
Kernel-Level Measurement for Integrated Parallel Performance Views: the
KTAU Project

Aroon Nataraj Allen D. Malony Sameer Shende Alan Morris
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
E-mail: {anataraj,malony,sameer,amorris}@cs.uoregon.edu

Abstract

The effect of the operating system on application perfor-
mance is an increasingly important consideration in high
performance computing. OS kernel measurement is key to
understanding the performance influences and the interre-
lationship of system and user-level performance factors.
The KTAU (Kernel TAU) methodology and Linux-based
framework provides parallel kernel performance measure-
ment from both a kernel-wide and process-centric perspec-
tive. The first characterizes overall aggregate kernel per-
formance for the entire system. The second characterizes
kernel performance when it runs in the context of a partic-
ular process. KTAU extends the TAU performance system
with kernel-level monitoring, while leveraging TAU’s mea-
surement and analysis capabilities. We explain the rational
and motivations behind our approach, describe the KTAU
design and implementation, and show working examples on
multiple platforms demonstrating the versatility of KTAU in
integrated system / application monitoring.

1. Introduction

The performance of parallel applications on high-
performance computing (HPC) systems is a consequence of
the user-level execution of the application code and system-
level (kernel) operations that occur while the application is
running. As HPC systems evolve towards ever larger and
more integrated parallel environments, the ability to ob-
serve all performance factors, their relative contributions
and interrelationship, will become important to comprehen-
sive performance understanding. Unfortunately, most par-
allel performance tools operate only at the user-level, leav-
ing the kernel-level performance artifacts obscure. OS fac-
tors causing application performance bottlenecks, such as
those demonstrated in [12, 21], are difficult to assess by
user-level measurements alone. An integrated methodology

and framework to observe OS actions relative to applica-
tion activities and performance has yet to be fully devel-
oped. Minimally, such an approach will require OS kernel
performance monitoring.

The OS influences application performance both directly
and indirectly. Actions the OS takes independent of the
application’s execution have indirect effects on its perfor-
mance. In contrast, we say that the OS directly influences
application performance when its actions are a result of or in
support of application execution. This motivates two differ-
ent monitoring perspectives of OS performance in order to
understand the effects. One perspective is to view the entire
kernel operation as a whole, aggregating performance data
from all active processes in the system and including the
activities of the OS when servicing system-calls made by
applications as well as activities not directly related to ap-
plications (such as servicing hardware interrupts or keeping
time). We will refer to this as the kernel-wide perspective,
which is helpful in understanding OS behavior and in iden-
tifying and removing kernel hot spots. However, this view
does not provide comprehensive insight into what parts of a
particular application spend time inside the kernel and why.

Another way to view OS performance is within the con-
text of a specific application’s execution. Application per-
formance is affected by the interaction of user-space behav-
ior with the OS, as well as what is going on in the rest of the
system. By looking at how the OS behaves in the context
of individual processes (versus aggregate performance) we
can provide a detailed view of the interactions between pro-
grams, daemons, and system services. This process-centric
perspective is helpful in tuning the OS for a specific work-
load, tuning the application to better conform to the OS con-
figuration, and in exposing the source of performance prob-
lems (in the OS or the application).

Both the kernel-wide and process-centric perspectives
are important in OS performance measurement and analysis
on HPC systems. The challenge is how to support both per-
spectives while providing a monitoring infrastructure that
gives detailed visibility of kernel actions and is easy to use

1-4244-0328-6/06/$20.00 c©2006 IEEE.

by different tools. For example, the interactions between
applications and the OS mainly occur through five different
mechanisms: system-calls, exceptions, interrupts (hard and
soft), scheduling, and signals. It is important to understand
all forms of interactions as the application performance is
influenced by each. Of these, system calls are the easiest to
observe as they are synchronous with respect to the applica-
tion. Also, importantly, system calls are serviced inside the
kernel relative to the context of the calling process, allowing
greater flexibility in how these actions are monitored. On
the other hand, interrupts, scheduling, and exceptions occur
asynchronously and usually in the interrupt context, where
the kernel-level facilities and state constrain monitoring op-
tions and make access to user-space performance data dif-
ficult. One problem is observing all the different program-
OS interactions and correlating performance across the user
/ OS boundary. Another is observing these interactions
across a parallel environment and collectively gathering and
analyzing the performance data. Support for this needs to
be explicit, especially for post-processing, analysis, and vi-
sualization of parallel data.

Our approach is the development of a new Linux Ker-
nel performance measurement facility called KTAU, which
extends the TAU [3] performance system with kernel-level
monitoring. KTAU allows both a kernel-wide and process-
centric perspective of OS performance to be obtained to
show indirect and direct influences on application perfor-
mance. KTAU provides a lightweight profiling facility and a
tracing capability that can generate a detailed event log. We
describe KTAU’s design and architecture in Section 4. We
demonstrate KTAU’s features and versatility through work-
ing examples on different platforms in Section 5. We be-
gin with a discussion of related work in Section 2 as back-
ground to the problem. The paper concludes with final re-
marks and future directions of KTAU in Section 6.

2. Background Related Work

To better understand the design and functionality of
KTAU, we first review related research and technology in
OS monitoring. Tools operating at the kernel level only and
and those that attempt to combine user/kernel performance
data are most closely related to KTAU’s objectives. The
different instrumentation and measurement techniques used
are the primary distinguishing factors between the existing
approaches. For lack of space, we show only a few candi-
date tools in each category. Table 1 compares related work
on several dimensions.

Dynamic Instrumentation: Dynamic (runtime) in-
strumentation [13] modifies the executable code directly,
thereby saving the cost of recompilation and relinking.
KernInst [8] and DTrace [9] use dynamic instrumen-
tation to insert measurement code into kernel routines.

While KernInst incurs overhead only for dynamically in-
strumented events, trampolining adds delay and there is a
cost in altering instrumentation during execution. KernInst,
by itself, does not support merging user and kernel per-
formance data. In Dtrace, application-level instrumenta-
tion also traps into the kernel where the kernel-logging fa-
cility logs both application and kernel performance data.
However, because trapping into the kernel can be costly,
using DTrace may not be a scalable option for combined
user/kernel performance measurement of HPC codes.

