-
area networks. A grid consists of cluster resources that are
usually distributed over multiple administrative domains,
managed and owned by different organizations having dif-
ferent resource management policies. With the large scale
growth of networks and their connectivity, it is possible to
couple these cluster resources as a part of one large grid
system. Such large scale resource coupling and applica-
tion management is a complex undertaking, as it intro-
duces a number of challenges in the domain of security,
resource/policy heterogeneity, resource discovery, fault
tolerance, dynamic resource availability and underlying
network conditions.

The resources on a Grid (e.g. clusters, supercom-
puters) are managed by local resource management sys-
tems (LRMSes) such as Condor[32] and PBS[11]. These
resources can also be loosely coupled to form campus
Grids using multi-clustering systems such as SGE[26] and
LSF[2] that allow sharing of clusters owned by the same
organization. In other words, these systems do not allow
their combination similar to autonomous systems, to cre-
ate an environment forcooperative federationof clusters,
which we refer as Grid-Federation.

Scheduling jobs across resources that belong to distinct
administrative domains is referred to assuperscheduling.
Majority of existing approaches to superscheduling[37]
in a grid environment are non-coordinated. Supersched-
ulers such as Nimrod-G[3], Tycoon[31], Condor-G[25],
and GridBus-Broker[42] perform scheduling related ac-
tivities independent of the other superschedulers in the
system. They directly submit their applications to the un-
derlying resourceswithouttaking into account the current
load, priorities, utilization scenarios of other application
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level schedulers. Clearly, this can lead to over-utilization
or a bottleneck on some valuable resources while leav-
ing others largely underutilized. Furthermore, these su-
perschedulers do not have a co-ordination mechanism and
this exacerbates the load sharing and utilization problems
of distributed resources because sub-optimal schedules
are likely to occur.

Furthermore, end-users or their application-level su-
perschedulers submit jobs to the LRMS without having
knowledge about response time or service utility. Some-
times these jobs are queued for relatively excessive times
before being actually processed, leading to degraded QoS.
To mitigate such long processing delay and enhance the
value of computation, a scheduling strategy can use prior-
ities from competing user jobs that indicate varying lev-
els of importance. This is a widely studied scheduling
technique (e.g. using priority queues)[5]. To be effective,
the schedulers require knowledge of how users value their
computations in terms of QoS requirements, which usu-
ally varies from job to job. LRMS schedulers can provide
a feedback signal that prevents the user from submitting
unbounded amounts of work.

Currently, system-centric approaches such as
Legion[17, 44], NASA-Superscheduler[38], Condor,
Condor-Flock[12], Apples[10], Punch[30], PBS and SGE
provide limited support for QoS driven resource sharing.
These system-centric schedulers, allocate resources based
on parameters that enhance system utilization or through-
put. The scheduler either focuses on minimizing the
response time (sum of queue time and actual execution
time) or maximizing overall resource utilization of the
system and these are not specifically applied on a per-user
basis (user oblivious). System centric schedulers treat
all resources with the same scale, as if they are worth
the same and the results of different applications have
the same value; while in reality the resource provider
may value his resources differently and has a different
objective function. Similarly, a resource consumer may
value various resources differently and may want to
negotiate a particular price for using a resource. Hence,
resource consumers are unable to express their valuation
of resources and QoS parameters. Furthermore, the
system-centric schedulers do not provide any mechanism
for resource owners to define what is shared, who is
given the access and the conditions under which sharing
occurs[24].

1.1 Grid-Federation

To overcome these shortcomings of non-coordinated,
system-centric scheduling systems, we propose a new
distributed resource management model, called Grid-
Federation. Our Grid-Federation system is defined as
a large scale resource sharing system that consists of a

coordinated federation (the term is also used in the Le-
gion system and should not be confused with our defini-
tion), of distributed clusters based on policies defined by
their owners (shown in Fig.1). Fig.1 shows an abstract
model of our Grid-Federation over a shared federation
directory. To enable policy based transparent resource
sharing between these clusters, we define and model a
new RMS system, which we call Grid Federation Agent
(GFA). Currently, we assume that the directory informa-
tion is shared using some efficient protocol (e.g. a peer-
to-peer protocol[33, 27]). In this case the P2P system pro-
vides a decentralized database with efficient updates and
range query capabilities. Individual GFAs access the di-
rectory information using the interface shown in Fig.1, i.e.
subscribe, quote, unsubscribe, query. In this paper, we are
not concerned with the specifics of the interface (which
can be found in[35]) although we do consider the impli-
cations of the required message-passing, i.e. the messages
sent between GFAs to undertake the scheduling work.

Our approach considers the emerging computational
economy metaphor[3, 41, 43] for Grid-Federation. In this
case resource owners: can clearly define what is shared in
the Grid-Federation while maintaining a complete auton-
omy; can dictate who is given access; and receive incen-
tives for leasing their resources to federation users. We
adopt the market based economic model from[3] for re-
source allocation in our proposed framework. Some of the
commonly used economic models[13] in resource allo-
cation includes the commodity market model, the posted
price model, the bargaining model, the tendering/contract-
net model, the auction model, the bid-based proportional
resource sharing model, the community/coalition model
and the monopoly model. We focus on the commodity
market model[45]. In this model every resource has a
price, which is based on the demand, supply and value
in the Grid-Federation. Our Economy model driven re-
source allocation methodology focuses on: (i) optimiz-
ing resource provider’s objective functions, (ii) increas-
ing end-user’s perceived QoS value based on QoS level
indicators[35] and QoS constraints.

The key contribution of the paper includes our proposed
new distributed resource management model, called Grid-
Federation, which provides: (i) a market-based grid su-
perscheduling technique; (ii) decentralization via a shared
federation directory that gives site autonomy and scala-
bility; (iii) ability to provide admission control facility at
each site in the federation; (iv) incentives for resources
owners to share their resources as part of the federation;
and (v) access to a larger pool of resources for all users. In
this paper, we demonstrate, by simulation, the feasibility
and effectiveness of our proposed Grid-Federation.

The rest of the paper is organized as follows. In Sec-
tion2 we summarize our Grid-Federation and Section3
deals with various experiments that we conducted to
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Figure 1: Grid-Federation

demonstrate the utility of our work. Section 4 explores
various related projects. We end the paper with some con-
cluding remarks and future work in section5.

2 Grid-Federation models

This section provides comprehensive details about our
proposed Grid-Federation, including models used for
budget and deadline calculations in the simulations of the
next section.

2.0.1 Terms and Definitions

A machineis a single or multiprocessor system with mem-
ory, I/O facilities and an operating system. In this paper
we define aclusteras a collection of homogeneous ma-
chines that are interconnected by a high-speed network
like megabit or gigabyte Ethernet[28]. These machines
work as integrated collection of resources. They have a
single system image spanning over all the machines. A
resource management systemis a entity which manages
a set of resources. The RMS can optimize any of the
system-centric or user-centric requests on the underlying
resources.

