
Fast Query Processing by Distributing an Index over CPU Caches

Xiaoqin Ma ∗and Gene Cooperman∗

College of Computer and Information Science,
and Institute for Complex Scientific Software

Northeastern University
Boston, MA 02115 USA

{xqma, gene}@ccs.neu.edu

Abstract

Data intensive applications on clusters often require re-
quests quickly be sent to the node managing the desired
data. In many applications, one must look through a sorted
tree structure to determine the responsible node for access-
ing or storing the data. Examples include object tracking
in sensor networks, packet routing over the internet, request
processing in publish-subscribe middleware, and query pro-
cessing in database systems. When the tree structure is
larger than the CPU cache, the standard implementation
potentially incurs many cache misses for each lookup; one
cache miss at each successive level of the tree. As the CPU-
RAM gap grows, this performance degradation will only be-
come worse in the future.

We propose a solution that takes advantage of the grow-
ing speed of local area networks for clusters. We split the
sorted tree structure among the nodes of the cluster. We
assume that the structure will fit inside the aggregation of
the CPU caches of the entire cluster. We then send a word
over the network (as part of a larger packet containing other
words) in order to examine the tree structure in another
node’s CPU cache. We show that this is often faster than
the standard solution, which locally incurs multiple cache
misses while accessing each successive level of the tree.

The principle is demonstrated with a cluster configured
with Pentium III nodes connected with a Myrinet network.
The new approach is shown to be 50% faster on this current
cluster. In the future, the new approach is expected to have
a still greater advantage as networks grow in speed, and
as cache lines grow in length (greater cache miss penalty).
This can be used to successfully overcome the inherent
memory latency associated with cache misses.

∗This work was partially supported by the National Science Foundation
under Grants CCR-0204113 and ACIR-0342555, and by the Institute for
Complex Scientific Software (ICSS, http://www.icss.neu.edu/).

1 Introduction

In the past decade, hardware technology had two trends.
On the one hand, microprocessor speeds have followed
Moore’s Law [10], doubling every eighteen months. In the
future, we may instead see a doubling of the number of pro-
cessors per chip, such as multicore/multiprocessor chips,
but the effect on computational power is the same. How-
ever, the development of memory shows a different trend.
Although memory capacity and prices are keeping up with
the increase rate of CPU speed, memory latency has im-
proved little. Memory latency for random access to a RAM
chip runs into a fundamental lower bound determined by
the time to precharge the chip buffer from internal voltages
to the voltages needed to drive an external bus. Hence,
newer memory standards, such as DDR2 RAM and Ram-
bus RAM, concentrate on improving memory bandwidth,
but not memory latency. Over the past decade, the gap be-
tween CPU speed and memory latency has increased expo-
nentially. Current technology trends (especially the higher
memory pressures due to the introduction of dual and quad
processor CPU cores) portend further increases in this gap.

This CPU-memory gap represents a fundamental bot-
tleneck in distributed applications that require messages or
queries to quickly be routed to appropriate nodes, based on
a large index data structure. Two examples of such an index
data structure are a sorted n-ary tree and a sorted array. In
the case of the sorted array, one can look up an index via
binary search.

We do not consider hash arrays for the index data struc-
ture. Specifically, we assume that a key is part of a very
large ordered index set. The range of all possible indices
is divided into sub-ranges. For example, if the indices have
values from 0.0 to 1.0, then there might be three nodes in
charge of indices from 0.0 to 0.33, from 0.33 to 0.67, and
from 0.67 to 1.0, respectively. In this simple example, the
index data structure would record the delimiters 0.0, 0.33,
0.67 and 1.0. The key specified by an incoming query could
be any number between 0.0 and 1.0.

We also assume that multiple nodes are available for
passing external queries to the correct node, based on the
key value in the incoming query. The key must be looked

up in the index. We further assume that the index is too large
to fit in the CPU cache, and overflows into main RAM. Ex-
amples include tracing objects in sensor networks, routing
packets over internet, routing requests in publish-subscribe
middleware, and query processing with database indices.

In this situation, rather than replicate the index on each
node, we propose to distribute the index among the CPU
caches of the multiple nodes. We assume that the aggregate
CPU cache of the multiple nodes is sufficient to hold the
index. We consider three variations of this idea.

We compare each of them with two standard methods
(here called Method A and Method B). Methods A and B
each duplicate the index structure on each node, accept
queries at a single dispatcher node which dispatches queries
to an appropriate node according to a load balancing algo-
rithm, and each other nodes lookup the duplicated index
structure in memory and dispatch the results to the target.
The three variations of Method C have only one copy of
the index structure among all the nodes, accept queries on
a single master node. The master node passes the query to
an appropriate slave node according to one piece of index
structure stored on it, then each slave node processes the
queries over one piece of index stored on it and dispatches
the results to the target. For all methods, the n in an n-ary
tree is chosen so that n keys (n 4-byte words in our case)
and the corresponding pointers fit exactly in an L2 cache
line.