Static Source Instrumentation: In contrast to the dy-
namic instrumentation in KernInst and DTrace, source in-
strumentation tools operate on static source code. Linux
Trace Toolkit (LTT) [14], based on kernel source instru-
mentation, is a Kernel Tracing tool. While LTT can
provide rich information about kernel function, its use
of heavy-weight timing (gettimeofday) has high overhead
and low precision, and its use of a single trace buffer re-
quires global locks. Some of the limitations are being
addressed [11]. Source-instrumented kernels also support
tools to measure performance in the form of profile statis-
tics. SGI’s KernProf [2] (under callgraph modes) is an ex-
ample of a Kernel Profiling tool.. By compiling the Linux
Kernel with the -pg option to gcc, every function is instru-
mented with code to track call counts and parent/child rela-
tionships. As every function is being profiled the overhead
at runtime can be significant. Neither tool provides exten-
sive support for online merging of user and kernel data.

Statistical Sampling Tools: In contrast to instru-
mentation that modifies the kernel code (source or exe-
cutable), statistical sampling tools periodically record Pro-
gram Counter (PC) values to build histograms of how per-
formance is distributed. This approach can observe both
user-mode and kernel-mode operation across the system
including libraries, applications, kernel-image and kernel-
modules on a per processor basis. For example, Opro-
file [1] is meant to be a continuous profiler for Linux, mean-
ing it is always turned on. Its shortcomings include an in-
ability to provide online information (as it performs a type
of partial tracing) and the requirement of a daemon. Other
issues stem from the inaccuracy of sampling based profiles.

Merged User-Kernel Performance Analysis: To better
understand program-OS interaction, localize bottlenecks in
the program/OS execution stack and identify intrusive in-
terrupt/scheduling effects, it is important to associate ker-
nel actions with specific application processes. DeBox [24]
makes system-call performance a first-class result by pro-
viding kernel-mode details (time in kernel, resource con-
tention, and time spent blocked) as in-band data on a
per-syscall basis. An implementation-level shortcoming is
its inability to maintain performance data across multiple
system-calls (the performance state is re-initialized at the
start of each syscall). Therefore DeBox requires access to

source code of any libraries used by the application. Cross-
Walk [6] is a tool that walks a merged call-graph across
the user-kernel boundary in search of the real source of per-
formance bottlenecks. Both tools’ requirement of knowing
call-site locations allows them to bridge only the user-kernel
gap across system-calls. DeBox and CrossWalk do not pro-
vide any means of collecting interrupt, exception, or sched-
uler data outside of system calls.

Discussion: Table 1 summarizes the tools discussed
above and others we studied. While many of the tools men-
tioned can perform kernel-only performance analysis, they
are unable to produce valuable merged information for all
aspects of program-OS interaction. Merged information is
absent, in particular, for indirect influences such as inter-
rupts and scheduling that can have a significant performance
impact on parallel workloads. In addition, online OS perfor-
mance information and the ability to function without a dae-
mon is not widely available. A daemon-based model causes
extra perturbation and makes online merged user/kernel per-
formance monitoring more expensive. KTAU resorts to a
daemon only when proprietary/closed-source applications
disallow source instrumentation. Most of the tools do not
provide explicit support for collecting, analyzing, and visu-
alizing parallel performance data. KTAU aims to provide
explicit support for online merged user/kernel performance
analysis for all program-OS interactions in parallel HPC ex-
ecution environments.

3. Objectives

The background discussion above provides a rich re-
search context for the KTAU project. In relation to this
work, KTAU’s distinguishing high-level objectives are:

• Support low-overhead OS performance measurement
at multiple levels of function and detail.

• Provide a kernel-wide perspective of OS performance.

• Provide a process-centric perspective of application
performance within the kernel.

• Merge user-level and kernel-level performance infor-
mation across all program-OS interactions.

• Provide online information and the ability to function
without a daemon where possible.

• Support both profiling and tracing for kernel-wide and
process-centric views in parallel systems.

• Leverage existing parallel performance analysis tools.

• Deliver a robust OS measurement system that can be
used in scalable production environments.

While none of the tools studied meet these objectives
fully, their design and implementation highlight important
concerns and provide useful contrasts to help understand
KTAU’s approach.

The measurements made in the kernel will be driven by
the observation needs of the performance evaluation prob-
lems anticipated. Our goal is to provide an integrated ker-
nel measurement system that allows observation of multi-
ple functional components of the OS and choice of level of
performance measurement granularity of these components.
Like LTT, KTAU targets key parts of the Linux Kernel, in-
cluding interrupt handlers, the scheduling subsystem, sys-
tem calls, and the network subsystem. Structured OS obser-
vation is also seen in K42, Dtrace, and KernProf, whereas
other tools provide limited kernel views (e.g., only system
calls). KTAU provides two types of measurement of kernel
performance: profiling and tracing. Most of the other tools
provide only one type. The choice allows measurement de-
tail to be matched to observation requirements.

Any measurement of the OS raises concerns of over-
head and influence on application (and kernel) execution.
The frequency and detail of measurement are direct fac-
tors, but how the OS is instrumented is an important de-
terminant as well. The above contrasts of dynamic versus
source (compiled) versus interrupt-driven instrumentation
to identify variant strategies (plus technologies) which re-
sult in different overhead effects. While each approach has
its devotees, for any one, it is more important to assess over-
head impact as best as possible. Instrumentation in KTAU is
compiled into the kernel. As a result, there are issues about
how to control (turn on/off) measurements and questions of
execution perturbation. We present experiment data later to
address these concerns.

Tools such as LTT, KernProf, and Oprofile provide a
kernel-wide view. DeBox, DTrace, and CrossWalk provide
capabilities for generating a process-centric view, with pos-
sible restrictions on the scope of kernel observation. In con-
trast, KTAU desires to support both perspectives. KTAU en-
ables process-centric observation through runtime associa-
tion of kernel performance with process context to a degree
that is not apparent in other tools.

