
Modeling ProtocolOffload for Message-orientedCommunication
�

PatriciaGilfeatherandArthur B. Maccabe
ScalableSystemsLab

Departmentof ComputerScience
Universityof New Mexico

pfeather@cs.unm.edu,maccabe@cs.unm.edu

Abstract

In this paper, we presenta new, conceptualmodelthat
captures the benefitsof protocol offload in the context
of high performancecomputingsystems. In contrast to
the LAWSmodel, the extensiblemessage-orientedoffload
model(EMO) emphasizescommunicationin termsof mes-
sages rather than flows. In contrast to the LogP model,
EMO emphasizesthe performanceof thenetworkprotocol
ratherthantheparallel algorithm.Theextensiblemessage-
orientedoffload modelallows protocol developers to con-
sider the tradeoffs andspecificsassociatedwith offloading
protocolprocessingincluding the reductionin message la-
tencyalongwith benefitsassociatedwith reductionin over-
headandimprovementsto throughput.

We give an overview of the EMO modeland showhow
our modelcan be mappedto the LAWSand LogP models.
Wealsoshowhowit canbeusedto analyzeindividualmes-
sageswithin TCPflowsbycontrastingfull offload(TCPof-
fload engines)with other approaches,e.g., interrupt coa-
lescingandsplinteredTCP.

1 Intr oduction

Commoditynetwork speedsareincreasing.GigabitEth-
ernet is now commonplace.In the nearfuture, 10 Giga-
bit and 40 Gigabit Ethernetwill replaceGigabit Ethernet
asthecommoditynetworking technology. Offloadingall or
portionsof communicationprotocolprocessingto anintel-
ligent NIC (Network InterfaceCard) is frequentlyusedto
ensurethat benefitsof thesetechnologiesare available to
applications.

Shivam and Chasecreatedthe LAWS model to study
thebenefitsandtradeoffs of offloading[11]. However, there
areno modelsthataddressthespecificoffloadingconcerns
of high-performancecomputing. We createa model that
�
LosAlamosComputerScienceInstituteSCR71700H-29200001

explores offloading of protocols for individual messages
which allows us to consideroffloading performancefor
message-orientedapplicationsandlibrarieslikeMPI.

In this paper, we provide a new model, the extensible
message-orientedoffload model (EMO), that allows us to
evaluateand comparethe performanceof network proto-
cols in a message-orientedoffloadedenvironment. First,
we overview two popularperformancemodels,LAWS and
LogPandshow how thecurrentmodelsdonotmeetthespe-
cific needsof modelingfor high-endapplications.Second,
we review the characteristicsnecessaryfor a performance
modelfor high-performancecomputingnetwork protocols.
Third, we introduceEMO which is a languagefor captur-
ing performanceof variousoffloadstrategiesfor message-
orientedprotocols. We explain a model of overheadand
latency usingEMO andmapEMO ontoLAWS.

Finally, in this paper, we develop a casestudy using
EMO to answerthefollowingquestion.Canwebuild asuit-
ableTCP offload model that is inexpensive anddecreases
latency for small messages?Using EMO we demonstrate
theconceptof overheadhiding for SplinteredTCP.

2 Previous Modelsof
Communication Performance

Thereare two performancemodelswe consideredbe-
fore creatingone that was specific to the needsof high-
performancecomputing.

2.1 LogP

LogP wascreatedasa new modelof parallelcomputa-
tion to replacetheoutdateddata-orientedPRAM model. It
is basedon following four parameters.

� L - upperboundon latency

� o - protocolprocessingoverhead

1



� g - minimuminterval betweenmessagesendsor mes-
sagereceives

� P - numberof processors

LogP is message-oriented.Theoriginal modelassumes
short messages,but several extensionsto LogP for large
messagesizeshavebeenproposed[1].

The LogP model[10] found that high-performanceap-
plicationsarelinearly sensitive to changesin the overhead
of protocolprocessingandto changesin the gapbetween
messages.High-performancecomputingis associatedwith
very computationally-intensive tasks. This meansthat the
majority of theresourcesin high-performanceapplications
mustbe reserved for computingtasksandcommunication
overheadmustbekeptto aminimum.

Gapis thetime betweensendingonemessageandsend-
ing thenext messageor receiving onemessageandreceiv-
ing thenext message.Gapcanbeconsidereda measureof
theeffectivenessof pipeliningmessagesthrougha network
protocol stack. In the limit, gapprovidesa measurement
of the limiting factorin protocolperformance.To increase
performancein high-endapplications,onemustminimize
protocolprocessingoverheadandminimizegap.

However, the focusof LogP is on the executionof the
entireparallelalgorithmandnot on theperformanceof the
particularnetwork protocol. The LogPmodelgivesus the
understandingthattheoverheadandgapof communications
mustbe minimizedto increaseperformanceof parallelal-
gorithms.It doesnot,however, giveusany insightinto how
thismaybedone.TheLogPmodel,thereforeis not helpful
in thedirectdesignandimplementationof protocolsthatin-
creaseperformanceof high-performanceapplications,but it
doesinform usasto which metricsto minimize.

2.2 LAWS

The LAWS modelwascreatedto begin to quantify the
debateover offloading the TCP/IP protocol. LAWS at-
temptsto characterizethe benefitsof transportoffload. It
is basedon thefollowing four ratios.