• Method A — index is a large n-ary tree and is dupli-
cated on each node; at each node, each query incurs
multiple cache misses.

• Method B — index is a large n-ary tree and is du-
plicated on each node; at each node, many queries are
stored and then processed as a batch; to process a batch
of queries, a single pass through the tree is made with
a buffering access technique using the L2 cache (see
Section 3.1).

• Method C — index is a large sorted array and is parti-
tioned among the nodes; with each slave node holding
one partition. The master node holds the delimiters for
the partitions.

– Method C-1 — the partition on the slave node is
stored as an n-ary tree.

– Method C-2 — the partition on the slave node
is stored as an n-ary tree; As with Method B,
queries are stored and processed in a batch. To
process a batch of queries, a single pass through
the tree is made with the buffering access tech-
nique, but using the L1 cache instead of the
L2 cache (see Section 3.2).

– Method C-3 — the partition on the slave node is
stored as a sorted array.

Method C is the novel method of distributed in-cache
index (based on aggregating the CPU cache from multi-
ple nodes). The distributed in-cache index is formally de-
fined in Section 2, and contrasted to traditional coopera-
tive caching (based on aggregating the RAM from multiple

nodes). Method B is based on the buffering access tech-
nique, described by Zhou and Ross [14]. Section 3 de-
scribes all of the methods studied here. In the experimen-
tal section (Section 4.1), we demonstrate that Method C-3
is the best for simultaneously satisfying the two criteria of
throughput and response time.
Modeling the Future. Although Method C-3 is somewhat
faster today, it is important to demonstrate that the advan-
tage of Method C-3 will widen further in the future. This
is important as CPU speed, memory bandwidth, and net-
work speed all increase. In order to predict the speeds of
the five methods using future technology, we first define a
simple analytical model that successfully analyzes the run-
ning time of the five methods on today’s architecture. Our
analytical models are based on architectural parameters of
the technology employed.

The analytical model was first checked for accuracy
against the Methods A, B and C-3. (Methods C-1 and C-
2 could also be analyzed, but current experiments showed
them to be inferior to C-3.) The analytical model was found
to be accurate within 25% for the three methods analyzed.

We then make reasonable assumptions about technology
trends, in order to plug in architectural parameters for future
technologies. Appendix A describes the analytical model
that predicts the performance of the three methods. Sec-
tion 4.2 demonstrates future trends of the three methods
based on the model.

1.1 Related Work

The concept of the memory wall has been popularized by
Wulf [13]. Many researchers have been working on improv-
ing cache efficiency to overcome the memory wall problem.
The pioneering work [9] done by Lam et al. has both theo-
retically and experimentally studied the blocking technique
and described the factors that affect the cache formance.
However, there is not an easy way to apply the blocking
technique to the tree traversal problem or to the index struc-
ture lookup problem to improve the cache efficiency.

The issue of cache and n-ary trees is closely related
to the issue of memory-resident B+-trees. There is a
large stream of research on this in the database community
[3, 5, 7, 12, 14]. Rao [12] proposed the CSB+ tree (cache
sensitive B+ tree). In a CSB+ tree, the branching factor is
improved by storing only the first child pointer at each node.
Other child pointers can be calculated by adding the offset
to the first child pointer because all child nodes are stored
consecutively in the memory space in a CSB+ tree. Re-
cently, Zhou [14] proposed the buffering access technique
to improve the cache performance for a bulk lookup. How-
ever, cache miss penalties still account for over 30% of the
total cost for each query in all above proposed methods.

In the area of theory and experimental algorithms, Lad-
ner et al. [8] proposed an analytical model to predict the
cache performance. In their model, they assume all nodes
in a tree are accessed uniformly. This model is not accurate
for the tree lookup problem. Because the number of nodes
from root node to leaf nodes is exponentially increasing,
nodes’ access rates are exponentially decreasing as the their

positioned levels in the tree increase. Hankins and Patel [7]
proposed a model with an exponential distributed node ac-
cess rate in a B+ tree according to the level of a node po-
sitioned. However, they only considered the compulsory
cache misses, and not the capacity cache misses. They also
assume that the tree can fit in the cache. So, for tree struc-
tures that can’t fit in the cache, the model in [7] is not appli-
cable.

With the development of the technologies, the perfor-
mance gap between sequential and random accesses to
RAM is increasing due to difficulties in circuit design,
such as the issue of precharging the buffer. Cooperman et
al. [4] studied the performance impact of random accesses
to RAM and proposed the MBRAM model that distin-
guishes between random and sequential accesses to RAM.
They also show that tree traversal applications can generate
many random memory accesses resulting in degraded per-
formance, as demonstrated by heap sort. In parallel, Byna
et al. [2] proposed a memory cost model for looping opera-
tions.