The performance data produced by KTAU is intention-
ally compatible with that produced by the TAU performance
system [3]. By integrating with TAU and its post-processing
tools, KTAU inherits powerful profile and trace analysis and
visualization tools, such as Paraprof [17] for profiling and
Vampir [22] and Jumpshot [16] for trace visualization.

The KTAU project is part of the ZeptoOS [4] research
project at Argonne National Laboratory funded by the DOE
Office of Science “Extreme Performance Scalable Operat-
ing Systems” program. Thus, KTAU is intended to be used
in the performance evaluation of large-scale parallel sys-
tems and in performance monitoring and analysis at runtime

Classification of Related Work
Tool Instrumentation Measurement Combined User/Kernel Parallel SMP OS

KernInst [8] dynamic flexible not explicit not explicit yes Solaris
DTrace [9] dynamic flexible trap into OS not explicit yes Solaris
LTT [14] source trace not explicit not explicit yes Linux
K42 [18] source trace partial not explicit yes K42

KLogger [23] source trace not explicit not explicit yes Linux
OProfile [1] N/A flat profile partial not explicit yes Linux
KernProf [2] gcc (callgraph) flat/callgraph profile not explicit not explicit yes Linux

[20] source trace syscall only not explicit no Linux
CrossWalk [6] dynamic flexible syscall only not explicit yes Solaris

DeBox [24] source profile/trace syscall only not explicit yes Linux
KTAU+TAU source profile/trace full explicit yes Linux

Table 1. Kernel-Only and Combined User/Kernel Performance Analysis Tools

for kernel module adaption in ZeptoOS.

4. Architecture

The KTAU system was designed for performance mea-
surement of OS kernels, namely the Linux Kernel. As de-
picted in Figure 1, the KTAU architecture is organized into
five distinct components:

• Kernel instrumentation

• Kernel measurement system

• KTAU proc filesystem

• libKtau user-space library

• clients of KTAU including the integrated TAU frame-
work and daemons

While KTAU is specialized for Linux, the architecture could
generally apply to other Unix-style OSes. In the following
sections we discuss the KTAU architecture components and
their implementation in more detail.

4.1. Kernel Instrumentation

Our instrumentation approach in KTAU inserts measure-
ment code in the Linux Kernel source. The kernel instru-
mentation uses C macros and functions that allow KTAU
to intercept the kernel execution path and record measured
performance data. The instrumentation points are used to
provide profiling data, tracing data, or both through the
standard Linux Kernel configuration mechanism (e.g., make
menuconfig). Instrumentation points are grouped based on
various aspects of the kernel’s operation, such as in which
subsystem they occur (e.g. scheduling, networking) or
in what contexts they arise (e.g., system calls, interrupt,

User
Application

Instrumentation

/proc/ktau/trace

/proc/ktau/profile

local context access
inter context access

KTAU Proc InterfaceKTAU

Measurement
System

KTAU

Daemon

task
list

KTAU User APItask
struct

global lock
task lock

K
er
ne
l

U
se
r

Figure 1. KTAU Architecture

bottom-half handling). To control the scope and degree of
instrumentation, compile-time configuration options deter-
mine which groups of instrumentation points are enabled.
Boot-time kernel options can also be used to enable or dis-
able instrumentation groups.

Three types of instrumentation macros are provided in
KTAU: entry/exit event, atomic event, and event mapping.
The entry/exit event macro performs measurements be-
tween an entry and exit point. Currently, KTAU supports
high-resolution timing based on low-level hardware timers
(known as the Time Stamp Counter on the Intel architecture
and the Time Base on the PowerPC). The KTAU entry/exit
event instrumentation keeps track of the event activation
(i.e., instrumentation) stack depth and uses it to calculate
inclusive and exclusive performance data.

Not all instrumentation points of interest conform to en-

try/exit semantics or consist of monotonically increasing
values. The atomic event macro allows KTAU to instru-
ment events that occur stand-alone and to measure values
specific to kernel operation, such as the sizes of network
packets sent and received in the network subsystem. The
entry/exit and atomic event macros are patterned on the in-
strumentation API used in TAU.

The performance data generated by the two instrumenta-
tion event macros must be stored with respect to the events
defined. If we were only interested in supporting a ker-
nel performance view, we could statically allocate struc-
tures for this purpose. However, one of KTAU’s main
strengths is in tracking process context within the kernel to
produce process-centric performance data. The event map-
ping macro solves the problem of how to associate kernel
events to some context, such as the current process context.
The macro is used to create a unique identity for each instru-
mentation point, serving to map the measured performance
data to dynamically allocated event performance structures.
A global mapping index is incremented for the first invoca-
tion of every instrumented event. A static instrumentation
ID variable created within the event code accepts the current
global index value and binds that to the event. The instru-
mentation ID can then be used as an index into a table where
event performance data is stored. The same mechanisms are
used when mapping to specific process contexts.

4.2 KTAU Measurement System

The role of the KTAU measurement system is to collect
kernel performance data and manage the life-cycle of per-
process profile/trace data structures. The measurement sys-
tem runs within the Linux Kernel and is engaged whenever
a process is created or dies, kernel events occurs, or per-
formance data is accessed. Upon process creation, KTAU
add a measurement structure to the process’s task structure
in the Linux process control block. The size of this data
structure is appropriately configured for profiling or tracing.
When tracing is used, a fixed size circular trace buffer (of
configurable length) is created for each process. Using this
scheme, trace data may be lost if the buffer is not read fast
enough by user-space applications or daemons. The KTAU
measurement structure also contains state and synchroniza-
tion variables.