2.0.2 LRMS(Cluster RMS)

In our proposed framework, we assume that every clus-
ter has a generalized RMS, such as a SGE or PBS, that

manages cluster wide resource allocation and application
scheduling. Most of the available RMS packages have
a centralized organization similar to the master-worker
pool model. In the centralized organization, there is only
one scheduling controller (master node) which coordi-
nates system-wide decisions.

2.0.3 Grid Federation Agent

We define our Grid-Federation (shown in Fig.1) as a
mechanism that enables logical coupling of cluster re-
sources. The Grid-Federation supports policy based[18]
transparent sharing of resources and QoS[29] based job
scheduling. We also propose a new computational econ-
omy metaphor for cooperative federation of clusters.
Computational economy[3, 41, 43] enables the regula-
tion of supply and demand of resources, offers incentive
to the resource owners for leasing, and promotes QoS
based resource allocation. The Grid-Federation consists
of the cluster owners as resource providers and the end-
users as resource consumers. End-users are also likely
to be topologically distributed, having different perfor-
mance goals, objectives, strategies and demand patterns.
We focus on optimizing the resource provider’s objec-
tive and resource consumer’s utility functions by using
a quoting mechanism. The Grid-Federation consists of
cluster resources distributed across multiple organizations
and administrative domains. To enable policy based co-
ordinated resource sharing between these clusters, we de-
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fine and model a new RMS system, which we call Grid
Federation Agent (GFA). It is a two layer resource man-
agement system, managing underlying cluster resources
in conjunction with a LRMS. A cluster can become a
member of the federation by instantiating a GFA compo-
nent. GFA acts as a resource co-coordinator in the feder-
ated space, spanning over all the clusters. These GFAs in
the federation inter-operate using an agreed communica-
tion primitive over the shared federation directory.

The model defines two functional units of a GFA: (1)
distributed information manager(DIM) and (2) resource
manager. The DIM performs tasks like resource discov-
ery and advertisement through well defined primitives. It
interacts with an underlying shared federation directory
(shown in Fig.(1)). Recall that, we assume that the direc-
tory information is shared using some efficient protocol
(e.g. a P2P protocol). In this case the P2P system provides
a decentralized database with efficient updates and range
query capabilities. Individual GFAs access the directory
information using the interface shown in Fig.1, i.e. sub-
scribe, quote, unsubscribe, query. In this paper, we are not
concerned with the specifics of the interface (which can be
found in[35]). The resource discovery function includes
searching for suitable cluster resources while resource ad-
vertisement is concerned with advertising resource capa-
bility (with pricing policy) to other clusters in the federa-
tion. The federation directory maintains quotes or adver-
tised costs from each GFA in the federation. Each quote
consists of a resource descriptionRi, for clusteri, and a
costci for using that resource, configured by respective
cluster owners. UsingRi andci, a GFA can determine
the cost of executing a job on clusteri and the time taken,
assuming that clusteri has no load. The actual load of the
cluster needs to be determined dynamically and the load
can lead to changes in time taken (for job completion). In
this paper, we assume thatci remains static throughout the
simulations. Each GFA can query the federation directory
to find thek-th fastest cluster or thek-th cheapest cluster.
We assume the query process is optimal, i.e. that it takes
O(log n) messages[15] to query the directory, when there
aren GFAs in the system. In this paper, we consider the
number of additional messages that are used to satisfy our
Grid-Federation scheduling process.

The resource manager is responsible for local job su-
perscheduling. Further, it manages the execution of re-
mote jobs in conjunction with the LRMS on the local re-
source.Local jobsrefer to the jobs submitted by the local
population of users. Whileremote jobsrefer to the incom-
ing jobs from remote GFAs. The resource manager pro-
vides admission control facility at each in the federation.
GFAs undertake one-to-one admission control negotiation
with the remote site GFA’s resource manager before sub-
mitting a job. The admission control negotiation is the
enquiry message sent by a remote GFA whether the job

can be completed within the specified deadline. Follow-
ing this, the resource manager queries LRMS about local
job queue size, expected job response time and resource
utilization status. If the LRMS reports that the job can be
completed within the specified deadline, then the admis-
sion control acceptance message is sent to the requesting
remote GFA. On receiving the acceptance message, re-
mote GFA sends the job.

The proposed Grid-Federation mechanism can leverage
services of Grid-Bank [4] for credit management. The
participants in the system can use Grid-Bank to exchange
Grid Dollars.

2.1 General Grid-Federation superschedul-
ing technique

In this section we describe our general Grid-Federation
scheduling technique. In Fig.1 a user who is local to
GFA 3 is submitting a job. If the user’s job QoS can’t be
satisfied locally then GFA 3 queries the federation direc-
tory to obtain the quote of the1-st fastest or1-st cheap-
est cluster. In this case, the federation directory returns
the quote advertised by GFA 2. Following this, GFA 3
sends a negotiate message (enquiry about QoS guarantee
in terms of response time) to GFA 2. If GFA has too much
load and cannot complete the job within the deadline then
GFA 3 queries the federation directory for the2-nd cheap-
est/fastest GFA and so on. The query-negotiate process is
repeated until GFA 3 finds a GFA that can schedule the
job (in this example the job is finally scheduled on cluster
4).

Every federation user must express how much he is
willing to pay, called abudget, and required response
time, called adeadline, for his job numberj. In this
work, we say that a job’s QoS has been satisfied if the
job is completed within budget and deadline, otherwise
it is not satisfied. Every cluster in the federation has its
own resource setRi which contains the definition of all
resources owned by the cluster and ready to be offered.
Ri can include information about the CPU architecture,
number of processors, RAM size, secondary storage size,
operating system type, etc. In this work,Ri = (pi, µi, γi)
which includes the number of processors,pi, their speed,
µi and underlying interconnect network bandwidthγi. We
assume that there is always enough RAM and correct op-
erating system conditions, etc. The cluster owner charges
ci per unit time or per unit of million instructions (MI)
executed, e.g. per 1000 MI.

We writeJi,j,k to represent thei-th job from thej-th
user of thek-th resource. A job consists of the num-
ber of processors required,pi,j,k, the job length,li,j,k (in
terms of instructions), the budget,bi,j,k, the deadline or
maximum delay,di,j,k and the communication overhead,
αi,j,k.
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To capture the nature of parallel execution with mes-
sage passing overhead involved in the real application,
we considered a part of total execution time as the com-
munication overhead and remaining as the computational
time. In this work, we consider the network communi-
cation overheadαi,j,k for a parallel jobJi,j,k to be ran-
domly distributed over the processes. In other words, we
don’t consider the case e.g. when a parallel program writ-
ten for a hypercube is mapped to a mesh architecture. We
assume that the communication overhead parameterαi,j,k

would scale the same way over all the clusters depending
on γi. The total data transfer involved during a parallel
job execution is given by

Γ(Ji,j,k, Rk) = αi,j,k γk (1)

The time for job Ji,j,k =
(pi,j,k, li,j,k, bi,j,k, di,j,k, αi,j,k) to execute on resource
Rm is

D(Ji,j,k, Rm) =
li,j,k

µm pi,j,k
+

Γ(Ji,j,k, Rk)

γm
(2)

D(Ji,j,k, Rm) =
li,j,k

µm pi,j,k
+

αi,j,k γk
γm

(3)

and the associated cost is

B(Ji,j,k, Rm) = cm
li,j,k

µm pi,j,k
. (4)

If si,j,k is the time thatJi,j,k is submitted to the system
then the job must be completed by timesi,j,k + di,j,k.