2 Distributed in-Cache indices

2.1 The Definition of Distributed in-Cache Indices

Historically, one often used aggregate memory in a clus-
ter to store files to reduce the number of disk accesses. We
explore the use of this technique one level higher in the
memory hierarchy than what is traditionally considered to
avoid random memory accesses. Because a large index will
not fit in cache, we will partition the index among the caches
of the many nodes in a cluster. We call this a distributed in-
cache index.

We design a more effective index lookup strategy over
the distributed in-cache index. The following technology
trends stimulate us to distribute an index over CPU caches
in a cluster:

1. The disparity between processor speed and memory
speed is increasing. As we move to faster, multiple-
core CPU chips, the aggregate processor performance
is increasing much more rapidly than main memory
(RAM) performance. This divergence makes it in-
creasingly important to reduce the number of memory
accesses, especially random memory accesses. Index
lookup and tree traversal problems produce many ran-
dom memory accesses. For instance, in the Pentium 4,
the L2 cache miss penalty is around 150 ns, which will
waste more than 200 CPU cycles of modern micropro-
cessors.

2. Emerging high-speed low-latency switched networks
can transfer data across the network much faster than
standard Ethernet. The combined cost of index lookup
in the remote L2 cache and data transfer over an older
network might be more expensive than the cost of in-
dex lookup in the local memory. With today’s high-
speed low-latency networks, the cost of data transfer
in a batch over the network is lower than the cost of

many random accesses to local memory, due to the
stagnating performance of RAM with respect to mem-
ory latency in recent years. For example, on the Boston
University Linux cluster, the measured random mem-
ory bandwidth for a series of 4-byte word accesses at
random locations is 48 MB/s (where each such random
access typically incurs a cache miss), although the se-
quential memory bandwidth (accessing words in se-
quence) is 647 MB/s. The measured one-way Myrinet
bandwidth is 1.1 Gb/s (or 138 MB/s) which is much
faster than the random memory bandwidth. Further
more, in most of today’s systems, communication can
overlap with computation. This makes the communi-
cation cost negligible.

2.2 Design Issues for Distributed in-Cache Indices

Network latency: Local area network latencies range
from the extremely short latency of Myrinet (approximately
7 µs) to latencies of about 100 µs for Gigabit Ethernet.
(Further, depending on the protocol stack of the operating
system, the latency seen by the application may be much
worse.) By aggregating many queries into larger, batched
network messages, we can amortize the latency over the
transimission time. In Myrinet (which is used in our exper-
iments), the transmision time for a 10 KB message (about
10 KB/(1.1 Gb/s) = 80 µs) clearly dominates the latency
(7 µs). For Gigabit Ethernet, one may need to batch a mes-
sage as large as 200 KB for the transmission time to domi-
nate the latency, but the same principle applies.

Memory bandwidth: The memory bandwidth of DDR-
266 RAM is 2.1 GB/s, and still faster variations are avail-
able today. Hence, the full bandwidth of RAM is faster than
the network.

Memory latency: For random memory accesses, mem-
ory latency will dominate if not handled appropriately. On
the Pentium III, a cache miss for a 4-byte word will require a
32 byte cache line to be loaded. Hence, the effective mem-
ory bandwidth degrades by at least a factor of 8. (In fact,
the precharging delay of DRAM technology increases the
degradation factor.) The Pentium 4 has a 128 byte cache
line, with a corresponding degradation factor of 32 in the
worse case when successively accessing words are on dif-
ferent cache lines. (In this random access pattern, each ac-
cess of a four-byte word requires loading a new cache line
of length 4×32 bytes.)

CPU time: We can neglect the CPU time in modelling
the overall time for applications with intensive memory ac-
cesses. This is because CPU computation and memory ac-
cess are overlapped, and memory access time greatly dom-
inates over the time for today’s very fast CPUs.

Cache Contention: We assume that the aggregate cache
size across all CPUs is sufficient to hold the distributed in-
cache index. As a message of batched queries is loaded, this

will lead to cache pollution by evicting some portion of the
index. However, the effect of cache pollution is limited. For
a 4-byte query key, a single cache line of queries will hold
8 keys on the Pentium III (and 32 keys on the Pentium 4).
Assuming that query key values are random, each of the
8 queries will access one leaf node in the index. Hence,
for each cache line of queries that is processed, we will re-
fresh at least 8 different cache lines of the tree. The effect
is larger when one considers interior nodes of the tree. Fur-
ther, the Pentium 4 raises this factor from 8 to 32. Hence,
to the extent that a cache eviction algorithm approximates
an LRU algorithm, the probability of evicting a cache line
containing query keys is much larger than the probability of
evicting a cache line containing a part of the index.

3 Different Index Lookup Methods in a Dis-
tributed Environment

The introduction provided an overview of Methods A, B
and C. Method C in fact consists of three submethods, C-1,
C-2, and C-3. Method A is a straightforward lookup in a
sorted n-ary tree, each node has a replication of the com-
plete tree. In Method B, each node also has a replication of
the complete tree, but its description is more complicated.
We describe Method B, followed by Method C.