4.3. KTAU proc filesystem

The proc filesystem scheme was chosen as a stan-
dard mechanism for interfacing user-space clients with the
KTAU measurement system. As shown in Figure 1, KTAU
exposes two entries under /proc/ktau called profile and
trace. User-space clients gain access to the entries via libK-
tau user library (see §4.4). We designed the interface to

be session-less (where a session is described as persist-
ing across multiple invocations from user-space). In this
scheme a profile read operation, for instance, requires first
a call to determine profile size and another call to retrieve
the actual data into an allocated buffer. The interface does
not maintain any saved state between calls (even though the
size of profile data may change between calls). This design
choice was made to avoid possible resource leaks due to
misbehaving clients and the complexity required to handle
such cases.

4.4. KTAU User API and libKtau Library

The KTAU User API provides access to a small set of
easy-to-use functions that hide the details of the KTAU proc
filesystem protocol. The libKtau library exports the API
to shield applications using KTAU from changes to kernel-
mode components. libKtau provides functions for kernel
control (for merging, overhead calculation), kernel data re-
trieval, data conversion (ASCII to/from binary), and format-
ted stream output. Internally, libKtau performs IOCTLs on
the proc/ktau files to access the kernel performance data.

4.5. KTAU Clients

Different types of clients can use KTAU. These include
daemons that perform system-wide profiling/tracing, self-
profiling clients (interested only in their own performance
information), Unix-like command-line clients for timing
programs, and internal KTAU timing/overhead query util-
ities. We briefly describe the KTAU clients currently imple-
mented and used in our experiments.

KTAUD – the KTAU Daemon: KTAUD periodically
extracts profile and trace data from the kernel. It can be
configured to gather information for all processes or a sub-
set of processes. Thus, KTAUD uses the ’other’ and ’all’
modes of libKtau. KTAUD is required primarily to monitor
closed-source applications that cannot be instrumented.

TAU: The TAU performance system is used for
application-level performance measurement and analysis.
We have updated TAU to function as a client of KTAU, gath-
ering kernel profile and trace data through the libKtau API.
It is in this manner that we are able to merge application and
kernel performance data.

runKtau: We created the runKtau client in a manner
similar to the Unix time command. time spawns a child
process, executes the required job within that process, and
then gathers rudimentary performance data after the child
process completes. runktau does the same, except it extracts
the process’s detailed KTAU profile.

5. KTAU Experiments

We conducted a series of experiments to demonstrate
the features of KTAU on different Linux installations.
The methodology followed for the first set of experiments
sought to exercise the kernel in a well understood, con-
trolled fashion and then use KTAU performance data to vali-
date that the views produced are correct, revealing, and use-
ful. The second set of experiments investigated KTAU’s use
on a large cluster environment under different instrumenta-
tion configurations to explore perturbation effects and high-
light the benefit of kernel performance insight for interpret-
ing application behavior. Unfortunately, not all of the per-
formance studies we have done can be reported here, given
the space provided. Thus, we present only a subset of those
using the LU application from the NAS Parallel Bench-
marks (NPB) (version 2.3) [10] and the ASCI Sweep3D [5].
In addition to other NPB applications, we have also exper-
imented with the LMBENCH micro-benchmark for Linux
[15]. Finally, we have conducted experiments with KTAU
as integrated in ZeptoOS distribution and run on the IBM
BG/L machine (see [7]).

5.1. Controlled Experiments

Simple benchmarks (LU, LMBENCH) were run on two
platforms to show how the performance perspectives sup-
ported by KTAU appear in practice. Our testbeds included:

• neutron: 4-CPU Intel P3 Xeon 550 MHz, 1GB RAM,
Linux 2.6.14.3 kernel with KTAU

• neuronic: 16-node 2-CPU Intel P4 Xeon 2.8GHz, 2GB
RAM/node, Redhat Linux 2.4 kernel with KTAU

We use the LU benchmark to demonstrate several things
about using KTAU and its benefits to integrated perfor-
mance analysis. First, the experiments show KTAU’s ability
to gather kernel performance data in parallel environments.
This data is used to detect and identify causes of perfor-
mance inefficiencies in node operation. Second, analysis of
kernel-level performance is able to reuse TAU tools for pro-
file and trace presentation. Third, we see how KTAU pro-
vides merged user-kernel views, allowing application per-
formance to be further explained by aspects of kernel be-
havior. Again, TAU tools can be applied to the merged per-
formance information.

To test whether KTAU can detect performance artifacts,
we introduced a performance anomaly in our experiments in
the form of an artificially induced system workload. Period-
ically, while the LU application is running, an “overhead”
process wakes up (after sleeping 10 seconds) and performs
a CPU-intensive busy loop for a duration of 3 secs. This
occurs only on one compute node, with the result of dis-
rupting the LU computation. We expect to see the effects

of this anomalous behavior as a performance artifact in the
kernel and user profile and trace data.

Figure 2-A1 presents a ParaProf display of kernel-level
activity on 8 physical nodes of a 16-processor LU run (num-
bers represent host ids), aggregated across all processes run-
ning on each node. In the performance bargraph of node 8,
we clearly see greater time in scheduling events introduce
by the extra “overhead” process running on the node. To
further understand what processes contributed to Host 8’s
kernel-wide performance view, the node profile in Figure 2-
B shows kernel activity for each specific process (numbers
represent process ids (pids)). It is clear that apart from the
two LU processes (PID:28744 and PID:28746), there are
many processes on the system. Also PID:28649 (the extra
overhead process) is seen to be the most active and is the
cause of the difference in the kernel-wide view. The views
can help pin-point causes and locations of significant per-
turbation in the system.

Figure 2-D demonstrates the benefit of KTAU’s inte-
grated user/kernel profile to see performance influences not
observed by user-level measurement alone. This view com-
pares TAU’s application-only profile with KTAU’s, from the
same LU run. A single node’s profile is chosen. Each pair of
bars represents a single routine’s exclusive time in seconds,
the upper (blue) bar represents the integrated view, and the
lower (red) bar represents the standard TAU view. There
are two key differences between the two. Kernel-level rou-
tines (such as schedule, system calls and interrupts) are ad-
ditional in the KTAU view. Also the exclusive times of user-
functions have been reduced to not include time spent in the
kernel and represent the “true” exclusive time in the com-
bined user/kernel call-stack. This comparison can identify
compute-intensive routines with unusual kernel-times and
also where in the kernel the time is spent.

