

An Iteration Aware Multidimensional Data Distribution Prototype for
Computing Clusters

Baoqiang Yan and Philip J. Rhodes

Department of Computer and Information Science
University of Mississippi

{baoqiang, rhodes}@cs.olemiss.edu

Abstract

Disk and network latency must be taken into

account when applying parallel computing to large
multidimensional datasets because they can hinder
performance by reducing the rate at which data can be
fed to the compute nodes. Existing methods aggregate
some number of data requests from cluster nodes to
improve overall performance by reducing the number
of latency penalties. However, an even more significant
reduction can be achieved by taking advantage of prior
knowledge of the access pattern expressed as an
iteration.

Within the context of the Granite Scientific
Database system, we created a new iteration aware
data distribution system that accelerates data transfer
between a data server and the client cluster. This
system reduces both disk and network latency by
transforming a large number of small requests into a
small number of large requests that fill an n-
dimensional cache block on the cluster head node.1

1. Introduction

As new data gathering and generation methods
produce rapidly increasing dataset volumes, parallel
computing has been and will continue to be an
effective method of satisfying researchers’ appetite for
processing capacity. However, improvements in disk
and network latency have not kept pace with the
progress seen in processing power, storage capacity,
and bandwidth. Thus, with idle processors hungering
for data, disk and network latency prevents us from
taking full advantage of a computer system’s
processing power. This problem is made worse with
multidimensional datasets because according to
traditional file system semantics, a separate system call
is required for each disjoint portion. Multidimensional

1 This work was supported in part by the National Science Foundation under grant CCF-
0541239

subsets of a data volume must be mapped to a large
number of one dimensional disk requests. If data is
stored remotely, many separate network transactions
must be made.

Thus, in an I/O intensive parallel computing
environment without an efficient data distribution
among compute nodes, parallelism will not be fully
realized. We can therefore improve performance by
creating a mechanism that can represent the multiple
data requests made by compute nodes and transform
them into a more efficient pattern for disk or network
access.

In a cluster computing environment, this mechanism
must be able to overlap I/O operation with computation
and must be collective so that separate data requests
can be grouped into small numbers of longer sequential
disk reads. Support for efficient spatial data extraction
is necessary since scientific applications often center
around computation on large multidimensional arrays
[11]. This data distribution system should also support
load balancing and minimize the intercommunication
among the compute nodes themselves to prevent
network latency and bandwidth from becoming a
bottleneck.

Each of these key requirements have separately
been the subject of intense research but the work
presented here combines all of them at once to support
efficient parallel access to multidimensional datasets.
This work, done within the Granite Scientific Database
system [9], combines the benefits of both collective I/O
and informed prefetching by assuming that the pattern
of access is known in advance, and that it can be
expressed succinctly in the form of an iterator.

Our previous work on both local and remote large
multidimensional data access shows that full prior
knowledge of future access patterns can be effectively
exploited to achieve dramatic performance gains in I/O
by minimizing disk reads and network transaction
numbers and eliminating repeated reloading of data
blocks [9, 10]. This provides a strong basis for our data
distribution system for cluster computing. In our
iteration aware data distribution system, the iterator

1-4244-0328-6/06/$20.00 ©2006 IEEE.

that Granite relies on to iterate through an n-
dimensional data space also serves as an integrated
descriptor of the access pattern for each compute node
as well as the aggregated access pattern employed by
the head node. This aggregated pattern is used to create
a multi-dimensional cache block that improves
performance by reducing the number of times disk or
network latency penalties are paid.

After a brief review of previous work on I/O in
parallel computing environment, we will give an
introduction to the Granite system, focusing on the
issues that are related to the efficient data extraction
and distribution. We will then describe the framework
of our data distribution system. A sample application
that implements this framework is demonstrated and its
experimental results are provided to confirm our
arguments. We end with conclusions and future work.

2. Background

The ever increasing discrepancy between processing

capacity and storage I/O hinders the full realization of
the computing power. Finding an efficient way to hide
disk and network latencies will effectively improve the
utilization of existing bandwidth and the data transfer
rate to fast processing unit.

According to Gibson [2], there are only four
techniques available for solving disk performance
problems.

- increasing storage device parallelism
- more effective caching
- overlapping I/O with computation through

prefetching
- more effective scheduling by reducing or

rearranging data accesses
To address network latency, improvements can be

made in the data transfer protocol, or multiple small
requests are packed into a small number of large
requests to reduce the number of times the latency cost
is paid.