� Lagratio(α). Theratioof hostprocessingspeedto NIC
processingspeed

� Applicationratio(γ). The ratio of applicationprocess-
ing to communicationprocessing–how muchCPUthe
applicationneeds

� Wire ratio(σ). Theratio of bandwidthwhenhostis at
100%utilizationto raw networkbandwidth–how much
bandwidthis affectedby CPUutilization

� Structuralratio(β). The ratio of overheadfor commu-
nicationwith offloadto overheadwithoutoffload–what
processingwaseliminatedby offload

The LAWS modeleffectively capturesthe benefitsand
constraintsof protocol processingoffload. Furthermore,
becausethe ratios are independentof a particular proto-
col, LAWS is extensible. When extendingLAWS to an
application-level library, the applicationratio (γ) must re-
flect the additionaloverheadassociatedwith moving data
andcontrol from theoperatingsystem(OS) to theapplica-
tion library, but this is trivial. However, LAWS is stream-
orientedandnot messageoriented. Specifically, it cannot
helpusto understandhow to minimizegapor latency which
areprimaryneedsfor ourmodel.

LAWS is a good model of the behavior of offloading
transportprotocols.We provide a mappingfrom our high-
performancemessage-orientedmodel to the LAWS model
in section3.3sowemaybenefitfrom theunderstandingthat
theLAWSmodelbringsto thequestionof how andwhento
offload.

3 ExtensibleMessage-Oriented
Offload Model

Neither the LAWS modelnor the LogP modelhelp us
to evaluatemethodsfor offloadingnetwork protocolsin the
high-performancecomputingenvironment. LAWS is not
message-orientedandsoit doesnotallow usto modeleither
gapor latency. LogPis not specificallyorientedto network
protocolperformance.We neededa new modelof commu-
nicationin high-performancecomputing.

3.1 Requirementsfor
High-performanceModel

We wantedto createa simple languagefor modeling
methodsof offload in order to understandhow they relate
to high-endapplications.In additionto theability to model
latency, gapandoverhead,we had threerequirementsfor
our performancemodel. We wantedthe model to extend
through all layers of a network protocol stack including
messagelibraries like MPI at the applicationlayer. We
wantedto modeloffloadontoaNIC asthiswasourprimary
focus.We wantedto modelbehavior in a message-oriented
environment.

3.1.1 Extensible

Extensibility is necessaryfor our model becausenetwork
protocolsare often layered. Layeredabove the network
protocolsare more layers of message-passingAPI’s and
languageslike MPI andLINDA. We developedour model
to extend through the layers of network protocols and
message-passingAPI’s.

For example,oneof the reasonsthat TCP hasnot been
consideredcompetitive in high-performancecomputingis



that the MPI implementationsare not efficient. The MPI
implementationsoverTCParegenerallynotwell integrated
into theTCP protocolstack. A zero-copy TCP implemen-
tationstill requiresa copy in applicationspaceasthe MPI
headersarestripped,the MPI messageis matchedandthe
MPI datais movedto theappropriateapplicationbuffer. A
zero-copy implementationof MPI will requireawayto strip
headersandperformtheMPI matchattheNIC level. Again,
applicationlibrarieslikeLINDA areimplementedon topof
MPI. The sameprocesswill continuethroughall layersof
thecommunicationstack.We wantour modelto beexten-
siblesowecancapturethis behavior.

3.1.2 Offload

Offloadingpartsor all of theprocessingof a protocolin or-
der to decreaseoverheadhasbeencommonplacefor years.
In thecommoditymarketsof Internetservingandfile serv-
ing, TCPoffloadengines(TOEs)arebecomingmorecom-
mon as they attemptto competewith othernetworks like
FibreChannel.

In high-performancecomputing,Myrinet, VIA, Quadrix
andIB all do someor all of their protocolprocessingon a
NIC or on the network itself. Offload is an attractive way
to keepoverheadson the hostlow. Our goal in producing
this modelis two-fold. First, we want to provide a way to
explorewhethersmartoffloadingof a commodityprotocol
like IP or TCPcouldeventuallymake theseprotocolscom-
petitive in thehigh-endcomputingarena.Second,we want
a tool for exploringoffloadingin thedevelopmentof future
high-performancecomputingprotocols.

Offloading is the centralfocusof this model. Like the
LAWS model,thegoalof this modelis to exploretheben-
efitsof offloadingtransportprotocolprocessing.Unlike the
LAWS model,we aredoing so in the context of message-
orientedhigh-performanceapplications.

3.1.3 Message-Oriented

We needa performancemodel that is message-orientedto
thatwe canspecificallymodelandcomparemethodsof of-
floading that decreaseoverheador latency. The message-
orientednatureof themodelalsoprovidesthestructurenec-
essaryto modelgapin a new way.

The message-orientednatureof a modelalongwith the
emphasison the communicationpatternson a singlehost
allowsusto focusonthebenefitsof offloadingprotocolpro-
cessingspecificallyasameasureof overheadandgap.

3.2 EMO

We wanteda performancemodel that is not specificto
any oneprotocol,but ourchoiceswereinformedby ourun-
derstandingof MPI overTCPover IP.

TheExtensibleMessage-orientedOffloadmodel(EMO)
Figure 1. The latency and overheadthat is necessaryto
communicatebetweencomponentsmustincludethemove-
mentof datawhenappropriate.