Processes can be rescheduled voluntarily because they
are waiting for some event (such as I/O completion or mes-
sage arrival from another process). They are involuntarily
rescheduled due to time-slice expiry. It is useful to differ-
entiate the two cases in performance measurement. To do
so we add, within schedule(), a new instrumentation point
called schedule vol() which is called when the need resched
process flag is unset (signaling time slice has not expired).
We ran the NPB LU application on our 4-processor SMP
host with this instrumentation. Due to weak CPU affin-
ity, the four LU processes mostly stay on their respective
processors. In addition we also run a daemon, pinned to
CPU-0, that periodically performs a busy loop stealing cy-
cles away from the LU application. Figure 2-C shows the
result of voluntary versus involuntary scheduling on the four
processes. LU-0 (top bar) is seen to be significantly affected
by involuntary scheduling; its voluntary scheduling time is
small. The reverse is true of the three other LU processes as

1The authors recommend that Figure 2 be viewed online.

F

C

D

G

B

E

A

Figure 2. Controlled Experiments with LU Benchmark

they were waiting (voluntarily) for LU0 to catch-up. This
example demonstrates how the source of dilation of and im-
balance in system-loads can be better isolated.

Tracing can capture the spatial and temporal aspects of
performance using a log of events. TAU application traces
using the hardware timers can be correlated with KTAU
kernel-level traces. Figure 2-E shows kernel-level activity
within a user-space MPI Send() call by the LU benchmark.
Two snapshots from Vampir of TAU application and KTAU
kernel traces have been merged. MPI Send() is imple-
mented by sys writev(), sock sendmsg() and tcp sendmsg().
The bottom-half handling (do softirq()) and tcp receive rou-
tines are not directly related to the send operation and in-
stead occur when a bottom-half lock is released and pending
softirqs are automatically checked.

5.2. Chiba Experiments

The second set of experiments we report target a larger-
scale cluster environment. Argonne National Lab gener-
ously allocated a 128-node slice of the Chiba-City cluster
for use with KTAU. Each node is a dual-processor Pentium
III running at 450MHz with 512MB RAM. All nodes are
connected by Ethernet. The OS is a KTAU-patched Linux
2.6.14.2 kernel. With this experimental cluster, we again

used the LU benchmark, this time to assess the performance
overhead of KTAU for a scalable application in different in-
strumentation modes. Serendipitously, we also needed to
use KTAU to track down and resolve a performance issue
related to the system configuration.

Initially, just to check out our experimental Chiba clus-
ter, we configured KTAU with all instrumentation points
enabled and ran the LU (Class C) application on 128 pro-
cesses, first with 128 nodes (128x1) and then with 2 threads
per node over 64 nodes (64x2). Our measurement involved
merged user and OS level profiling using KTAU and TAU.
The mean total execution time of LU over five runs for the
128x1 was 295.6 seconds and for the 64x2 configuration
was 504.9 seconds. This was very surprising. We thought
using 128 separate nodes may have advantages such as less
contention for the single Ethernets interface, more band-
width per thread, and less interference from daemons. But
could these be sufficient to account for the 73.2% slow-
down?

We used KTAU to help explain this performance bug and
hopefully make optimizations to bring the 64x2 execution
performance more in line with the 128x1 runs. On examin-
ing just the user-space profile produced by TAU we found
several interesting features. The largest contributors to the
profile were MPI Recv and rhs routines. There was consid-

Figure 3. MPI Recv: Excl. Time (seconds)

Figure 4. MPI Recv OS Interactions

erable time spent in MPI Recv across the ranks, except for
two of the ranks which showed far lower MPI Recv times.
Figure 3 shows a histogram of the MPI Recv routine’s ex-
clusive times. The left-most two outliers (ranks 61 and 125)
also showed relatively larger times for the rhs routine. The
user-level profile alone was unable to shed more light on the
reasons behind these observations.

On examining the merged user/OS profile from KTAU
additional observations were made. We first examined the
MPI Recv to see what types of OS interactions it had and
how long they took. Figure 4 shows MPI Recv’s kernel call
groups (i.e, those kernel routines active during MPI Recv
execution). The top bar is the mean across all the ranks and
the next two bars are MPI ranks 125 and 61 respectively.
On average most of MPI Recv was spent inside scheduling,
but comparatively lesser for ranks 125 and 61.

Scheduling is of two types: voluntary, where processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e+07 1e+08 1e+09

%

M
P
I

R
a
n
k
s

Time (microseconds)

Yielding CPU (CDF)

128x1
64x2 Pinned,I-Bal

64x2 Pinned
64x2

64x2 Anomaly

Figure 5. Voluntary Scheduling (NPB LU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07 1e+08 1e+09

%

M
P
I

R
a
n
k
s

Time (microseconds)

Preemption (CDF)

128x1
64x2 Pinned,I-Bal

64x2 Pinned
64x2

64x2 Anomaly

Figure 6. Involuntary Scheduling (NPB LU)

yield the processor waiting for completion of certain events,
and involuntary where the process is pre-empted due to pro-
cessor contention. Figures 5,6 were generated from the
KTAU profile and show the cumulative distribution func-
tion (CDF) of voluntary and involuntary scheduling activity
experienced by the LU application threads. The X-axis is
logscale to accentuate the curve’s shape. In Figure 5, the
bottom of the curve labeled 64x2 Anomaly shows a small
proportion of threads experiencing relatively very low vol-
untary scheduling activity. This trend is reversed for 64x2
Anomaly in Figure 6. Again two ranks (61, 125) differ sig-
nificantly from others with large involuntary and small vol-
untary scheduling. These are the same two ranks that also
showed higher rsh compute times in the user-level profile.