2.2 QoS driven resource allocation algo-
rithm for Grid-Federation

We consider a deadline and budget constrained (DBC)
scheduling algorithm, or cost-time optimization schedul-
ing. The federation user can specify any one of the fol-
lowing optimization strategies for their jobs:

• optimization for time (OFT) – give minimum possi-
ble response time within the budget limit;

• optimization for cost (OFC) – give minimum possi-
ble cost within the deadline.

For each job that arrives at a GFA, called the local GFA,
the following is done:

1. Setr = 1.

2. If OFT is required for the job then query the fed-
eration directory for ther-th fastest GFA; otherwise
OFC is required and the query is made for ther-th
cheapest GFA. Refer to the result of the query as the
remote GFA.

3. The local GFA sends a message to the remote GFA,
requesting a guarantee on the time to complete the
job.

4. If the remote GFA confirms the guarantee then the
job is sent, otherwiser := r + 1 and the process
iterates through step 2.

Recall that we assume each query takesO(log n) mes-
sages and hence in this work we use simulation to study
how many times the iteration is undertaken, on a per job
basis and on a per GFA basis. The remote GFA makes
a decision immediately upon receiving a request as to
whether it can accept the job or not. If the job’s QoS pa-
rameters cannot be satisfied (after iterating up to the great-
estr such that GFA could feasibly complete the job) then
the job is dropped.

Effectively, for job Ji,j,k that requires OFC then
GFA m with Rm is chosen such thatB(Ji,j,k, Rm) =
min1<m′≤n{B(Ji,j,k, Rm′)}, and D(Ji,j,k, Rm) ≤
si,j,k + di,j,k. Similarly, for OFT then GFAm is chosen
such thatD(Ji,j,k, Rm) = min1<m′≤n{D(Ji,j,k, Rm′)},
andB(Ji,j,k, Rm) ≤ bi,j,k.

2.3 Grid-Federation coordination tech-
nique

Currently, the coordination methodology in the Grid-
Federation is based on the one-to-one admission control
negotiation message. GFAs undertake one-to-one nego-
tiation before submitting a job. The GFA local to the
submitted job sends admission control negotiate message
to the remote GFA, requesting a guarantee on the total
job completion time. If the remote GFA can complete
the job within the specified time, then the admission con-
trol acceptance message is sent back. Following this, the
GFA sends the job. The inter-GFA coordination scheme
prevents the GFAs from submitting unlimited amount of
jobs to the resources. However, our initial set of ex-
periments do not evaluate the coordination scenario i.e.
we don’t present the experiments which compares the re-
source utilization scenario with and without the coordi-
nation scheme. Further, the current coordination scheme
can be improved by making GFAs dynamically update
their local resource utilization metrics into the decentral-
ized federation directory. This can significantly reduce
the number of negotiation messages required to schedule
a job. We intend to consider these issues and relevant eval-
uation in our future work.

2.4 Quote value

We assumeci remains static throughout the simulations.
In this work, we are only interested in studying the ef-
fectiveness of our Grid-Federation superscheduling algo-
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rithm based on the static access chargeci. Analyzing
different pricing algorithm based on supply and demand
function is a vast research area. Investigating how the
cluster owners determine the price[19, 40, 45] of their
commodity is subject of future work. In simulations, we
configureci using the function:

ci = f(µi) (5)

where,
f(µi) =

c

µ
µi (6)

c is the access price andµ is the speed of the fastest
resource in the Grid-Federation.

2.5 User budget and deadline

While our simulations in the next section use trace data
for job characteristics, the trace data does not include user
specified budgets and deadlines on a per job basis. In this
case we are forced to fabricate these quantities and we
include the models here.

For a user,j, we allow each job from that user to be
given a budget (using Eq. 4),

bi,j,k = 2B(Ji,j,k, Rk). (7)

In other words, the total budget of a user over simula-
tion is unbounded and we are interested in computing the
budget that is required to schedule all of the jobs.

Also, we let the deadline for jobi (using Eq. 2) be

di,j,k = 2D(Ji,j,k, Rk). (8)

we assign two times the value of total budget and dead-
line for the given job, as compared to the expected budget
spent and response time on the originating resource.

3 Experiments and analysis

3.1 Workload and resource methodology

We used trace based simulation to evaluate the effective-
ness of the proposed system and the QoS provided by the
resource allocation algorithm. The workload trace data
was obtained from[1]. The trace contains real time work-
load of various resources/supercomputers that are de-
ployed at the Cornell Theory Center (CTC SP2), Swedish
Royal Institute of Technology (KTH SP2), Los Alamos
National Lab (LANL CM5), LANL Origin 2000 Cluster
(Nirvana) (LANL Origin), NASA Ames (NASA iPSC)
and San-Diego Supercomputer Center (SDSC Par96,
SDSC Blue, SDSC SP2) (See Table 1). The workload
trace is a record of usage data for parallel jobs that were
submitted to various resource facilities. Every job arrives,

is allocated one or more processors for a period of time,
and then leaves the system. Furthermore, every job in the
workload has an associated arrival time, indicating when
it was submitted to the scheduler for consideration. As the
experimental trace data does not include details about the
network communication overhead involved for different
jobs, we artificially introduced the communication over-
head element as 10% of the total parallel job execution
time. The simulator was implemented using GridSim[14]
toolkit that allows modeling and simulation of distributed
system entities for evaluation of scheduling algorithms.
To enable parallel workload simulation with GridSim, we
extended the existing GridSim’s Alloc Policy and Space
Shared entities.

Our simulation environment models the following basic
entities in addition to existing entities in GridSim:

• local user population – models the workload ob-
tained from trace data;

• GFA – generalized RMS system;

• GFA queue – placeholder for incoming jobs from lo-
cal user population and the federation;

• GFA shared federation directory – simulates an effi-
cient distributed query process such as peer-to-peer.

For evaluating the QoS driven resource allocation al-
gorithm, we assigned a synthetic QoS specification to
each resource including the Quote value (price that a clus-
ter owner charges for service), having varying MIPS rat-
ing and underlying network communication bandwidth.
The simulation experiments were conducted by utilizing
workload trace data over the total period of two days (in
simulation units) at all the resources. We consider the fol-
lowing resource sharing environment for our experiments:

• independent resource – Experiment 1;

• federation without economy – Experiment 2;

• federation with economy – Experiments 3, 4 and 5.