Host OS

Protocol overhead = C_h

Protocol overhead = C_a

Protocol overhead = C_n

Latency = L_ha

Overhead = O_ha

Application

Latency = L_na

Overhead = O_na

Overhead = O_nh

Latency = L_nh

CPU rate = R_h

CPU rate = R_n

NIC

Latency = L_w

Figure 1. The Extensib le Message-oriented
Offload Model

Thevariablesfor this modelareasfollows:

� CN � # cyclesof protocolprocessingonNIC

� RN � Rateof CPUon NIC in MHz

� LNH � Time to move dataand control from NIC to
HostOS

� CH � # cyclesof protocolprocessingonHost

� RH � Rateof CPUon Hostin MHz

� LW � Time to movedataandcontrol from network to
App

� LHA � Time to move dataand control from Host to
App

� LNA � Timeto movedataandcontrolfrom NIC to App

� CA � # cyclesof protocolprocessingatApplication

� ONH � # host cycles to move dataandcontrol from
NIC to HostOS

� OHA � # host cycles to move dataand control from
HostOSto App

� ONA � # host cycles necessaryto communicateand
movedatafrom NIC to Application



3.2.1 Extensibility

The model allows for extensibility with respectto pro-
tocol layers. We hope this model can be useful for re-
searchersworking on offloading partsof the MPI library
(like MPI MATCH) or partsof the matchingmechanisms
for any languageor API. We constructedthemodelsothat
it cangrow throughlevels of protocols. For example,our
modelcanby extended,or telescoped,to includeoffloading
portionsof MPI. We simply addthefollowing variables:

� CA1 � # cyclesof protocolprocessingat Application
level 1

� LAA1 � Time to move dataand control from App to
App level 1

� OAA1 � # hostcycles to move dataandcontrol from
App to App level 1

Thesevariablesareincludedin theoverheadandlatency
equations. The applicationbecomesthe MPI library and
application-level 1 becomesthe userlevel application. If
thereis anotherlibrary or intermediatedatahandlerlike a
LINDA library, anotherlevel of application,application-
level 2, is introduced.

3.2.2 Overhead

EMO allowsusto explorethefundamentalcostof any pro-
tocol,its overhead.Overheadoccursat theper-messageand
per-bytelevel. Our modelallows usto estimateandgraph-
ically representour understandingaboutoverheadfor vari-
ouslevelsof protocoloffload.

Overheadis modeledas

Overhead� ONH
�

CH
�

OHA
�

CA
�

ONA

. However, all methodswill only usesomeof thecommu-
nicationpatternsto processtheprotocol. Traditionalover-
head,for example,will notusethecommunicationpathbe-
tweentheNIC andthe applicationanddoesno processing
at theapplication.

TraditionalOverhead� ONH
�

CH
�

OHA

3.2.3 Gap

Gap is the interarrival time of messagesto an application
onareceiveandtheinterdeparturetimeof messagefrom an
applicationonasend.It is ameasureof how well-pipelined
the network protocol stack is. In a well-pipelinedproto-
col stack,gapis alsoa measureof how well-balancedthe
systemis. If thehostprocessoris processingpacketsfor a
receive very quickly, but the NIC cannotkeepup, thehost
processorwill starve andthe gapwill increase.If the host

processoris not ableprocesspacketsquickly enoughon a
receive,theNIC will starveandthegapwill increase.If the
network is slow, both theNIC andhostwill starve. Gapis
a measureof how well-pipelinedthe protocolstackis and
in thelimit, gapis ameasureof which is thebottleneck,the
hostCPU,theNIC CPUor thewire.

In theextreme,if theprotocolstackis notwell-pipelined,
only onemessagemaybeprocessedata time. If weassume
thatX is thesizeof themessage,thentheupperlimit ongap
is

Gap �
CN
RN

X
� CH

RH

X
� LW

X
On the other hand, if the protocol stackis well-pipelined
andbuffersarefull, thegapis ameasureof theslowestpart
of thepacketprocessing.Thelower limit on gapis

Gap � max�
CN
RN

X �
CH
RH

X �
LW

X

�

In fact, the speedof thehostCPU,theNIC CPUor the
network canbemodifiedasthesystemis developedto cre-
ateamorebalancedsystemandfurtherlowerthelowerlimit
on thegapfor aprotocolimplementation.

3.2.4 Latency

Latency is modeledas

Latency � CN

RN

�
LNH
� CH

RH

�
LHA
�

LNA
� CA

RH

�
LW

However, all methodswill only usesomeof thecommuni-
cationpatternsto processtheprotocol.Traditionalnetwork
protocols,for example,will notusethecommunicationpath
betweentheNIC andtheapplicationanddoesnoprocessing
at theapplication.

TraditionalLatency � CN

RN

�
LNH
� CH

RH

�
LHA

3.3 Mapping EMO onto LAWS

EMO canbemappeddirectly ontoLAWS which is use-
ful in orderto provide a context for themodelin thelarger
offloadcommunity. BecauseLAWS concentrateson anar-
bitrary numberof bytesin a specifiedamountof time and
EMO concentrateson an arbitrary amountof time for a
specifiedamountof bytes,we will have to make a few as-
sumption.

The parametersthat make up the ratios in the LAWS
modelarebelow. Pleasesee[11] for a completedescrip-
tion.