Surprisingly, we found that both of these ranks run on the
same node (ccn10). Our first intuition was that OS-level in-
terference and/or daemon activity on ccn10 was causing the
problem. Low interrupt and bottom-half times suggested
OS-interference was not the major cause. The involuntary
scheduling instead suggested daemon activity causing pre-
emption of the LU tasks on ccn10. Again, the views from

Figure 7. Node ccn10 OS Activity (NPB LU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

%

M
P
I

R
a
n
k
s

Time (microseconds)

IRQ Activity (CDF)

128x1
64x2 Pinned,I-Bal

64x2
64x2 Pinned

Figure 8. Interrupt Activity (NPB LU)

KTAU allowed easy testing of our hypothesis. Figure 7
shows the activity of all processes (including daemons, ker-
nel threads, and applications) on ccn10. Each bar represents
a single process that was active while the LU application
was running on ccn10. The bottom two bars represent the
LU tasks themselves. It is clear that no significant daemon
activity occurred during the LU run as all other processes
have minuscule execution times compared to the LU execu-
tion duration. This invalidated the daemon hypothesis.

The involuntary scheduling on ccn10 of the LU tasks
could only be explained if the two LU tasks themselves
pre-empted each other But why would this occur? On ex-
amination of the node itself (kernel logs and /proc/cpuinfo)
we found that the OS had erroneously detected only a sin-
gle processor (the reason is still being investigated). This
matched exactly with KTAU measurements as the LU tasks
were contending for ccn10’s single available processor.

As a result, the other MPI ranks experienced high vol-
untary scheduling as they waited for the slow node (ccn10)
in MPI Recv. Remote influences will be seen as voluntary
scheduling, where processes are made to wait for other pro-
cesses. And local slow-down due to pre-emption is seen as
involuntary scheduling. By removing the faulty node from

the MPI ring and re-running our LU experiment, the bench-
mark reported an average total execution time of 396.7 sec-
onds. This was an improvement of 21.4 percent, which is
still 36.1 percent slower than the 128-node case.

We then examined the profiles of the runs without the
faulty node. The curve 64x2 in Figures 5,6 shows lower
scheduling activity than 64x2 Anomaly as expected. But
there still remains pre-emptive scheduling (Figure 6) of 2.5
to 7 seconds duration across the ranks. With only a few hun-
dred milliseconds worth of daemon activity accounted for,
the LU tasks were still pre-empting each other. We decided
to pin the tasks (using cpu affinity) one per processor so as
to avoid unnecessary pre-emption between the LU threads.

The pinned 64x2 run provided only a meager improve-
ment of 3.2% (or 13.1 seconds) over the non-pinned runs.
The curve labeled 64x2 Pinned in Figure 6 shows much re-
duced pre-emptive scheduling (0.2 to 1.1 seconds). Sur-
prisingly, KTAU reported a substantial increase in volun-
tary scheduling times. Figure 5 shows the increase in vol-
untary scheduling of 64x2 Pinned over 64x2 and also a
nearly bi-modal distribution. To understand why the 64x2
Pinned run was experiencing greater imbalance and idle-
waits, we examined another ‘usual suspect’ of system in-
terference, namely interrupts. Figure 8 shows 64x2 Pinned
has a prominent bi-modal distribution with approximately
half of the threads experiencing most of the interrupts. This
was clearly the major cause of the imbalance leading to the
high idle-wait times. It suggested that interrupt-balancing
(or irq-balancing) was not enabled. Therefore all interrupts
were being serviced by CPU0 which meant LU threads
pinned to CPU0 were being delayed and threads pinned to
CPU1 were waiting idly.

By re-running the experiment with both pinning and irq-
balancing enabled a total execution time of 335.96 seconds.
This resulted in a 16.5% improvement over the configu-
ration without pinning and irq-balancing. Using KTAU’s
performance reporting capabilities the performance gap be-
tween the 64x2 and 128x1 configuration, runs had been re-
duced from 73.2% to 13.6%. This would have been im-
possible to do with user-level profile data alone. We also
experimented with the Sweep3D ASCI benchmark [5] in
this study. The gap there was reduced from 72.8% to 9.4%.
These results are summarized in Table 2.

However, there was still a difference in performance
between the 64x2 pinned, interrupt-balanced run and the
128x1 run (13.6% in NPB LU and 9.4% in Sweep3D). An
advantage of correlating user-level and OS measurement is
that the merged profiles can provide insight regarding the
existence and causes of imbalance in the system. Examin-
ing kernel interactions of purely compute-bound segments
of user-code is one way of investigating imbalance. In a
synchronized parallel system with a perfectly load-balanced
and synchronous workload, compute and communication

NPB LU and ASCI Sweep3d Experiments
NPB LU ASCI Sweep3D

Config Exec. Time %Diff. from 128x1 Exec. Time %Diff. from 128x1
128x1 295.6 0 369.9 0

64x2 Anomaly 512.2 73.2% 639.3 72.8%
64x2 402.53 36.1% 428.96 15.9%

64x2 Pinned 389.4 31.7% 427.9 15.6%
64x2 Pin,I-Bal 335.96 13.6% 404.6 9.4%

Table 2. Exec. Time (secs) and % Slowdown from 128x1 Configuration

 0

 0.2

 0.4

 0.6

 0.8

 1

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

%

M
P
I

R
a
n
k
s

No. of Calls

Sweep3D Compute => Kernel TCP (CDF)

128x1
128x1 Pin,IRQ CPU1
64x2 Pinned,I-Bal

Figure 9. OS TCP in Compute (Sweep3D)

phases happen in all processing elements (PE) at generally
the same time. But assume some local slowdown causes a
PE X’s compute-phase to be longer than another PE Y’s.
The compute-bound segment of user-code at PE X will be
interrupted by kernel-level network activity initiated by PE
Y at the start of its I/O phase. This will further dilate X’s
compute phase causing even more imbalance effects.

Consider Sweep3D. Figure 9 shows the number of calls
of kernel-level TCP routines that occurred within a com-
pute bound phase (free of any communication) of Sweep3D
inside the sweep() routine. Larger call numbers indicate a
greater mixing of computation and communication work,
suggesting greater imbalance due to increased background
TCP activity. The 64x2 Pinned, I-Bal curve shows a signifi-
cantly larger amount of TCP calls than the 128x1 curve, im-
plying that imbalance is reduced in the 128x1 configuration.
Note, the total number of kernel-level TCP calls throughout
the Sweep3D run did not differ significantly between the
64x2 and 128x1 cases. This suggests that the “missing”
TCP routine calls in the 128x1 run (Figure 9) occur else-
where in the I/O phase (where they should occur).