3.2 Experiment 1 – independent resources

In this experiment the resources were modeled as an inde-
pendent entity (without federation). All the workload sub-
mitted to a resource is processed and executed locally (if
possible). In Experiment 1 (and 2) we consider, if the user
request can not be served within requested deadline, then
it is rejected otherwise it is accepted. During Experiment
1 (and 2), we evaluate the performance of a resource in
terms of average resource utilization (amount of real work
that a resource does over the simulation period excluding
the queue processing and idle time), job acceptance rate
(total percentage of jobs accepted) and conversely the job

6



Table 1: Workload and Resource Configuration

Index Resource /
Cluster Name

Trace Date Processors MIPS
(rat-
ing)

Jobs Quote(Price)
NIC to Network
Bandwidth (Gb/Sec)

1 CTC SP2 June96-May97 512 850 79,302 4.84 2
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94-Sep96 1024 700 201,387 3.98 1
4 LANL Origin Nov99-Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93-Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95-Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000-Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98-Apr2000 128 920 73,496 5.24 4

rejection rate (total percentage of jobs rejected). The re-
sult of this experiment can be found in Table2. Experi-
ment 1 is essentially the control experiment that is used
as a benchmark for examining the affects of using feder-
ated(with and without economy) sharing of resources.

3.3 Experiment 2 – with federation

In this experiment, we analyzed the workload process-
ing statistics of various resources when part of the Grid-
Federation but not using an economic model. In this case
the workload assigned to a resource can be processed lo-
cally. In case a local resource is not available then online
scheduling is performed that considers the resources in
the federation in decreasing order of their computational
speed. We also quantify the jobs depending on whether
they are processed locally or migrated to the federation.
Table3 describes the result of this experiment.

3.4 Experiment 3 – with federation and
economy

In this experiment, we study the computational economy
metaphor in the Grid-Federation. In order to study econ-
omy based resource allocation mechanism, it was neces-
sary to fabricate user budgets and job deadlines. As the
trace data does not indicate these QoS parameters, so we
assigned them using Eqs. 7,8 to all the jobs across the re-
sources. We performed the experiment under11 different
combination of user population profile:
OFT = i andOFC = 100−i for i = 0, 10, 20, . . . , 100.
Fig.3, 4, 5, 6, 7 and 8 describes the result of this experi-
ment.

3.5 Experiment 4 – message complexity
with respect to jobs

In this experiment, we consider total incoming and out-
going messages at all GFA’s. The various message type
includes negotiate, reply, job-submission (messages con-
taining actual job) and job-completion (message contain-

ing job output). We quantify the number of local mes-
sages (sent from a GFA to undertake a local job schedul-
ing) and remote messages (received at a GFA to schedule
a job belonging to a remote GFA in the federation). The
experiment was conducted for the same user populations
as explained in experiment 3. Fig.9 describes the result of
this experiment.

3.6 Experiment 5 – message complexity
with with respect to system size

This experiment measures the system’s performance in
terms of the total message complexity involved as the sys-
tem size grows from 10 to 50. In this case, we consider
the average, max and min number of messages (sent/recv)
per GFA/per Job basis. Note that, in casen messages are
undertaken to schedule a job then it involves traversing
(if n > 2 then(n − 2)/2, elsen/2) entries of the GFA
list. To accomplish larger system size, we replicated our
existing resources accordingly (shown in Table 1). The
experiment was conducted for the same user populations
as explained in experiment 3. Fig.10 and 11 describes the
result of this experiment. The Java based simulation tool
prohibited us from scaling the system further.

3.7 Results and observations

3.7.1 Justifying Grid-Federation based resource
sharing

During experiment 1 we observed that 5 out of 8 resources
remained underutilized (less than 60%). During experi-
ment 2, we observed that overall resource utilization of
most of the resources increased as compared to experi-
ment 1 (when they were not part of the federation), for
instance resource utilization of CTC SP2 increased from
53.49% to 87.15%. The same trends can be observed for
other resources too (refer to Fig.2(a)). There was an in-
teresting observation regarding migration of the jobs be-
tween the resources in the federation (load-sharing). This
characteristic was evident at all the resources including
CTC SP2, KTH SP2, NASA iPSC etc. At CTC, which
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Table 2: Workload Processing Statistics (Without Federation)

Index Resource /
Cluster Name

Average
Resource
Utilization
(%)

Total Job Total Job Ac-
cepted(%)

Total Job Re-
jected(%)

1 CTC SP2 53.492 417 96.642 3.357
2 KTH SP2 50.06438 163 93.865 6.134
3 LANL CM5 47.103 215 83.72 16.27
4 LANL Origin 44.55013 817 93.757 6.24
5 NASA iPSC 62.347 535 100 0
6 SDSC Par96 48.17991 189 98.941 1.058
7 SDSC Blue 82.08857 215 57.67 42.3255
8 SDSC SP2 79.49243 111 50.45 49.54

Table 3: Workload Processing Statistics (With Federation)

Index Resource /
Cluster Name

Average
Resource
Utilization
(%)

Total
Job

Total Job
Accepted(%)

Total
Job Re-
jected(%)

No. of
Jobs
Processed
Locally

No. of
Jobs Mi-
grated to
Federa-
tion

No. of
Remote
jobs
processed

1 CTC SP2 87.15 417 100 0 324 93 72
2 KTH SP2 68.69 163 99.38 0.61 110 52 35
3 LANL CM5 67.20 215 90.69 9.30 145 50 70
4 LANL Origin 77.62 817 98.89 1.10 733 75 81
5 NASA iPSC 78.73 535 99.81 0.18 428 106 129
6 SDSC Par96 79.17 189 100 0 143 46 30
7 SDSC Blue 90.009 215 98.60 1.39 105 107 77
8 SDSC SP2 87.285 111 97.29 2.70 54 54 89

had total 417 jobs to schedule, we observed that 324 (re-
fer to Table 3 or Fig.2(b)) of them were executed locally
while the remaining 93 jobs migrated and executed at
some remote resource in the federation. Further, CTC
executed 72 remote jobs, which migrated from other re-
sources in the federation.

The federation based load-sharing also lead to a de-
crease in the total job rejection rate, this can be observed
in case of resource SDSC Blue where the job rejection rate
decreased from 42.32% to 1.39%. Note that, the average
job acceptance rate, over all resources in the federation,
increased from 90.30% (without federation) to 98.61%
(with federation). Thus, for the given job trace, it is prefer-
able to make use of more resources, i.e. to migrate jobs. In
other words, the job trace shows the potential for resource
sharing to increase utilization of the system.

3.7.2 Resource owner perspective

In experiment 3, we measured the computational econ-
omy related behavior of the system in terms of its supply-
demand pattern, resource owner’s incentive (earnings)
and end-user’s QoS constraint satisfaction (average re-
sponse time and average budget spent) with varying user
population distribution profiles. We study the relationship
between resource owner’s total incentive and end-user’s
population profile.