� o - CPU occupancy for communicationoverheadper
unit of bandwidth



� a - CPU occupancy for the applicationper unit of
bandwidth

� X - Occupancy scalefactorfor hostprocessing

� Y - Occupancy scalefactorfor NIC processing

� p - Portionof communicationoverheado offloadedto
NIC

� B - Bandwidthof network path

LAWS assumesa fixed amountof time. Let the fixed
amountof timebeequalto thetime to receiveamessageof
lengthN ona host.We’ll call this timeT. Thisallowsusto
determinethetotalnumberof hostcyclespossible.

Ct � Rh � T
For simplicity let’sdefineanoverheadtotal for EMO.

OT � CN
�

ONH
�

CH
�

OHA
�

CA
�

ONA

Now that we have a fixed time T, a fixednumberof bytes
N, andthetotalnumberof hostcyclesCt , wecanmapEMO
ontotheLAWSparameters.

The most difficult part of the mappingfrom EMO to
LAWSis thefactthatthecommunicationoverheado is con-
stantwhile thepercentageoffloadedp is variable.Thus,p is
a ratio usedto comparetwo differentoffloadschemes.Our
offload schemesaremodeledwith differentvaluesfor CH

andCN to reflectthisdifference.WeuseC	H to representthe
amountof protocolprocessingdoneon the NIC for a sec-
ondoffloadscheme.We assumethatCN is incrementedby
CH 
 C	H sincethis is theassumptionof theLAWS model.
Changesto theactualamountof protocolprocessingunder
variousoffload schemesarereflectedin the LAWS model
ratioβ. Changesto theamountof protocolprocessingdone
undervariousoffloadschemesarereflecteddirectly in dif-
ferentvaluesin EMO.

o � ONH
�

CH
�

OHA
�

CA
�

ONA

a � CT 
 o

X � RH

Y � RN

p � CH 
 C	H
o

B � N
T

LAWSderivesall of its ratiosfromtheseparameterswith
theexceptionof β. Thestructuralratiodescribestheamount
of processingsaved by usinga particularoffload scheme.
We canquantifythis directly from our modelassumingthe
secondoffloadmechanismis denotedby variableswith ’.

β � C	N � O	NH
�

C	H � O	HA
�

CA
�

O	NA

CN
�

ONH
�

CH
�

OHA
�

CA
�

ONA

Now wehaveall of thenecessaryelementsto mapEMO
ontoLAWS.This is usefulfor understandinghow theEMO
modelfits into thelargerareaof offloadingof protocolpro-
cessingin commodityapplications. We createdEMO for
high-endcomputingso we canexplore gapand overhead
for a message-orientedapplications.

3.4 Mapping EMO onto LogP

Themappingfrom EMO to LogPis trivial. In fact,EMO
canbeseenasa submodelof theLogPmodelalthoughwe
useit separatelyand for a differentpurpose. Thereis no
mappingfor thenumberof processors,P, in EMO. Other-
wise, we assumea well-pipelinedsystemand let X � the
sizeof themessage.

L � Latency � CN

RN

�
LNH
� CH

RH

�
LHA
�

LNA
� CA

RH

�
LW

o � Overhead� ONH
�

CH
�

OHA
�

CA
�

ONA

g � Gap � max�
CN
RN

X �
CH
RH

X �
LW

X

�

4 Using EMO - A CaseStudy

While we have presentedresultsthat validatethe EMO
model elsewhere[7], it is also essentialthat EMO can be
usedasa tool either for developinga new protocolor for
determiningtheappropriatedesignfor offloadinganexist-
ing protocol.Thiscasestudydemonstratestheusefulnessof
EMO asa languagefor comparinganddevelopingmethods
of offloadingprotocolprocessing.

Thework wehavedoneonoffloadingpartsof theIP and
TCPprotocolontoa NIC[8, 4, 5, 6] andtheexperiencesof
our colleagues[9] hastaughtus that the keys to increasing
performanceis to reducethecommunicationcostsbetween
the network andthe applicationandto reducethe number
of cyclesthatthedatamusttravel beforebeingdeliveredto
the application. Becausewe areonly concernedaboutthe
numberof cyclesthedatamusttravel, we processthepro-
tocol headersnormally. We usedEMO to createa method
of bypassingmostof theprotocolprocessingof TCPcalled
SplinteredTCP.

First we will explain SplinteredTCP using the same
communicationmodel we used to outline EMO in Fig-
ure 1. Next, we discussinterrupt coalescing,zero-copy
TCP stacksand TCP offload enginesin relation to splin-
teredTCP. Finally, we will modelthe variousmethodsfor
overheadandlatency usingEMO.



receive
descriptor

receive
buffer

Operating System

Application

data

packet

header

socket read

NIC

Figure 2. The Splintered TCP Architecture

4.1 Splintering TCP

Figure2 presentsagraphicalillustrationof ourapproach
to splinteringtheprocessingassociatedwith theTCPproto-
col. In thiscaseweonly illustratetheprocessingdonewhile
receiving datagrams.In this illustration,solid linesindicate
thepathstakenby datagrams,while dashedlinesrepresent
controlactivities.

We startby consideringthe control path. In particular,
weassumethattheapplicationissuesanon-blockingsocket
readbeforethe datahasarrived, i.e., a “pre-posted”read.
Eventually, after traversingseveral layersof libraries, this
readis transformedinto a requestthat is passedto the op-
eratingsystem.TheOScanthenbuild a descriptorfor the
applicationbuffer. This descriptorincludesphysicalpage
addressesfor the buffer. Moreover, as the OS builds this
descriptor, it caneasily ensurethat thesepagesremainin
memory(i.e., they will bepinned)aslong asthedescriptor
is active in theNIC.