3.1 Method B

Method B is based on an idea of Zhou and Ross [14].
They proposed the buffering access method for a stream of
arriving search keys, as shown in Figure 1.

The index tree is logically decomposed into several sub-
trees. A subtree consists of a root node and all of its descen-
dants, down to some level k, where k is chosen so that the
subtree tree will fit in the L2 cache. Along with each sub-
tree, the algorithm maintains an associated buffer to store
search keys that reach the root node of the subtree.

The key to the success of Method B is to process a batch
of search keys at the same time. Each key k in the batch
is looked up in the top level subtree. The search within the
top level subtree will lead to a leaf node, x, of that subtree.
The node x is also the root of a lower subtree. The key k is
then stored into the buffer associated with the subtree rooted
at x.

If there are ` leaf nodes in the top level subtree, then
this requires streaming write access to ` buffers. For ` of
reasonable size, this process is efficient.

After the top level subtree has been processed, each
lower subtree is processed using the keys stored in its buffer
as the batch of search keys. And so the algorithm proceeds
recursively.

Since a subtree and its associated buffer can fit inside the
L2 cache, the process is fast, aside from the need to write
to different buffers. Since the write access is a streaming
access, it avoids the high latency overhead of a cache miss.
Further, such writes can be non-blocking.

L2 Cache L2 Cache

L2 Cache

Figure 1. Buffering Access Method

3.2 Method C

Method C is the proposed new method of Distributed
in-Cache indices. Unlike Method B, the new method intrin-
sically requires many nodes. It assumes that a single node
of our architecture is distinguished as the master node, and
the rest are slave nodes. Queries always arrive at the master
node, which dispatches them to the slave nodes.

The sorted array is decomposed into equal size partitions
and each partition is stored at a slave node in the cluster. We
assume that each partition fits in the CPU cache. We further
assume that there are sufficient nodes to hold these cache-
sized partitions.

Next, the master node contains a data structure used to
determine to which slave node the query should be dis-
patched. We used a sorted array of partition delimiters on
the master node to determine to which child a query should
be passed. This is illustrated in Figure 2.

The submethods C-1, C-2 and C-3 are distinguished ac-
cording to how the slave node does the key lookup. In
method C-1, the slave node stores its part of the index as
an n-ary tree. An optimization of Rao and Ross [12] is used
to store one pointer at each node of the tree. Given a node,
its children in a tree are stored at adjacent locations. Hence,
it suffices to store only a pointer to the first child of a node.
(Rao and Ross gave this data structure the name CSB+ tree.)

Method C-2 adds to this optimization by employing the
buffered access proposed by Zhou et al. [14], described ear-
lier for Method B. That is, the partition on a slave node is
divided into subtrees, such that each subtree can now fit in-
side the L1 cache.

Method C-3 employs a simple sorted array. It employs
binary search for key lookup.

Remark. In principle, if there is a heavy load of incom-
ing queries, a single master node could become overloaded.
This is easily remedied by setting up multiple master nodes,
with replicates of the top level data structure.

L2 Cache

L2 Cache

L2 Cache

L2 Cache

L2 Cache

Figure 2. Cooperative Caching Design

4 Experimental Validation

We did all experiments on a Pentium III Linux cluster
(Red Hat release 7.2). There are 54 nodes on the Linux
cluster. Each node has two 1.3 GHz Pentium III proces-
sors sharing 1 GB of memory. Each processor has its own
16 KB L1 cache and 512 KB L2 cache. The cluster has
two choices of network interconnect: a 100 Megabit/second
Ethernet and Myricom’s 2.2 Gigabit/second Myrinet. For
communication, we use the MPICH 1.2.5 [11] implemen-
tation of MPI [6]. The default network interconnect for
MPI is the 2.2 Gigabits/second Myrinet with the GM pro-
tocol. All programs are compiled with mpiCC using the
gcc − 3.3.1 compiler with optimization level O3.

We measured the one-way bandwidth of Myrinet as
1.1 Gb/s or 138 MB/s. The measured memory bandwidth
(Pentium III, 266 MHz DDR RAM) was 647 MB/s for
sequential memory access, and was 48 MB/s for random
memory access (random access to a 4 byte word).

Note that since Method A incurs many cache misses, the
memory bandwidth that it experiences is actually closer to
the 48 MB/s quoted above. This is slower than the network
bandwidth 138 MB/s of Myrinet, and helps explain the ex-
perimental results.

The parameters for the tree structure used in all experi-
ments are reported in Table 1 except where specifically ex-
plained. Both the search keys and the keys used to construct
the index structure are randomly generated.

For Methods A and B, the node size in the tree structure
is equal to the L2 cache line size. For Methods C-1 and C-3,
the node size in the tree structure is equal to the L1 cache
line size. In Pentium III, both the L1 cache line size and L2
cache line size are 32 bytes. For Method C-2, the node size
is set to half size of the L1 cache to fit in the L1 cache and
assistant the buffering technique. In the implementation, the
search key and the corresponding lookup result are stored in
the same memory location to lessen the cache contention.