The total incentive earned by different resource own-
ers with varying user population profile can be seen in
Fig.3(a). The result shows as expected that the own-
ers (across all the resources) earned more incentive when
users sought OFT (Total Incentive2.30 × 109 Grid Dol-
lars) (scenario-3) as compared to OFC (Total Incentive
2.12 × 109 Grid Dollars) (scenario-1). During OFT, we
observed that there was a uniform distribution of the jobs
across all the resources (refer to Fig.4) and every resource
owner earned some incentive. During OFC, we observed
a non-uniform distribution of the jobs in the federation
(refer to Fig.4). We observed that the resources including
CTC SP2, LANL CM5, LANL Origin, SDSC par96 and
SDSC Blue earned significant incentives. This can also
be observed in their resource utilization statistics (refer
to Fig.4). However, the faster resources (e.g. KTH SP2,
NASA iPSC and SDSC SP2) remained largely underuti-
lized and did not get significant incentives.

Furthermore, the results indicate an imbalance between
the resource supply and demand pattern. As the demand
was high for the cost-effective resources compared to the
time-effective resources, these time-effective resources
remained largely underutilized. In this case, the major-
ity of jobs were scheduled on the cost-effective compu-
tational resources (LANL CM5, LANL Origin, SDSC
Par96 and SDSC Blue). This is the worst case scenario
in terms of resource owner’s incentive across all the re-
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(a) Average resource utilization (%) vs. resource name

(b) No. of jobs vs. resource name

Figure 2: Resource utilization and job migration plot

(a) Total incentive (Grid Dollars) vs. user population profile

(b) No. of remote job serviced vs. user population profile

Figure 3: Resource owner perspective
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sources in the federation. Although, when the majority
of end-users sought OFT (more than 50%), we observed
uniform distribution of jobs across resources in the federa-
tion. Every resource owner across the federation received
significant incentive (refer to Fig.3(a)) and had improved
resource utilization (refer to Fig.4). These scenarios show
balance in the resource supply and demand pattern.

Further, in this case (the majority of users sought OFT
(more than 50 percent)), the average resources in terms
of cost/time effectiveness (SDSC Par96 and SDSC Blue)
made significant incentive (which can also be seen in their
average utilization) as compared to when OFC users con-
stituted the majority population. Probably, this is due to
computational strength of cost-effective resources (Since
LANL Origin and LANL CM5 offered 2048 and 1024
nodes, therefore collectively they satisfied the majority of
end-users). So, when OFT users formed the majority it re-
sulted in increased inflow of the remote jobs to these aver-
age resources. Similar trends can be identified in their re-
spective total remote job service count (refer to Fig.3(b)).
Note that, total remote job service count for cost-effective
computational resources (LANL Origin, LANL CM5) de-
creased considerably as the majority of end-users sought
OFT(refer to Fig.3(b)).

Fig.5 shows job migration characteristics at various re-
sources with different population profile. We observed
that the most cost-efficient resource (LANL Origin) ex-
perienced increased job migration rate in the federation as
the majority of its users opted for OFT. Conversely, for the
most time-efficient resource (NASA iPSC) we observed
slight reduction in the job migration rate.

Thus, we conclude that resource supply (number of re-
source providers) and demand (number of resource con-
sumers and QoS constraint preference) pattern can deter-
mine resource owner’s overall incentive and his resource
usage scenario.

3.7.3 End users perspective

We measured end-users QoS satisfaction in terms of the
average response time and the average budget spent un-
der OFC and OFT. We observed that the end-users ex-
perienced better average response times (excluding re-
jected jobs) when they sought OFT for their jobs as com-
pared to OFC (100% users seek OFC) (scenario-1). At
LANL Origin (excluding rejected jobs) the average re-
sponse time for users was7.865 × 103 simulation sec-
onds (scenario-1) which reduced to6.176× 103 for OFT
(100% users seek OFT) (refer to Fig.7(a)). The end-users
spent more budget in the case of OFT as compared OFC
(refer to Fig.7(b)). This shows that users get more util-
ity for their QoS constraint parameter response time, if
they are willing to spend more budget. Overall, the end-
users across all the resources in the federation experi-

(a) Average response time (Sim Units) vs. user population profile

(b) Average budget spent (Grid Dollars) vs. user populationprofile

Figure 7: Federation user perspective: excluding rejected
jobs

10



Figure 4: Resource owner perspective: Average resource utilization (%) vs. user population profile
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Figure 5: Resource owner perspective: Job processing characteristic vs. user population profile
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Figure 6: Resource owner perspective: No. of jobs rejected vs. user population profile
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(a) Average response time (Sim Units) vs. user population profile

(b) Average budget spent (Grid Dollars) vs. user populationprofile

Figure 8: Federation user perspective: Including rejected
jobs

enced improved response time when the majority consti-
tuted OFT population. Although, the end-users belonging
to resource LANL CM5 did not had significant change
in their response time even with OFT preference. It may
be due to their job arrival pattern, that may have inhibited
them from being scheduled on the time-efficient resources
(though we need to do more investigation including job
arrival pattern and service pattern at various resources in
order to understand this ).

Note that, Fig.8(a) and Fig.8(b) includes the expected
budget spent and response time for the rejected jobs as-
suming they are executed on the originating resource.
Fig.6 depicts the number of jobs rejected across various
resources during economy scheduling. During this exper-
iment, we also quantified the average response time and
the average budget spent at the fastest (NASA iPSC) and
the cheapest resource (LANL Origin) when they are not
part of the Grid-Federation (without federation). We ob-
served that the average response time at NASA iPSC was
1.268 × 103 (without federation) simulation seconds as
compared to1.550 × 103 (refer to Fig.8(a))) simulation
seconds during OFT (100% users seek OFT) (as part of
federation). Accordingly, at LANL Origin the average
budget spent was4.851 × 105 (without federation) Grid
Dollars as compared to5.189×105 (refer to Fig.8(b)) Grid
Dollars during OFC (100% users seek OFC) (as part of the
federation). Note that, the plots Fig.8(a) and Fig.8(b) do
not include the average response time and budget spent
for without federation case.

Clearly, this suggests that although federation-based re-
source sharing leads to better optimization of objective
functions for the end-users across all the resources in the
federation, sometimes it may be a disadvantage to the
users who belong to the most efficient resources (in terms
of time or cost).

3.7.4 Remote and Local message complexity

In experiment 4, we measured the total number of mes-
sages sent and received at various GFA’s in the federation
with varying user population profiles. Fig.9 shows the plot
of the local and remote message count at various GFAs in
the federation during economy scheduling. When 100%
users seek OFC, we observed that resource LANL Origin
received maximum remote messages (6.407 × 103 mes-
sages) (refer to Fig.9(a)) followed with LANL CM5 (the
second cheapest). LANL Origin offers the least cost, so in
this case every GFA in the federation attempted to migrate
their jobs to LANL Origin, hence leading to increased in-
flow of the remote messages. While when 100% users
seek OFT, we observed maximum number of remote mes-
sages at the resource NASA iPSC (refer to Fig.9(a)) fol-
lowed by SDSC SP2 (the second fastest). Since, these
resources were time-efficient, therefore all the GFAs at-
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(a) No. of remote messages vs. user population profile

(b) No. of local messages vs. user population profile

(c) Total messages vs. user population profile

Figure 9: Remote-Local message complexity

tempted to transfer their jobs to them. The total messages
involved during this case was1.948 × 104 as compared
to 1.024 × 104 during OFC. This happened because the
resources LANL Origin and LANL CM5 had 2048 and
1024 computational nodes and a fewer number of nego-
tiation messages were undertaken between GFA’s for the
job scheduling.