2.1. Parallel I/O system

Similar to the idea of introducing parallelism to
increase computing speed, scalable I/O has been a
topic of intense research interest and forms the basis of
many high-performance computing systems [1].

The SIO Study [14] and the work of Nils and Kotz
[6] tried to characterize file access in parallel scientific
workloads. This provides some guidelines for high-
performance parallel file system designers. Both of
these studies concluded that a general parallel file
system has to deal with both small accesses and large

ones. Since performance for small, noncontiguous
accesses is much worse than large accesses, the file
system interface must change because it forces the
programmer to break down parallel I/O activities into
small, disjoint requests.

Little research has yet been done on I/O access
patterns for parallel computing systems and there is no
single, coherent model available. Most existing parallel
file systems are architecturally dependent [4, 6].
Portability, if realized, is done through an abstract level
atop multiple parallel file systems, such as ADIO in
ROMIO [15], a portable implementation of MPI-IO.
Similarly, PPFS [3] is a user-level library that abstracts
away platform differences and allows various
configuration tunings for experimental performance
evaluation. However, it is reported that such systems
have average I/O performance dramatically less than
their reported peak performance [1, 5]. Parallel I/O
system needs to be further standardized. Smirni [13]
emphasizes that asynchronous and collective
operations are imperative. ROMIO [15] is very
effective in incorporating both types of operations
through non-blocking I/O and generalized two-phase
I/O.

Although Granite does not yet support parallel I/O
devices, it is a portable Java interface, and its iterator
representation of access pattern is naturally suited to
collective I/O via its n-dimensional caching
mechanism, described in section 3.3. In contrast to
systems that conduct caching via a one dimensional
view of the file on disk, Granite’s n-dimensional data
view allows the easy construction of caches tuned to an
n-dimensional access pattern.

2.2. Prefetching and caching

Prefetching can be an effective way to hide or
minimize the cost of I/O stalling since it overlaps I/O
operations with computation. Prefetching has widely
been used in uniprocessor file systems. For parallel file
system, PPFS [3] allows user to specify desired
prefetching policy and it could be an aggregated one.
Kotz et al. [4] presented a double predictor strategy, in
which they use separate predictors for local-pattern and
global-pattern work loads. They judge a prefetching
policy to be practical when it is both effective,
choosing the correct blocks to prefetch and efficient,
having low overhead. This criterion is similar to our
well-formed and practical cache block construction [9].

The accuracy of a prefetching policy will heavily
rely on the correctness of the hints supplied to the
prefetcher module. While other methods try to predict
future access pattern based on the history of
application’s I/O behavior, Granite takes advantage of

full prior knowledge of future access pattern to
generate caches that only contain the requested data
and win best performance by making disk reads as
large as possible using its rod storage model. In a
cluster environment, this prior knowledge of access
pattern can be further used to accurately build an
aggregated cache block that contains the prefetched
data for all the compute nodes. Unlike page based
caching systems, Granite’s cache blocks are n-
dimensional, making it particularly effective for
efficient processing of spatial data.

Kotz et al. [4] use a prediction approach under the
assumption that the complete access pattern is not
available in advance. However, applications such as
the Fast Fourier Transform, Wavelets, feature detection
and the visualization demonstrated in this paper have
access patterns that are know a priori and can be
described using a Granite iterator. In such cases, the
next access is known with certainty and does not have
to be guessed.

2.3. Collective I/O

Collective I/O has won much reputation in the data
intensive parallel computing world. It is essentially an
optimization of parallel I/O that combines application-
specified information and system-level support to
achieve an optimal scheduling that reduces disk latency
and increases throughput. The underlying principle of
collective I/O operations is to aggregate multiple
requests into a single long I/O request, thereby
minimizing the number of disk accesses. It does this by
sorting requests from multiple processes according to
the location of the data on disk, which requires (non-
portable) operating system level support.

Collective I/O can be categorized as user-level or
system-level. Examples of user-level methods include
two-phase I/O, while system-level methods include
Disk Directed I/O (DDIO) [5]. Both involve request
sorting, but in two-phase I/O [8] the permutation phase
does not overlap with I/O and it requires additional
buffer space for the intermediate request shuffling,
while DDIO allows the I/O nodes to sort the physical
block request and transfer the requested blocks directly
to the requesting processors.