Number Of Keys On The Sorted Array 327 kilo
Search Key Size 4 bytes
Index Tree Size 3.2 MB
Subtree Size (except the root subtree) (in B, C) 320 KB
Root Subtree Size (in B, C) 44 bytes
T (in A, B) 7
L (in C-1, C-2) 6
Size of Node (in A, B, and C-1) 32 bytes
Size of Root Node (in C-2) 32 bytes
Size of Leaf Node (in C-2) 8 KB

Table 1. The Index Structure Setup

4.1 Comparing Methods A, B and C

In all experiments, the index tree described in Table 1 is
applied. We generate 8 million (223) random search keys.
We use 11 nodes. For methods A and B, the 8 million search
keys are looked up locally on one node. For method C, one
of the 11 nodes acts as the master, and the others act as
slaves.

Hence, for method C to be competitive, it must process a
search key 11 times faster than for method A and method B
(since methods A and B can use all 11 nodes, operating in
parallel). This is in fact the case, as will be seen in Figure 3.
In order to make for a fair comparison, normalization is ap-
plied to methods A and B: the running time measured for a
query using method A or B is divided by 11.

In Figure 3, the x-axis shows the increase of the batch
size. The y-axis shows the running time for 8 million search
keys. We did experiments for batch sizes ranging from 8 KB
to 4 MB. In practice, one doesn’t need to batch up to 4 MB.
Here we just want to show the performance trends with in-
creasing batch sizes. In Figure 3, , one can see that the
performance doesn’t change when the batch sizes are larger
than 512 KB.

Note also that this experimental comparison gives the
benefit of doubt to Methods A and B. With 11 nodes to
process queries, Methods A and B require a load balanc-
ing algorithm to evenly distribute incoming queries among
all nodes. Method C does not require load balancing, since
all queries arrive at a single master node before being dis-
patched. In this comparison, the overhead of load balancing
is assumed to be zero.

Even after handicapping Method C by not charging over-
head for Methods A and B, all of the experiments show that
Method C-3 has the best performance. Further, this holds
according to either of two distinct measures: throughput or
response time. The advantage of Method C-3 with respect
to throughput is self-evident from the figure.

Figure 3 also demonstrates the faster response time of
Method C-3 over Method B. We take, as an example, the
situation when a fixed throughput of 8 million search keys
in 0.32 seconds must be processed. The figure shows that
Methods C-2 and C-3 achieve this throughput with a batch
size of only 64 KB, while Method B requires a batch size
of 256 KB to achieve that same search time. (Of course,

8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Size of Message/Batch

S
ea

rc
h

T
im

e
(s

) method A
method B
method C−1
method C−2
method C−3

Figure 3. Comparing Method A, B, and C: 8 million (223) search keys (32 MB) over 11 nodes

Method A has a much faster response time, since it pro-
cesses search keys individually. However, our point is that
Method C is capable of simultaneously satisfying severe
constraints in both throughput and response time.)

Methods C-1 and C-2 follows the same trend as Method
C-3 with the increasing batch sizes, but they tend to have a
slightly worse performance. This is because the n-ary trees
of Methods C-1 and C-2 occupy more space than a sorted
array. This produces more pressure on the cache.

From Figure 3, we see that the Methods C are signif-
icantly faster even for the relatively small batch sizes of
32 KB and 64 KB. We observe a 22% reduction in run
time with this configuration. For very large batch size, per-
formance improvement can still be observed even without
cache coloring. If a batch size is 16 KB or less, Methods C-
1, C-2, and C-3 are worse than method B and method A.

For a batch size of 8 KB, there are 1,000 messages, with
an aggregate communication latency of 1000 × 7 µs. The
overhead for 8 KB is small, and for larger batch sizes (fewer
messages), the overhead is negligible.

In the experiments, we also observed that slaves were
idle for 50% of the time for 8 KB batch sizes, and 20%
of the time for 4 MB. We attribute this overhead both to
the overhead of MPI and the operating system, and statis-
tically varying load balance among the slave nodes. This
per-message overhead is amortized across more queries
as the message size increases. Messages were sent using
MPI Isend in order to overlap computation and communi-

cation to the extent supported by the hardware.
The performance degrades slightly as the message size

is increased from 64 KB to 128 KB. We attribute this to
cache contention. When message sizes are 128 KB, the
cache will see the 128 KB of query lookups for the current
message, 128 KB of the next message of queries being re-
ceived (overlapped communication and computation), and
a 320 KB subtree for the local partition of the index. This
adds to more than the 512 KB size of the L2 cache on the
Pentium III.

When the batch size rises beyond 128 KB, the presure of
L2 cache contention will be the same. In that range, the ben-
efit of the lower slave idle time will overcome the penalty
due to cache contention, and boost the overall performance.