Fig.9(b) shows total number of local messages under-
taken at a resource for scheduling work. The results
shows, as more users sought OFT, it resulted in increased
local message count at cost-effective resources (LANL
Origin, LANL CM5). Conversely, faster resources experi-
enced greater remote message count. With 50% seek OFC
and 50% seek OFT, we observed uniform distribution of
local and remote messages across the federation (refer to
Fig.9(a)).

To summarize, we observed linear increase in the total
message count with increasing number of the end-users
seeking OFT for their jobs (refer to Fig.9(c)). Hence,
this suggests that the resource supply and demand pattern
directly determines the total number of messages under-
taken for the job scheduling in the computational econ-
omy based Grid system.

Overall, it can be concluded that the population mix of
users in which 70% seek OFC and 30% seek OFT seems
most suitable from the system and a resource owner per-
spective. In this case, we observed uniform distribution
of jobs, incentives across the resources. Further, this pop-
ulation mix does not lead to excessive message count as
compared to other population mix having greater percent-
age of users seeking OFT.

3.7.5 System’s scalability perspective

In experiment 5, we measured the proposed system’s scal-
ability with increasing numbers of resource consumers
and resource providers. The first part of this experi-
ment is concerned with measuring the average number
of messages required to schedule a job in the federation
as the system scales. We observed that at a system size
of 10, OFC scheduling required an average 5.55 (refer
to Fig.10(b)) messages as compared to 10.65 for OFT
(Fig.10(b)). As the system scaled to 50 resources, the
average message complexity per job increased to 17.38
for OFC as compared to 41.37 during OFT. This suggests
that OFC job scheduling required less number of mes-
sages than OFT job scheduling, though we need to do
more work to determine whether this is due to other fac-
tors such as budgets/deadlines assigned to jobs. We also
measured the average number of (sent/received) messages
at a GFA while scaling the system size (refer to Fig.11).
During OFC with 10 resources, a GFA sent/received an
average2.836× 103 (refer to Fig.11(b)) messages to un-
dertake scheduling work in the federation as compared to
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(a) Min message per job vs. system size

(b) Average message per job vs. system size

(c) Max message per job vs. system size

Figure 10: System’s scalability perspective: Message
complexity per job with increasing system size

(a) Min message per GFA vs. system size

(b) Average message per GFA vs. system size

(c) Max message per GFA vs. system size

Figure 11: System’s scalability perspective: Message
complexity per GFA with increasing system size
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6.039 × 103 (refer to Fig.11(b)) messages during OFT.
With 40 resources in the federation, the average message
count per GFA increased to8.943 × 103 for OFC as re-
gards to2.099× 104 messages for OFT.

Figures 10(b) and 11(b) suggests that the user pop-
ulation including 10%, 20% or 30% OFT seekers in-
volves less number of messages per job/per GFA basis
in comparison to 0% OFT seekers. However, with fur-
ther increase in OFT seekers generates more messages per
job/per GFA basis.

From figures 10(b) and 11(b), note that the average
message count grows relatively slowly to an exponential
growth in the system size. Thus, we can expect that the
average message complexity of the system is scalable to
a large system size. More analysis is required to under-
stand the message complexity in this case. However, the
maximum message count suggests that some parts of the
system are not scalable and we need to do more work to
avoid these worst cases, e.g. by incorporating more intel-
ligence into the shared federation directory.

Overall, we averaged the budget spent for all the users
in the federation during OFC and without federation (in-
dependent resources). We observed that during OFC, the
average budget spent was8.874 × 105 Grid Dollars (we
included the expected budget spent of rejected jobs on the
originating resource) as compared to9.359 × 105 during
without federation. However, at most popular resource
(LANL Origin) the average budget spent for local users
during OFC was5.189× 105 as compared to4.851× 105

during without federation. Similarly, we averaged the re-
sponse time for all the users in the federation during OFT
and without federation. We observed that during OFT, the
average response time was1.171 × 104 simulation units
(we included the expected response time of rejected jobs
on the originating resource ) as compared to1.207× 104

during without federation. But at the most popular re-
source (NASA iPSC) the average response time for lo-
cal users during OFT was1.550 × 103 as compared to
1.268× 103 during without federation. Clearly, this sug-
gests that while some users that are local to the popular
resources can experience higher cost or longer delays dur-
ing the federation based resource sharing but the overall
users’ QoS demands across the federation are better met.

Finally, our experiments suggest that the population
mix of users in which 70% seek OFC and 30% seek OFT
seems most suitable from the system and a resource owner
perspective. In this case, we observed uniform distribu-
tion of jobs, and incentives across the resources. Fur-
ther, this population mix does not lead to excessive mes-
sage count as compared to other population mixes having
greater percentage of users seeking OFT.

4 Related Work

Resource management and scheduling for parallel and
distributed systems has been investigated extensively in
the recent past (Apples, NetSolve[16], Condor, LSF, SGE,
Punch, Legion, Condor-Flock, NASA-Superscheduler,
Nimrod-G and Condor-G). In this paper, we mainly
focus on superscheduling systems that allow schedul-
ing jobs across wide area distributed clusters. We
highlight the current scheduling methodology followed
by Grid superscheduling systems including NASA-
superscheduler, Condor-Flock(based on P2P substrate
Pastry[36]), Legion-based federation and Resource Bro-
kers. Furthermore, we also discuss some computational
economy based cluster and grid systems.