But what causes the imbalance to decrease in the 128x1
case? Is the extra processor absorbing some of the TCP
activity? The curve labeled 128x1 Pin,IRQ CPU1 denotes

 0

 0.2

 0.4

 0.6

 0.8

 1

 27 28 29 30 31 32 33 34 35 36

%

M
P
I

R
a
n
k
s

Exlcusive Time / Call (microseconds)

Sweep3D Overall Kernel TCP Activity (CDF)

128x1
128x1 Pin,IRQ CPU1
64x2 Pinned,I-Bal

Figure 10. Time / Kernel TCP Call (Sweep3D)

a modified 128x1 configuration where both the Sweep3D
process and all interrupts were pinned to the second cpu
(CPU1). This curve closely follows ’128x1’. Also, by de-
fault, irq-balancing was not enabled for the 128x1. Thus,
the extra free processor was not causing the performance
improvement.

Figure 10 shows the CDF of exclusive time of a single
kernel-level TCP operation across all kernel TCP opera-
tions. There is a marked difference of approximately 11.5%
over the entire range between the 64x2 and 128x1 configu-
rations. Hence, TCP activity was more expensive when two
processors are used for computation. Interrupt-balancing
blindly distributes interrupts (and the bottom-halves that
follow) to both processors. Data destined for a thread run-
ning on CPU0 may be received by the kernel on CPU1 caus-
ing cache related slowdowns. Therefore, the dilation in TCP
processing times seen in 64x2 run is very likely cache re-
lated ([19] also found TCP/IP cache problems on SMP).

5.3. Perturbation Experiments

The above exercises clearly demonstrate KTAU’s utility
in performance measurement and analysis of parallel ap-
plications, especially when system-level effects cause per-

formance problems. However, a source-based approach to
kernel instrumentation, coupled with direct measurement,
raises concerns of perturbation. The following experiments
investigated the effects of KTAU measurement overhead on
perturbation with respect to the level of instrumentation.

With a correctly configured Chiba cluster, we ran the LU
benchmark again on 16 nodes and measured the overall ap-
plication slowdown under five different configurations:

• Base: A vanilla Linux kernel and uninstrumented LU.

• Ktau Off : The kernel is patched with KTAU and all in-
strumentation points are compiled-in. Boot-time con-
trol turns off all OS instrumentation by setting flags
that are checked at runtime.

• ProfAll: The same as KtauOff, but with all OS instru-
mentation points turned on.

• ProfSched: Only the instrumentation points of the
scheduler subsystem are turned on.

• ProfAll+Tau: ProfAll, but with user-level Tau instru-
mentation points enabled in all LU routines.

Table 3 shows the percentage slowdown as calculated from
minimum and average execution times (over five experi-
ments) with respect to the baseline experiment. In some
cases, the instrumented times ran faster (which was surpris-
ing), and we report this as a 0% slowdown.

Operation Mean Std.Dev Min
Start 244.4 236.3 160
Stop 295.3 268.8 214

Table 4. Direct Overheads (cycles)

These results are remarkable for two reasons. First, with
Ktau Off instrumentation (complete kernel instrumentation
inserted, but disabled) we see no statistically significant
slowdown for LU. While it is certainly the case that differ-
ent workloads will result in different kernel behavior, these
results suggest that KTAU instrumentation can be compiled
into the kernel and disabled with no effects. Second, the
slowdown for fully enabled KTAU instrumentation is small
and increases only slightly with TAU instrumentation on av-
erage. If only performance data for kernel scheduling was
of interest, KTAU’s overhead is very small. It is interest-
ing to note that the average execution time for the Sweep3D
Base experiment was 368.25 seconds and 369.9 for the fully
instrumented ProfAll+Tau experiment. This produces an
average slowdown of 0.49%. For completeness, Table 4
reports the direct KTAU overhead introduced by a single
measurement operation (start or stop).

6. Conclusions and Future Work

The desire for a kernel monitoring infrastructure that
can provide both a kernel-wide and process-centric perfor-
mance perspective led us to the design and development of
KTAU. KTAU is unique in its ability to measure the com-
plete program-OS interaction, its support for joint daemon
and program access to kernel performance data, and its inte-
gration with a robust application performance measurement
and analysis system, TAU. In this paper, we demonstrated
various aspects of KTAU’s functionality and how KTAU
is used for different kernel performance monitoring objec-
tives. The present release of KTAU supports the Linux 2.4
and 2.6 kernels for 32-bit x86 and PowerPC platforms. We
are currently porting KTAU to 64-bit IA-64 and PPC ar-
chitectures and will be installing KTAU on a 16-processor
SGI Prism Itanium-2 Linux system and a 16-processor IBM
p690 Linux system in our lab.

There are several important KTAU objectives to pursue
in the future. Because KTAU relies on direct instrumenta-
tion, we will always be concerned with the degree of mea-
surement overhead and KTAU efficiency. Additional per-
turbation experiments will be conducted to assess KTAU’s
impact and to improve KTAU’s operation. However, based
on our current perturbation results, we believe a viable op-
tion for kernel monitoring is to instrument the kernel source
directly, leave the instrumentation compiled in, and to im-
plement dynamic measurement control to enable/disable
kernel-level events at runtime. This is in contrast to other
kernel monitoring tools that use dynamic instrumentation,
such as KernInst. Presently, the instrumentation in KTAU
is static. Our next step will be to develop mechanisms to
dynamically disable/enable instrumentation points without
requiring rebooting or recompilation. Finally, we will con-
tinue to improve the performance data sources that KTAU
can access and improve integration with TAU’s user-space
capabilities to provide better correlation between user and
kernel performance information. This work includes perfor-
mance counter access to KTAU, better support for merged
user-kernel call-graph profiles, phase-based profiling, and
merged user-kernel traces. We will also continue to port
KTAU to other HPC architectures.