Our choice of 8 million search keys is for the purpose
of demonstrating the trend for larger batch sizes. Pragmat-
ically, one would choose a smaller batch size for its im-
proved response time, while achieving similar throughput.

4.2 Predicting the Future

Our initial goal was to define an analytical model ac-
curate enough to predict the present experimental results.
For this purpose, we wrote programs to measure the envi-
ronment parameters of the Linux cluster. We measured the
memory bandwidth, network bandwidth, L2 cache line miss
penalty, L1 cache line miss penalty, comparison cost at a
node whose size is equal to the L2 cache line size. These

numbers are reported in Table 2, and were used in the ana-
lytical model (described in the Appendix).

Using the measured parameters and the equations in Ap-
pendix A, the average cost for a query with three different
methods is predicted. These are reported in Table 3. We
also did experiments to show the accuracy of our evalua-
tion. In Table 3, the batch size equal to 128 KB is applied,
and one master and ten slaves are used in method C. For
fair comparison, normalization that the total running times
for Methods A and B are divided by 11 is applied. Table 3
shows that our model has over 90% of accuracy.

Parameter Value
L2 Cache Size 512 KB
L1 Cache Size 16 KB
L2 Cache line Size 32 bytes
L1 Cache line Size 32 bytes
B2 Miss Penalty 110 ns
B1 Miss Penalty 16.25 ns
TLB Entries 64
Comp Cost Node 30 ns
W1 (Memory Bandwidth) 647 MB/s
W2 (Network Bandwidth) 138 MB/s

Table 2. Parameters On the Linux Cluster

Strategy Equation predicted experimental
time time

Method A: Equation 6 0.45 s 0.39 s
Method B: Equation 6 0.38 s 0.36 s
Method C-3: Equation 8 0.28 s 0.32 s

Table 3. Normalized Predicted and Experi-
mental Running Time for 8 Meg (223) keys

Table 3 provides assurance that the model is reasonably
accurate (at least to within 25%). With confidence in our
present-day estimates, we go on to predict the future.

We assume that CPU speed will continue to double ev-
ery 18 months, while network speed will double only every
3 years. Memory bandwidth is assumed to grow, but the
number of processors sharing the same memory bandwidth
may grow also with the trend to multi-processor CPU chips.
We assume the memory bandwidth available for one proces-
sor will grow 20% per year. Memory latency is assumed not
to change.

Looking into the future. We next employ highly approxi-
mate techniques to argue the trends in the future. We do not
claim high accuracy for this speculative section. However,
even this crude argument will suffice to argue the trends.

Figure 4 demonstrates that the advantage of Method C-3
will continue to grow. Note that the ratio of times com-
paring Method B to C-3 grows from approximately a factor
of 2 in year 0 to about a factor of 10 in year 5. Methods C-1

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

Year

A
ve

ra
ge

 Q
ue

ry

T
im

e
(n

s)
 fo

r
E

ac
h

K
ey

method A
method B
method C−3

Figure 4. Future Trends Based on Model
(128 KB batch size, 8 meg (223) keys)

and C-2 were not graphed, for simplicity, but their curves
would be close to that of C-3.

There is clearly some inaccuracy both in our analytical
model as compared to experiment, and in our assumptions
of future trends. Nevertheless, the trend of a growing speed
advantage for Method C-3 is strong, and the conclusion is
likely to remain under other scenarios of future technologi-
cal trends.

5 Conclusion

We proposed and evaluated the distributed in-cache
indices for the tree lookup problem. The experiments
show all methods (C-1, C-2, and C-3) with distributed in-
cache indices outperform other methods when combing the
two worlds, throughput and response time. Especially,
Method C-3 is the best in most scenario. Method C-3 is two
times faster than Method A and has much higher through-
put and faster response time than Method B. Our analytical
model argues that technological trends of faster CPU and
network will further favor Method C-3.

6 Acknowledgment

We thank the Mariner Project at Boston University for
providing the experimental facilities.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
Proc. of Very Large Databases (VLDB), 1999.

[2] S. Byna, X. Sun, W. Gropp, and R. Thakur. Predicting
memory-access cost based on data-access patterns. In IEEE
International Conference on Cluster Computing, 2004.

[3] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Frac-
tal prefetching B+-trees: Optimizing both cache and disk
performance. In Proc. of SIGMOD, 2002.

[4] G. Cooperman, X. Ma, and V. H. Nguyen. Static perfor-
mance evaluation for memory-bound computing: the mbram
model. In Proc. of the 2004 International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA’04), pages 435–441, 2004.

[5] G. Graefe and P. Larson. B-tree indexes and CPU caches. In
Proc. of 17th International Conference on Data Engineering
(ICDE), 2002.

[6] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd edi-
tion). MIT Press, 1999.