The work in[38] models a grid superscheduler archi-
tecture and presents three different distributed job migra-
tion algorithms. They consider job scheduling in com-
putational grids through autonomous local schedulers that
cooperate through a superscheduler (grid scheduler) us-
ing grid middleware. Each resource is modeled to have
a grid scheduler (GS), grid middleware(GM) and a lo-
cal scheduler (LRMS). In the distributed setting, every
GS has affinity with its LRMS. The GS is responsible for
resource discovery, monitoring system status (utilization,
network condition), coordinating job migration related in-
formation with other GS in the system. The GS manages
the grid queue which is a initial placeholder for all incom-
ing jobs at a resource. Incoming job types include the lo-
cal jobs and remote jobs. The local jobs are submitted by
local user population while the remote jobs are migrated
by other GSes in the system. While the LRMS manages
the local queue which is a placeholder for migrated remote
jobs and set of local jobs allocated by GS to the underly-
ing resource. Whenever, a job is submitted to the grid
queue, the GS queries its LRMS though GM for expected
average wait time(AWT) in the local queue. If the AWT is
below the predetermined threshold valueφ(driven by lo-
cal site sharing policy) then the job is moved to the local
queue. However, if the AWT exceedsφ then one of the
three distributed job-migration mechanism is initiated by
the GS. The approaches differ in the way communication
is carried out between the various GSes in order to facil-
itate the load-balancing. These job-migration algorithms
are referred to as (i) Sender-Initiated(S-I); (ii) Receiver-
Initiated(RI); and (iii) Symmetrically-Initiated(Sy-I). In
S-I, the GS sends a resource demand query for a job to all
other GSes in the system through its GM. So, effectively
this approach is based on one-to-all broadcast communi-
cation mechanism. In response to a GS resource query,
every GS sends back the expected AWT, expected run
time(ERT) for the requested job and current resource uti-
lization status(RUS). The value for the parameters AWT,
ERT and RUS is obtained by consulting the respective
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LRMS. Based on the responses, the initiator GS computes
the potential turnaround cost(TC) for every candidate GS.
TC is computed as the sum of AWT and ERT. The GS
with minimum TC is chosen for job-migration. In case
two GS have the same value for TC, then RUS is uti-
lized as a tie-breaker. Hence, the resource which can give
least response time for the job is chosen. Under R-I job-
migration approach, every GS periodically checks its own
RUS at time intervalσ. if the RUS is below a certain pre-
defined thresholdδ then the GS volunteers itself for job-
migration. It broadcasts its RUS parameter to all GSes in
the system. In case, a GS needs to migrate its local job
then it initiates S-I base job migration with the volunteer
nodes. Finally, the Sy-I approach works in both active and
passive mode. Under this approach both S-I and R-I based
job migration algorithm can be initiated by the GSes in the
system. Effectively, the job scheduling is based on broad-
cast communication approach that may generate a large
number of network messages. Such scheduling approach
has serious scalability concerns. In contrast to this super-
scheduling system, our approach differs in the following
(i) the job-migration or the load-balancing in the Grid-
Federation is driven by user specified QoS constraints and
resource owners’ sharing policies; (ii) our approach gives
a resource owner complete autonomy over resource allo-
cation decision; and (iii) our superscheduling mechanism
utilizes decentralized shared federation directory for in-
dexing and querying the resources.

The work in[12] presents a superscheduling system that
consists of Internet-wide Condor work pools. They utilize
Pastry routing substrate to organize and index the Condor
work pool. The resource discovery in previous versions
of Condor flock[22] was based on static knowledge and
required manual configuration. To an extent, the previous
approach was centralized in nature. Pastry arranges the
pools on a logical ring (the P2P overlay’s node identifier
name space) and allows a Condor pool to dynamically join
the existing flock structure using the bootstrap node. Ac-
tivities related to P2P overlay organization and manage-
ment is carried out by a central work pool manager. How-
ever, the superscheduling scheme can only schedule the
jobs to the work pools whose node-id is indexed by the lo-
cal pool managers’ routing tables. In other words, the su-
perscheduling decision is based on partial-set of resources
and hence it inhibits the system from approach optimal
load balancing. Further, broadcast mechanism(sending
inquiry message to every work pool in the routing table
about resource availability and their willingness to accept
jobs) is used to inquire about resource status. Such ap-
proach can be very costly in terms of network commu-
nication overhead. The superscheduling scheme period-
ically compares the metrics such as queue lengths, aver-
age pool utilization and resource availability scenario, and
based on these statistics a sorted list of pools from most

suitable to least suitable is formulated. Using this list,
a local Condor pool manager chooses appropriate pools
for flocking. The superscheduling mechanism is based on
system-centric parameters. In contrast, Grid-Federationis
based on decentralized shared federation directory, hence
our superscheduling mechanism is based on the complete
resource set. Further, the superscheduling scheme consid-
ers user-centric parameters for job scheduling across the
federation.

OurGrid[7] provides a grid superscheduling middle-
ware infrastructure based on the P2P network paradigm.
The OurGrid community is basically a collection of a
number of OurGrid Peer(OG Peer) that communicate us-
ing P2P protocols. Each OG Peer represents a site. Sim-
ilar to the definition of a P2P system, each site has re-
source provider as well as resource consumer population.
A resource consumer(user) runs a brokering system called
MyBroker(a application-level scheduler). Every MyBro-
ker connects to the OurGrid community through its local
OG Peer. A resource provider runs the software system
called Swan, that facilitates access to his resource for any
user in the OurGrid community. The resource sharing in
OurGrid is based on P2P file-sharing model such that ev-
ery participant contributes as well as consumes resources
to/from the community. To negate free-riding in a com-
putational grid environment the model defines a new trust
and reputation management scheme calledNetwork of Fa-
vors[6]. Network of Favors promotes load sharing be-
tween collaborating sites in the OurGrid, while discour-
aging the free riders. Further, it maintains one-to-one
resource sharing credit between the resource providers.
A user submits his application to his MyBroker. De-
pending on the users’ application requirement, MyBroker
sends its request for grid machines to the OG Peer. If
the machines at local site does not match applications’ re-
source requirement then the request is forwarded to other
OG Peers(broadcast) in the community. Depending on
the resource availability pattern and initiator sites’ repu-
tation, the OG Peers reply to the resource query. In other
words, superscheduling in OurGrid is primarily driven by
the site’s reputation in the community. In contrast, we pro-
pose more generalized resource sharing system based on
real-market models. Further, our superscheduling system
focuses on optimizing resource owners and consumers ob-
jective functions.

MOSIX is a cluster management system that applies
process migration to enable a loosely coupled Linux clus-
ter to work like a shared memory parallel(SMP) com-
puter. Recently, it has been extended to support a
grid of Linux clusters to form a federation[9]. MOSIX
Federation(MFED) couples computational clusters un-
der same administrative domain. A basic feature of the
federated environment includes automatic load balanc-
ing among participant clusters (owned by different de-
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partments) while preserving the complete site autonomy.
Clusters are arranged in hierarchy to form MFED environ-
ment. A hierarchical information dissemination scheme,
that enables each node to be aware of the latest system
wide state. The resource information in system is updated
using the randomized gossip algorithm, that requires each
node (a machine) to regularly monitor (specified time in-
terval) the state of its resources (CPU usage, current load,
memory status, network status) and send this information
to a randomly chosen node in the same cluster. Further,
this information is exchanged among different clusters at
a rate which is proportional to the relative network prox-
imity of clusters. This dynamic resource information is
used for inter-cluster and intra-cluster process migration.
In other words, the superscheduling decision in MFED
driven by load conditions of clusters(system centric pa-
rameters). In case, a cluster is found to be heavily loaded
then some processes are migrated to other lightly loaded
ones. Other key feature of MFED includes supporting
dynamic, grid-wide preemptive process migration. Each
user in MFED is allowed to create his processes on the
nodes belonging to their partition. However, to support
dynamic load balancing, a cluster owner can make two
sets of machines one for home users while other for re-
mote users. Thus, this allows a resource owner to clearly
define what is shared and what is not. In additions to
this, the system enforces a process precedence scheme,
in which process with higher precedence may push out
all the processes with lower precedence (forced preemp-
tion). Such precedence is specified by respective owners
of the nodes. Other features include flood control which
limits the number of remote processes that can be run on
a node. Further, processes of a user that may overload a
node are not allowed to migrate. In contrast, we propose
a more generalized superscheduling system where load-
balancing is motivated by resource owners and resource
consumers’ objective functions. Our system considers
scheduling jobs across computational clusters belonging
to different administrative domains. Further, we apply the
P2P network model to manage resource information thus
negating obvious disadvantages of hierarchical approach.