Now, we considerthe handling of datagrams. When
a datagramarrives, the NIC first checksto seeif the in-
comingdatagramis associatedwith a descriptorpreviously
provided by the OS. If it finds sucha descriptor, the NIC
will DMA the dataportion of the datagramdirectly to the
applicationbuffer, providing a true zero copy, and make
the headeravailable to the OS. If the NIC doesnot find
theneededdescriptor, it simply makesthe entiredatagram
availableto theOSfor “normal” processing.

Perhapsmoreinterestingthanthe functionality that we
intendto put on theNIC is thefunctionalitythatwe planto
leave in the OS. As we have described,we leave memory
managementin the OS andonly provide the NIC with the
mappinginformation that it needsto move databetween
the network andthe application. We alsoplan to leave all
failuredetectionandrecovery in theOS.

Where is the acknowledgmentgenerated?This is an
openquestionanddependson theneedsof theapplication.
For synchronizationmessages,applicationsmaychooseto
marka receive so thatanacknowledgmentis generateddi-

rectly on the NIC. For long messagesin which thereis no
othercheckfor dataintegrity, theapplication(or application
library) maywantto generatetheacknowledgmentthrough
a systemcall to the operatingsystem. If the checksumis
generatedand checked on the NIC, the operatingsystem
may also acknowledgethe data. If the applicationor the
operatingsystemacknowledgethedata,theround-triptime
estimationon the sendersidemay be greatlyaffectedand
the TCP stacksmay needto adjustthe parametersof their
congestionavoidancealgorithmsin orderto avoid to much
dependenceon themeasuredround-triptime.

Successfuloffloadingof congestioncontrol alongwith
direct DMA from the NIC to the applicationshouldsub-
stantiallydecreasetheamountof CPUoverheadassociated
with communication.Additionally, splinteringallows the
operatingsystemto maintainappropriatecontrol over re-
sourcemanagementof thehostprocessorandtheNIC. For
amorecompletedescriptionof SplinteredTCP, see[5].

4.2 Interrupt Coalescing

Interrupt coalescingis an algorithm in which the NIC
waits for a certainnumberof interruptsor until a timeout
thresholdbeforeinterruptingthehostprocessor. Thisallows
thesystemto mitigatethecostof aninterruptby spreading
it over many messages.This reducesoverheadespecially
whenthenetwork framesizeis small like theEthernet.In
additionto theoverheadsavingsof interruptcoalescing,its
otheradvantageis thatit is widely availableon NICs andit
is cheapto implementsincethereis little logic on theNIC
andvery little state.

4.3 TCP Offload Engines

Sinceoffloadingasmallpartof theTCP/IPprotocolonto
a NIC is so successful,we naturally wonderwhetherof-
floadingmore of the TCP/IPstackwould prove evenmore
beneficial.In fact,thetrendhasbeentowardoffloadingall
of theTCP/IPstackontotheNIC.

However, thereareseriouslimitations to offloadingthe
entirestack.Applicationscanno longerchoosewhich pro-
tocol to use(TCP or UDP) asonly TCP givesany perfor-
manceadvantages. If the connectionmanagementis of-
floaded,theamountof memorynecessaryto usesuchNICs
in a large clusterwould rival the host’s memorycapacity.
Power consumptionhasbecomea very realpartof thecost
of asystemandthehardwareandpowernecessaryfor such
sophisticatedNICs can becomeprohibitive. Finally, cre-
ating a full TOE in hardwarewith enoughmemoryto be
scalableis veryexpensive.

SplinteredTCP is an attemptto gain the performance
advantagesof TOEs at a fraction of the cost by allowing
offloading onto a commodity NIC. The commodity NIC



would needa small amountof logic and a small amount
of memory, but notmuchmorethanacommodityNIC con-
tainstoday. For a full descriptionof SplinteredTCPmem-
ory constraintssee[5].

4.4 Zero-copy

Zero-copy techniquescreatedto bypassthe memory
copy are commonly usedto decreaseper-byte overhead.
Thesetechniquesmustalsooffloadchecksummingin order
to gain the overheadsavings. The performancemeasure-
mentsprovidedby [2] claim an overheadsavings of up to
70% using zero-copy techniquesto reduceper-byte over-
headandlargemaximumtransmissionunits(MTUs) to re-
duceper-packetoverhead.

’Zero-copy’ refersto two distinctideas.Thefirst is elim-
inatingcopying of network datain theIP stackon thehost.
This is animportantimprovementandhassignificantlyim-
proved IP stackperformanceover the pastseveral years.
Thesecondis theideaof eliminatingall copying of network
data,including the final copy from kernelmemoryto user
memory. Although this techniquehasbeendemonstrated
successfullyin somecases,zero-copy to userspacehasyet
to be provengenerallyuseful in an operatingsystemstan-
dardrelease.

Implementationsof zero-copy TCParesimilar to splin-
teredTCP in that it separatesdataandheaders.The over-
headassociatedwith thememorycopy is reducedand,be-
causemost commonzero-copy TCP implementationsare
implementedusingMyrinet [2], a largeMTU mitigatesin-
terrupt overhead. However, the protocol headersare still
processedbeforetheapplicationhasaccessto thedataand
thelatency of a messageremainshigh.