[7] R. A. Hankins and J. M. Patel. Effect of node size on the
performance of cache-conscious B+-trees. In Proc. of SIG-
METRICS, pages 283–294, 2003.

[8] R. E. Ladner, J. D. Fix, and A. LaMarca. Cache performance
analysis of traversals and random accesses. In Proc. of Tenth
ACM-SIAM Symposium on Discrete Algorithms, 1999.

[9] M. Lam, E. Rothberg, and M. Wolf. The cache performance
and optimzations of blocked algorithms. In 4th Int. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS IV), pages 63–75, 1991.

[10] G. Moor. Cramming more components onto integrated cir-
cuits. Electronics, 38:114–117, 1965.

[11] http://www.mcs.anl.gov/mpi/mpich/.
[12] J. Rao and K. A. Ross. Making B+-trees cache conscious in

main memory. In Proc. SIGMOD, pages 475–486, 2000.
[13] W. Wulf and S. McKee. Hitting the memory wall: Impli-

cations of the obvious. ACM Computer Architecture News,
23:20–24, 1995.

[14] J. Zhou and K. A. Ross. Buffering accesses to memory-
resident index structures. In Proc. VLDB, pages 405–416,
2003.

A APPENDIX: Analysis of Index Lookup for
the Three Methods

We introduce a model to analyze the cache performance
of a tree index structure. The model is based on the ex-
pected number of cache line misses for each key lookup.
TLB misses are not considered in our model. So our model
gives a lower bound for the running time. Then we apply
this model to analyze three different designs.

In our model, an n-ary tree index structure and a stream
of arriving search keys are assumed. The variable n is cho-
sen so that n computer words fit in an L2 cache line.

Table 4, below, enumerates all the notations that will be
used in our later discussion:

A.1 The Model of Cache Performance for Tree
Traversal

We follow the analysis of Hankins and Patel [7]. They
assumed that the probability of accessing a vertex in a tree
depended on its level in the tree. Hence, for an n-ary tree,
the children of the root node have probability of being ac-
cessed on the next round that is 1/n of the probability of the
root node being accessed next.

According to [7], for a tree that can fit in the L2 cache,
the expected number of cache misses for each key lookup
is:

∑T

i=1
XD(λi, q)

q
(1)

where:
XD(λi, q) = λ×(1 − (1 − 1/λi)

q) (2)

In the above formula, λi is the number of cache lines at
the ith level of the tree, q is the total number of keys to be
lookuped.

We use [7] as the foundation and further explore the
model. We analyze the problem in two steps:

1. We assume that the tree space touched by the first q0

lookups is exactly the size of L2 cache. The cache
state is marked as the state S0. The state S0 represents
a state when all of the cache has become occupied by
the tree structure.

T
∑

i=1

XD(λi, q0) = C2/B2 (3)

2. The number of caches misses for each key lookup after
the q0th lookup is:

T
∑

i=1

XD(λi, q0 + 1) −
T

∑

i=1

XD(λi, q0) = (4)

T
∑

i=1

XD(λi, q0 + 1) − C2/B2 (5)

For the (q0 +1)-th lookup, the amount of space loaded
from memory to cache is calculated by Equation 4. Af-
ter the (q0 +1)th lookup, the cache state is same as the
state of S0. Hence, for all later lookups, each lookup
needs to load the space (calculated in Equation 4) from
memory to cache.

A.2 Index Structure Analysis for Search
Operands

In our evaluation, we examine only the data cache be-
havior, while ignoring the instruction cache misses and TLB
misses. Instruction cache performance is ignored, because
the instruction complexity is comparable between three
methods. Method A and method B are significantly affected
by TLB misses, because they work on very large datasets.
In contrast, method C generates few TLB misses, except
immediately after a cold start. This is because Method C
works on a small contiguous dataset in memory. Hence, the
following analysis results yield a lower bound running time
for Methods A and B, but a more accurate running time for
Method C.

variable Description
Tree Size the size of the B+ tree
T the total levels of the B+ tree. T = (log(M/K)/log(K + 1) + 1)
L the levels of the B+ tree can fit in cache. Each slave hold L levels of the B+ tree
W1 the memory bandwidth 647 MB/s
W2 the network bandwidth 138 MB/s
C2 the size of L2 cache
B2 Miss Penalty the cost of loading a cache line from the memory to the L2 cache
B2 the size of the L2 cache line in bytes
B1 Miss Penalty the cost of loading a cache line from the L2 cache to L1 cache
B1 the size of the L1 cache line in bytes
Comp Cost Node the cost to traverse one level of the B+ tree while searching a key
NUMmasters the number of master nodes
NUMslaves the number of slave nodes that have lower L levels of the B+ tree in L2 cache
NUMkeys per batch the number of search keys in one batch lookup

Table 4. Parameters Used in The Model

A.2.1 Method A: Standard Method

For each key lookup the cost for the standard one-by-one
key lookup is:

T × Comparison Cost Node +
8

W1

+

(
T

∑

i=1

XD(λi, q0 + 1) − C2/B2) × B2 Miss Penalty

The first term is the computation cost and the other terms
are the memory access costs.