The scope of KTAU application is quite broad. We have
ported KTAU to the IBM BG/L machine [7] as part of our
work on the ZeptoOS project [4, 7] (KTAU is a part of the
ZeptoOS distribution). We will be evaluating I/O node per-
formance of the BG/L system, and once a ZeptoOS port is
complete, KTAU will be also be used to provide kernel per-
formance measurement and analysis for dynamically adap-
tive kernel configuration. I/O performance characterization
and kernel configuration evaluation are equally of interest
on any cluster platform running Linux.

NPB LU Class C (16 Nodes) ASCI Sweep3D (128 Nodes)
Metric Base Ktau Off ProfAll ProfSched ProfAll+Tau Base ProfAll+Tau

Min 468.36 463.6 477.13 461.66 475.8 - -
% Min Slow 0 0 1.87 0 1.58 - -

Avg 470.812 470.86 481.748 471.164 484.12 368.25 369.9
% Avg Slow 0 0.01 2.32 0.07 2.82 0 0.49

Table 3. Perturbation: Total Exec. Time (secs)

7. Acknowledgment

The KTAU research was supported by the Department
of Energy’s Office of Science (contract no. DE-FG02-
05ER25663) and the National Science Foundation (grant
no. NSF CCF 0444475). The authors thank Suravee
Suthikulpanit for his contribution to KTAU’s implementa-
tion and Rick Bradshaw for his assistance with the Chiba-
City cluster.

References

[1] OProfile. http://sourceforge.net/projects/oprofile/.
[2] SGI KernProf. http://oss.sgi.com/projects/kernprof/.
[3] TAU: Tuning and Analysis Utilities.

http://www.cs.uoregon.edu/research/paracomp/tau/.
[4] ZeptoOS: The small linux for big computers.

http://www.mcs.anl.gov/zeptoos/.
[5] A. Hoisie et. al. A General Predictive Performance Model

for Wavefront Algorithms on Clusters of SMPs. In ICPP’00:
Proceedings of the 29th International Conference on Paral-
lel Processing, Toronto, Canada, 2000.

[6] A. Mirgorodskiy et. al. CrossWalk: A Tool for Performance
Profiling Across the User-Kernel Boundary. In ParCo’03:
Proceedings of the International Conference on Parallel
Computing, Dresden, Germany, 2003.

[7] A. Nataraj et. al. Early Experiences with KTAU on the IBM
BG/L. In Europar’06: Proceedings of the European Con-
ference on Parallel Processing, Dresden, Germany, 2006.

[8] A.Tamches et. al. Fine-Grained Dynamic Instrumentation of
Commodity Operating System Kernels. In OSDI’99: Pro-
ceedings of Operating Systems Design and Implementation,
New Orleans, LA, USA, 1999.

[9] B.M. Cantrill et. al. Dynamic Instrumentation of Production
Systems. In USENIX ’04: Proceedings of the 2004 USENIX
Annual Technical Conference, Boston, MA, USA, 2004.

[10] D. H. Bailey et. al. The NAS Parallel Benchmarks.
The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[11] M. D. R. et al. Efficient and Accurate Tracing of Events in
Linux Clusters. In HPCS’03: Proceedings of Symposium
on High Performance Computing Systems and Applications,
Quebec, Canada, 2003.

[12] F. Petrini et. al. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192

Processors of ASCI Q. In SC ’03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, Washing-
ton, DC, USA, 2003.

[13] J. K. Hollingsworth et. al. Dynamic Program Instrumenta-
tion for Scalable Performance Tools. Technical Report CS-
TR-1994-1207, 1994.

[14] K. Yaghmour et. al. Measuring and Characterizing System
Behavior Using Kernel-Level Event Logging. In USENIX
’00: Proceedings of the USENIX Annual Technical Confer-
ence, Boston, MA, USA, 2000.

[15] L. W. McVoy et. al. lmbench: Portable Tools for Per-
formance Analysis. In USENIX’96: Proceedings of the
1996 USENIX Annual Technical Conference, San Diego,
CA, USA, 1996.

[16] O. Zaki et. al. Toward Scalable Performance Visualization
with Jumpshot. The International Journal of High Perfor-
mance Computing Applications, 13(3):277–288, Fall 1999.

[17] R. Bell et. al. A Portable, Extensible, and Scalable Tool
for Parallel Performance Profile Analysis. Lecture Notes in
Computer Science, 2790:17–26, 2003.

[18] R. W. Wisniewski et. al. Efficient, Unified, and Scalable
Performance Monitoring for Multiprocessor Operating Sys-
tems, 2003.

[19] S. Bhattacharya et. al. A Measurement Study of the Linux
TCP/IP Stack Performance and Scalability on SMP systems.
In Proceedings of 1st International Conference on COMmu-
nication Systems softWAre and middlewaRE (COMSWARE),
Bangalore, India, 2006.

[20] S. Sharma et. al. A framework for analyzing linux system
overheads on hpc applications. In LACSI ’05: Proceedings
of the 2005 Los Alamos Computer Science Institute Sympo-
sium, Santa Fe, NM, USA, 2005.

[21] T. Jones et. al. Improving the scalability of parallel jobs
by adding parallel awareness to the operating system. In
SC ’03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, Washington, DC, USA, 2003.

[22] W. E. Nagel et. al. VAMPIR: Visualization and analysis of
MPI resources. Supercomputer, 12(1):69–80, 1996.

[23] Y. Etsion et. al. Fine Grained Kernel Logging with KLogger:
Experience and Insights. Technical Report Technical Report
2005-35. School of Computer Science and Engineering. The
Hebrew University of Jerusalem, 2005.

[24] Y. Ruan et. al. Making the “Box” Transparent: System Call
Performance as a First-class Result. In USENIX ’04: Pro-
ceedings of the 2004 USENIX Annual Technical Conference,
Boston, MA, USA, 2004.