4.5 OverheadusingEMO

Figure3 graphicallyrepresentsthe protocolprocessing
overheadof somemethodsfor decreasingprotocolprocess-
ing overhead. We compareinterrupt coalescing,TCP of-
fload,traditionalzero-copy TCP, andsplinteredTCP.

Interruptcoalescingamortizesthecostof theONH over
many messages.In orderto modeladvantagesof interrupt
coalescingin EMO,wemeasuretheoverheadin thelimit as
ONH approacheszero.

Interrupt coalescingOverhead� CH
�

OHA

Interruptcoalescingstill requiresthecopy betweentheop-
eratingsystemandthe applicationandso overheadis still
linearin thesizeof themessage.

Zero-copy techniquesgenerallyusefbufs[3] or pagepin-
ning to achieve memoryprotectionwithout the price of a
memorycopy. If we do not considerthe costof the mem-
ory protectionmechanismstheoverheadremovesthelinear

Theoretical Zero−copy TCP

O_nh + C_h + O_ha

O_na
overhead hiding

Theoretical Splintered TCP

Actual Zero−copy TCP
O_nh + C_h +
#cycles to pin pages * #cycles per pin

Actual Splintered TCP

Interrupt coalescing
C_h + O_ha

O
ve

rh
ea

d 
in

 c
yc

le
s

Size of message

O_ha

C_h

O_nh

O_na

Standard TCP

Figure 3. Extensib le Message-Oriented Of-
fload - overhead

dependenceon messagesize in OHA. Becausethe mem-
ory copy (andnot theschedulingandcontext switch)is the
limiting factor in OHA, we considerthe overheadasOHA

approacheszero.

Zero-copy Overhead� ONH
�

CH

However we do needto considerthecostof pinningpages
becauseit is not trivial. Thecostto pin a pageis Cpin and
thesizeof apageis Sizepage.

Zero-copy Overhead�
ONH
�

CH
�

Cpin � X
Sizepage

X � sizeof message

This decreasesthe dependenceof overheadon the sizeof
the message,but the total protocolprocessingoverheadis
still tied to theper-byteoverhead.

SplinteredTCPusesthesamememoryprotectionmeth-
odsasthetraditionalzero-copy TCPstacks.Thedifference
betweenSplinteredTCPandzero-copy TCPmethodsis that
theeventnotificationbetweentheNIC andthehosthappens
betweenthe NIC and the applicationratherthan the NIC
andtheoperatingsystem.However, the overheadbetween
is thesame(ONH � ONA) sothefull overheadof Splintered
TCPis thesameaswith zero-copy techniques.

SplinteredTCP Overhead�
ONA
�

CH
�

Cpin � X
Sizepage

Themajoradvantageof SplinteredTCP, however, is thatthe
overheadincurredby protocolprocessingdoesnot have to
bepaidup front asit doesin zero-copy TCPmethods.This



processis similar to latency hiding, sowe call it overhead
hiding. Becausewe pin thepagesduringthepre-postedre-
ceive,we paythis overheadduringthelibrary call to setup
the messagereceive descriptor. We notify the application
whenthe dataarrivesratherthantheoperatingsystemand
wepushtheheaderinto theoperatingsystem,but allow the
applicationto determinewhentheseheadersareprocessed.
Thedatabypassestheprotocolprocessing.Theapplication
hasthe flexibility to determinewhen protocol processing
occurs.

TCP Offload Enginesand iWARP (TCP over RDMA-
enabledNICs) are able to reducethe overheadof proto-
col processingby offloadingall processingonto the NIC.
Theoverheadstill associatedwith TOEandiWARPis ONA.
SomeTOEs and RDMA-enabledNICs (RNICs) claim to
perform memorymanagementand so are able to offload
theoverheadassociatedwith memoryprotection.However,
currentversionsof TOEs must still pay for memorypro-
tection. TOE andiWARP, throughtheSocketsDirect Pro-
tocol (SDP)suggestusingfull TCP offload only for large
messagesbecauseof the overheadassociatedwith current
memoryprotectionmechanisms.The TOE overheadfol-
lows.

TOE Overhead�
ONA
�

Cpin � X
Sizepage

X � sizeof message

In this case,theoverheadof TOE is similar to theoverhead
of SplinteredTCPandzero-copy TCPmechanisms,but the
per-messageprocessingoccurson theTOEor NIC.

Zero-copy techniquesdecreaseoverheadover regular
TCPstacksby removing OHA, but they doaddtheoverhead
of memorymanagementtechniques.SplinteredTCP has
the sameoverheadas zero-copy techniques,but provides
theapplicationtheflexibility to hidesomeof thisoverhead.
TOEsandRNICs provide the mostreductionin overhead,
to either

ONA
�

Cpin � X
Sizepage

or with extrahardwarefunctionalityto

ONA

What we can tell from our conceptualgraphic of the
overheadof eachmethodis that the advantagesof Splin-
teredTCPor TOEsis dependenton theoverheadcostof of
ONA. If theoverheadof moving from theNIC to theappli-
cationis very low, theoffloadingtechniqueswill beuseful.
If, however, the cost is high, the techniqueswill not yield
betterresults. Finally, we seegraphicallythe intuitive un-
derstandingthatoffloadingtechniqueswill providethemost
improvedperformanceasthesizeof themessageincreases.