Any path from the root node to one of the leaf nodes
consists of T nodes for a tree with T levels. So, for
each search key lookup, the computation cost is T ×
Comparison Cost Node.

The memory access cost consists of two parts: buffer
access cost and tree access cost. Each search key needs to
be read from an input buffer and to be written to an output
buffer. The costs of reading from a buffer and writing to a
buffer are 4/W1 each, because the input buffer and output
buffer are accessed sequentially.

The tree access cost is calculated according to the equa-
tion 4 with q � q0. We ignore the time spent to access data
in the L2 cache, because access to data in memory dom-
inates the time. Intuitively, the frequently accessed upper
levels of the tree have higher probability of remaining in
cache, but the lower levels of the tree are usually not in the
cache. Hence, a cache miss typically happens at each level
when accessing the lower parts of the tree.

A.2.2 Method B: The Buffering Access Method

For each search key, the cost is:

T × Comparison Cost Node + 4+ 4

W1

× (T/L)+

B2 Miss Penalty × 4

B2

× (T/L − 1)

The first term represents the computation cost explained
in Section A.2.1 . The other terms represent memory access
costs. The tree access cost is 4.

The memory access cost to read a key from buffers
is 4/W1 × T/L, because each buffer is sequentially ac-
cessed and there are a total of T/L subtrees. The to-
tal memory access cost to write a search key to buffers is
B2 Miss Penalty×4

B2

× (T/L−1), because each time a write
buffer is selected according to a random key value.

The tree access cost has two parts: the time spent to load
the subtrees from memory to L2 cache one by one (θ1); and
the time spent to access the subtree in the L2 cache after a
subtree has been loaded into L2 cache (θ2). The time spent
to load all the subtrees from memory to L2 cache can be
calculated with Equation 1 because each subtree can fit in
the L2 cache. For each key lookup, the average number of
L2 cache misses are:

θ1 =

∑T

i=1
XD(λi, q)

q
× B2 Miss Penalty (6)

For each lookup, the number of nodes to be accessed is
T and the number of L2 cache lines to be accessed is also T ,
because the size of node is same as the size of L2 cache line.
The number of cache lines to be accessed in the L2 cache
will be T −

∑T

i=1
XD(λi, q)/q. Therefore, the time spent

to access to data in the L1 cache will be:

θ2 = (T −

∑T

i=1
XD(λi, q)

q
) × B1 Miss Penalty (7)

A.2.3 Method C: Distributed in-Cache indices for In-
dex Structures

We make the following assumptions, which simplify the
analysis.

1. Aggregate network bandwidth is unlimited.

2. There are enough nodes in the cluster so the the ag-
gregate L2 caches over the cluster can hold the entire
index structure. Each node does computation and data
accesses in cache.

3. T < 2L, so that each search can be done within the
caches of just two nodes: a master and a slave. Here,
we make this assumption to make the model simpler.
In practice, if T > 2L, each search needs to traverse
more than the caches of two nodes and our design still
can be applied.

4. The master and slaves do their tasks in parallel.

5.

For each search key, the average cost is

max

{

Dispatch Cost + 8

W1

+ 4

W2

nummasters

,

L × (Comp Cost Node + B1 Miss Penalty)

numslaves

+
8

W1

+ 4

W2

numslaves

}

In Equation 8, the first part is the cost on the master side
and the second part is the cost on the slave side. The max-
imum value is the real cost because masters and slaves do
tasks in parallel. The following explains how to calculate
the costs on the master side and the slave side.

Cost on the master side for each search key:

1. Computation time: Dispatch Cost Per Search Key.
This cost depends on the distribution of search key
values. We assume uniformly distributed search key
values.

2. Memory access time: 8/W1. This cost is to read a key
from the search key array and put the key to a buffer for
an outgoing message. Because accesses to the search
key array and the buffer are both sequential, the full
memory bandwidth can be used to transfer data.

3. Communication time: 4/W2. For each search key, net-
work transmission time is considered, but not latency.
This is because keys are sent out in a message with the
size given of kilobyte magnitude and larger.

The cost on the slave side for each search key:

1. computation time: L × Comparison Cost Node.
Each slave maintains an L-level subtree.

2. memory access time: 8/W1. Reading a key from an
incoming message buffer and writing the result to an
outgoing message buffer.

3. communication time: 4/W2. Sending the search result
to the masters. The transmission time is considered,
but not latency. This is because results are sent in a
message with the size of kilobyte magnitude or larger.

4. L2 access time: L×B1 Miss Penalty. The tree can
fit in the L2 cache, but not in the L1 cache. For each
search key, at each level a L1 cache miss may happen.

In Section 3.2, we described three alternative designs, C-
1, C-2 and C-3. They have similar performance. Equation 8
can be applied to all of them.