Bellagio[8] is a market-based resource allocation sys-
tem for federated distributed computing infrastructures.
Resource allocation in this system is based on bid-based
proportional resource sharing model. Bids for resources
are cleared by a centralized auctioneer. Users’(i.e. ap-
plication superschedulers) discover resources by query-
ing the SWORD[34] system. SWORD is a decentralized
resource discovery service that supports multi-attribute
queries. SWORD supports queries including per-node
characteristics such as load, physical memory, disk space
and inter-node network connectivity attributes such as net-
work latency. A bid for resource includes sets of resources
desired, processing duration, and the amount of virtual

currency which a user is willing to spend. The Central-
ized auctioneer clears the bid every hour. The resource
exchange in the current system is done through virtual
currency. Virtual currency is the amount of credit a site
has, which is directly determined by the site’s overall re-
source contribution to the federated system. The central-
ized auctioneer uses the SHARE[21] framework for re-
solving bids. SHARE allocates resources by clearing a
combinatorial auction. In contrast, we propose a decen-
tralized superscheduling system based on commodities
markets. Resource allocation decision in our proposed
system is controlled by the concerned site , hence pro-
viding complete site autonomy.

Tycoon[31] is a distributed market-based resource allo-
cation system. Application scheduling and resource allo-
cation in Tycoon is based on decentralized isolated auc-
tion mechanism. Every resource owner in the system runs
its own auction for his local resources. Furthermore, auc-
tions are held independently, thus clearly lacking any co-
ordination. Tycoon system relies on centralized Service
Location Services(SLS) for index resource auctioneers’
information. Auctioneers register their status with the
SLS every 30 seconds. In case, a auctioneer fails to update
its information within 120 seconds then SLS deletes its
entry. Note that, in distributed setting such centralized in-
dexing services can prove to be serious bottleneck in per-
formance and reliability. Application level supersched-
ulers contact the SLS to gather information about various
auctioneers in the system. Once this information is avail-
able, the superschedulers(on behalf of users) issue bids for
different resources(controlled by different auctions) con-
straint to resource requirement and available budget. In
this setting, various superschedulers might end up bid-
ding for small subset of resources while leaving other un-
derutilized. In other words, superscheduling mechanism
clearly lacks coordination. A resource bid is defined by
the tuple(h, r, b, t) whereh is the host to bid on,r is the
resource type,b is the number of credits to bid, andt
is the time interval over which to bid. Auctioneers de-
termine the outcome by using bid-based proportional re-
source sharing economy model. In contrast, we propose
a mechanism for cooperative and coordinated sharing of
distributed clusters based on computational economy. We
apply commodity market model for regulating supply and
demand of resources in the Grid-Federation.

Legion is an object-based meta-system developed at the
University of Virginia. Legion provides a platform to cou-
ple heterogeneous, geographically distributed resources.
The work[44] proposes federated model for scheduling in
wide-area systems and its possible implementation in Le-
gion. The proposed model is based on local schedulers
and wide-area schedulers. The wide-area scheduler con-
sults the local site schedulers to obtain candidate machine
schedules. The inherent scheduling mechanism is system-
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centric. Our proposed system applies market based econ-
omy principles for resource allocation in the federated en-
vironment.

Nimrod-G[3] is an resource management system(RMS)
that serves as a resource broker and supports deadline
and budget constrained algorithms for scheduling task-
farming applications on the platform. It allows the users
to lease and aggregate resources depending on their avail-
ability, capability, performance, cost, and users QoS con-
straints. Application scheduling is based on user-centric
parameters. The superscheduling mechanism inside the
Nimrod-G does not take into account other brokering sys-
tems currently present in the system. This can lead to
over-utilization of some resources while under-utilization
of others. To overcome this, we propose a set of dis-
tributed brokers having a transparent co-ordination mech-
anism.

Libra[39] is a computational economy based cluster-
level application scheduler. This system demonstrates
that the heuristic economic and QoS driven cluster re-
source allocation is feasible since it delivers better util-
ity than traditional a system-centric one for the indepen-
dent job model. Existing versions of Libra lack support
for scheduling jobs composed of parametric and parallel
models, and a federated resource sharing environment.

REXEC[20] is remote execution environment for a
campus-wide network of workstations, which is part of
Berkeley Millennium Project. At a command line, the
user can specify the maximum credits per minute that he
is willing to pay for CPU time. The REXEC client selects
a node that fits the user requirements. REXEC allocates
resources to user jobs proportional to the user demands.
It offers a generic user interface for computational econ-
omy on clusters but not a large scale scheduling system.
It allocates resources to user jobs proportional to the user
valuation irrespective of their job needs, so it is more user
centric type. It is targeted towards cluster resource man-
agement while in contrast we propose a more generalized
grid system.

Finally in Table4, we summarize various superschedul-
ing systems based on underlying network model, schedul-
ing parameter and scheduling mechanism.

5 Conclusion

We proposed a new computational economy based dis-
tributed cluster resource management system called Grid-
Federation. The federation uses agents that maintain and
access a shared federation directory of resource informa-
tion. A cost-time scheduling algorithm was applied to
simulate the scheduling of jobs using iterative queries to
the federation directory. Our results show that, while the
users from popular (fast/cheap) resources have increased

competition and therefore a harder time to satisfy their
QoS demands, in general the system provides an increased
ability to satisfy QoS demands over all users. The result
of the QoS based resource allocation algorithm indicates
that the resource supply and demand pattern affects re-
source provider’s overall incentive. Clearly, if all users
are seeking either time/cost optimization then the slow-
est/most expensive resource owners will not benefit as
much. However if there is a mix of users, some seeking
time and some seeking cost optimization then all resource
providers gain some benefit from the federation. In our
future work we will study to what extent the user profile
can change and how pricing polices for resources leads to
varied utility of the system. We will also study how the
shared federation directory can be dynamically updated
with these pricing policies which can lead to co-ordinated
QoS scheduling.

We analyzed how the resource supply and demand pat-
tern affects the system scalability/performance in terms
of total message complexity. In general, the cost-time
scheduling heuristic does not lead to excessive messages,
i.e. to excessive directory accesses and we expect the
system to be scalable. However it is clear that popu-
lar resources can become bottlenecks in the system and
so we intend to research ways to avoid such bottle-
necking behavior, principally by using coordination via
the shared federation directory. Overall, the proposed
Grid-Federation, in conjunction with a scalable, shared,
federation directory, is a favourable model for building
large scale grid systems.
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