We assumethatCH � ONH . We assumethat thecostof
travelingthroughtheOSis lessthanthecostof interrupting
thehostprocessor. Thecostof processinganinterruptmay
be smallerthanthe costof processinga message,but this
simply shifts thepositionof theoverheadlines, it doesnot
affecttheirslope.Finally, weassumethatOHA is linearwith
the sizeof the message.For small messages,cachingwill
flatten this line. For large messages,the assumptionstill
holds.

4.6 Latency

Figure 4 graphically representsthe latency of some
methodsfor decreasingprotocolprocessingoverhead.We
compareinterruptcoalescing,TCPoffload,traditionalzero-
copy TCP, andsplinteredTCP.

TCP Offload Engine

Interrupt Coalescing
Standard TCP

Zero−copy
TCP

Size of message

L_ha

C_n/R_n

L_nh

C_h/R_h

La
te

nc
y

C_n+C_h/R_n’

(best case)

Figure 4. Extensib le Message-Oriented Of-
fload - Latenc y

InterruptCoalescingdecreasesthe overheadby waiting
to interrupt the operatingsystemuntil a numberof mes-
sageshave arrived for processing. While this decreases
theamountof protocolprocessingoverhead,it actuallyin-
creaseslatency. We have graphicallyrepresentedthe best
caselatency for theinterruptcoalescingmethod.This is the
sameasthe latency of a messageprocessedusinga tradi-
tionalTCPstack.

Zero-copy techniquesshoulddecreasethe latency of a
messagesincethey remove thecopy andsubsequentevent
notificationbetweenthe operatingsystemandthe applica-
tion. However, thetime to pin a pageis oftenlargeenough
sothatit is actuallyfasterto performthememorycopy and
the context switch for small messagesratherthan pin the



page.

Zero-copy Latency � CN

RN

�
LNA
� CH

RH

�

Cpin � X
Sizepage

RH

X � sizeof message

This latency will increaseasX increases.Theslopeof the
increasein latency as the sizeof the messageincreasesis
not assteepin zero-copy TCP asit is in standardor inter-
rupt coalescedTCP. This is becausewhile latency is still
influencedby LNA which is linear as the sizeof the mes-
sageincreases,it is no longeraffectedby LHA which is also
linearasthesizeof themessageincreases.

TOEsandiWARPusingRNICsprocesstheprotocolson
NIC andso thespeedof theNIC becomesmuchmoreim-
portant.

TOE Latency � CH
�

CN

RN

�
LNA

Latency shouldbe sufficiently reducedwhenusingASICs
which arevery fast. Also, if thememoryprotectionmech-
anismsareon theNIC, thenthememoryprotectionmecha-
nismsarefasteraswell. CurrentTOEsandiWARP mech-
anismsdo not generallydecreasethe latency of very small
messagesbecausethepage-pinningis still doneonthehost.

Becauseof overheadhiding, the latency of a message
in SplinteredTCP is low even in for small messages.The
pageis pinnedbeforethemessageis receivedsothelatency
of pinning the pageis not incurredin the messagereceive
path.An optimizationfor smallmessagesis tosimplyDMA
the dataof small messagesinto the eventqueueof the ap-
plication. This removestheneedto pin a separatepagefor
smallmessages.

SplinteredTCP Latency � C	N
RN

�
LNA

Someadditionalprocessingwill needto be performedon
the NIC so CN will be increasedto C	N. However, C	N is
muchlower thantheCN

�
CH processingcyclesnecessary

for TOEs.
We assumethat LNH � LNA althoughthis is probablya

conservative estimatebecauseof the polling mechanisms
for LNA. We alsoassumethatLNA � LHA. We assumethat
the DMA is equalto the burst transactionrateof the PCI
busandthatmemorycopy is equalto 1

2 of thememorybus.
Finally, we assumefor our systemthat the PCI bus is set
to 1

2 of thememorybusspeedsoLNA � LHA. This ratio of
I/O busto memorybusspeedwill needto bedeterminedfor
eachsystemandthis ratiowill needto incorporatedinto the
model.However, theratiowill beconstanton a system.

The EMO provides a graphicalrepresentationof how
much latency savings the speedof the NIC and the num-

ber of cyclesof processingoffloadedwill yield. This pro-
vides us with more information about the necessarypro-
cessingpower neededto provide latency and gapsavings
usingSplinteredTCP.

Also,EMO providesuswith alanguagein whichto com-
parelatenciesof variousapproachesto protocol develop-
ment.For example,let’s saywe wantto know how fastour
NIC processorwill needto be in order to be competitive
with a TOEin termsof latency. We assumewe areoffload-
ing a quarterof the protocol processingonto the NIC for
ourSplinteredTCP. For thesakeof convenienceweassume
thatCH � 4 � CN. Both theamountof cyclesoffloadedfor
aSplinteredTCPimplementationandtheratioof cycleson
thehostto cycleson theNIC canbedeterminedfor a par-
ticularTCPstack.We call thespeedof theNIC of theTOE
engineRN1 andthespeedof theNIC for theSplinteredTCP
solutionRN2.

CH
�

CN

RN1
�� 25 � CH

�
CN

RN2

5 � CN

RN1
� 2 � CN

RN2

RN2 � 2
5 � RN1

In orderfor usto achievelatenciesequalto theTOE,our
SplinteredTCPwouldneedto beimplementedonanFPGA
or processorat least2

5 asfastastheTOEengine.
This validatesour assumptionssince SplinteredTCP

only offloadsa quarterof theprotocolprocessingfrom the
hostto the NIC andbypassesthe furtherprotocolprocess-
ing assumingit will befinishedby the hostat a later time.
Ontheotherhand,theTOEoffloadsall of thehostprotocol
processingonto theNIC andassumesthis processingmust
completebeforedatais deliveredto theapplication.There-
fore theTOEwould requirea fasterNIC.

4.7 Summary

Splinteringattemptsto moreefficiently usetheoperating
systemto control communication.By moving selectfunc-
tionsof communicationontotheNIC, we candecreasethe
numberof interruptsto theoperatingsystemwhile still al-
lowing theoperatingsystemto manageresources.

More specifically, splinteringremovestheprocessingof
the protocol headersfrom the path of the datawhenever
possible. By moving the datato the applicationimmedi-
ately andholding the headersfor later processingwe can
divorcethe managementof the network from the manage-
mentof the data. If the applicationcanaccessthe dataas
earlyaspossible,it caneffectively bypasstheprotocolpro-
cessingandremoveit from thelatency pathof themessage.



If theapplicationcancontrolwhento processtheprotocol
headers,it canpotentiallyhidetheoverheadof theprotocol
processing.

We usedEMO to comparesplinteringwith interruptco-
alescing,zero-copy TCPandfull TCPoffload. Themodel
demonstratesoverheadhiding andthe substantialdecrease
in latency for theTCPoffloadandSplinteredTCPmethod.
Furthermore,we canseethe usefulnessof EMO in deter-
mining hardwareandsoftwareimplementationsgiven cer-
taindesignparameters(asin latency guidelines).

5 Conclusionsand Future Work

The extensiblemessage-orientedoffload model (EMO)
allows us to explore the spaceof network protocol imple-
mentationfrom theapplicationmessaginglayersthroughto
theNIC onamessageby messagebasis.Thisnew language
givesus a freshunderstandingof the role of offloadingin
terms of overhead,latency and gap in high-performance
systems.

We mappedEMO ontoexisting performancemodels.In
fact,EMO canbe looked at asa refinementof the LogGP
model.However, wethink of thisasamodelfor implemen-
tationof a languageratherthanalgorithmicanalysis.EMO
provides a simpler and easierto understandlanguagefor
protocoldevelopmentthanLAWS. Furthermore,EMO al-
lowsusto explorethetradeoffs of offloadingin a message-
orientedratherthanstream-orientedenvironment.

EMO furthermotivatedandillustratedtheuseof Splin-
teredTCPto createamethodof protocolbypasswhichsig-
nificantly reduceslatency andallows the applicationcon-
trol over protocol processingoverhead. We were able to
compareSplinteredTCPto othermethodsof offloadingto
minimizeoverhead.

Weplanonexploringthemodelof gapin EMO to bound
theresourcerequirementsfor NICs or TCPoffloadengines
at 10Gb/sand 40Gb/sspeeds. We plan also to extend
EMO to includememorymanagementconsiderationssuch
ascaching.

We arecurrentlycompletingwork on validatingEMO.
Additionally, we aremodeling,validatingandquantifying
the variousmemoryprotectionmechanismsusedin zero-
copy network protocols.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman.LogGP:Incorporatinglong messagesinto the
LogP model for parallelcomputation. Journal of Parallel
andDistributedComputing, 44(1):71–79,1997.

[2] J.Chase,A. Gallatin,andK. Yocum.End-systemoptimiza-
tionsfor highspeedTCP. In IEEECommunications,special
issueon TCP Performancein Future NetworkingEnviron-
ments, volume39,page8, 2000.

[3] P. DruschelandL. L. Peterson.Fbufs: A high-bandwidth
cross-domaintransferfacility. In Symposiumon Operating
SystemsPrinciples, pages189–202,1993.

[4] P. GilfeatherandA. Maccabe.MakingTCPviableasahigh
performancecomputingprotocol.In Proc.of the3rd Annual
Symposiumof the Los AlamosComputerScienceInstitute,
October2002.

[5] P. GilfeatherandA. Maccabe.SplinteringTCP. In Proc.of
the 17th InternationalSymposiumon Computerand Infor-
mationSciences, October2002.

[6] P. Gilfeather and A. B. Maccabe. Connection-lessTCP.
In Workshopon CommunicationArchitecture for Clusters,
April 2005.

[7] P. GilfeatherandA. B. Maccabe. An extensiblemessage-
orientedoffload model for high-performanceapplications.
TechnicalReportTR-CS-2005-28,Universityof New Mex-
ico, 2005.

[8] P. GilfeatherandT. Underwood. Fragmentationand high
performanceip. In Proc. of the15th InternationalParallel
andDistributedProcessingSymposium, April 2001.

[9] A. B. Maccabe,W. Zhu,J.Otto,andR. Riesen.Experience
in offloadingprotocolprocessingto a programmablenic. In
Proceedingsof IEEE International Conferenceon Cluster
Computing, September2002.

[10] R.P. Martin,A. M. Vahdat,D. E.Culler, andT. E.Anderson.
Effects of CommunicationLatency, Overhead,and Band-
width in a ClusterArchitecture. In Proceedingsof the24th
InternationalSymposiumon ComputerArchitecture, pages
85–97,Denver, Colorado,June1997.

[11] P. ShivamandJ. Chase.On theelusive benefitsof protocol
offload. In SIGCOMMworkshopon Network-I/OConver-
gence:Experience, Lessons,Implications(NICELI), August
2003.