Collective I/O is generally effective in that it is
suitable for many parallel access patterns and assumes
no specific physical data layout on disk. However,
collective I/O does not overlap with computation since
there is no prefetching involved. Collective I/O also
assumes the availability of a high-performance
message passing network because it requires a lot of
communication on either client or server side to realize
the real-time sorting among the requests.

2.4. Informed prefetching for collective I/O

According to [5], further optimization of collective
I/O can be achieved by integrating prefetching with
collective I/O, which brings the benefit of overlapping
I/O with computation. Also, the problem of non-
portable OS support required for request sorting can be
avoided by using a more general framework which
uses application supplied hints to inform the file
system of future requests and relies on the file system
disk queuing mechanism to implicitly do the request
reordering according to the physical layout of the job
blocks. This reordering delegation method is sensitive
to the prefetching depth which takes effect by affecting
the depth of the disk queues. The deeper the queues,
the more reordering is possible and the higher the
throughput. Since the prefetching depth has to be built
up gradually based on previous data references, this
method has a warming up phase that is used to gather
enough hints to form deeper prefetching.

2.5. Storage optimization of data on disk

All the methods mentioned above assume that work
is done on original datasets. But instead of adjusting
application behavior or optimize disk scheduling to
match the storage layout of original data, I/O
performance can be improved in another way by
changing data storage layout to suit the application
requirement. For spatial scientific datasets, perhaps the
best known method is chunking [11]. Chunking
reorganizes a dataset into n-dimensional chunks
according to the expected access pattern. Chunks,
which may correspond to job blocks in a parallel
context, are now units of data retrieval. Each chunk can
be read with a single read operation.

Although Sarawagi et al. describe a generic
chunking that does not require prior knowledge of the
access pattern, the best results are obtained when the
file is reorganized to suit a particular pattern.
Unfortunately, for extremely large datasets it is
impractical to make a copy of the dataset for each
expected access pattern.

2.6. The advantages of granite iteration aware
data distribution system

With the exception of support for parallel I/O
devices, our Granite iteration aware data distribution
system for cluster computing includes the advantages
of all other methods discussed above while avoiding
their shortcomings.

First, armed with full prior knowledge of future
access pattern, our spatial prefetching excludes any
speculation about future access pattern that is common
to hint-based prefetching techniques. This elimination
of guessing completely avoids loading the wrong data.
It also greatly improves I/O performance since explicit
knowledge of the access pattern allows optimal
scheduling that requires the least number of disk reads
or network transactions. Such scheduling can be done
without relying upon non-portable OS level support.
This accurate prefetching can be done as deeply as
available memory allows without any warm-up phase
as in hint-based methods. Lastly, our data distribution
system is a special version of collective I/O that does
not employ dynamic data request reordering and thus
can provide efficient performance without a high-
performance message passing network.

3. Granite scientific database system

The work presented here is done within the context
of the datasource component of the Granite system,
which handles array-based data. A datasource is
conceptually an n-dimensional array containing a set of
sample points. The array indices define the index
space, also called a data volume. Each index space
location has a collection of associated data values,
called a datum. Datasources must handle two basic
kinds of queries. A datum query specifies a single
index space location, and is satisfied by the return of a
single datum. A subblock query specifies an n-
dimensional rectangular region of the index space, and
is satisfied by the return of a data block, which is
conceptually an n-dimensional array of datums. Since
the spatial data distribution entails block structured
subset extraction, the subblock query is what we use
here to demonstrate the efficiency of our data
distribution system in a cluster environment.

3.1. Storage ordering

A datasource is responsible for satisfying queries
expressed in its n-dimensional index space by reading
data from the file that is a one dimensional entity. It
must therefore map its index space to file offsets, and
does this with the help of an axis ordering. An axis
ordering is simply a ranking of axes from outermost to
innermost. The innermost axis of a storage ordering is
known as the rod axis, where rods are series of
elements that are contiguous in both the data volume
and the one dimensional file. We call the axis ordering
that maps the datasource to the file a storage ordering.

From I/O point of view, a rod represents a single
sequential disk read and the rod length represents the
size of that sequential read. So the number of rods and
their length contained in a cache block are the keys to
measure the I/O performance of a prefetching and
caching technique that uses an n-dimensional cache
block. For example, to iterate through the same data
volume with same amount of cache memory, the
algorithm that generates cache blocks with longer and
fewer rods is better because it needs fewer disk reads
and generates better scheduling.

3.2. Access pattern and iterator

In the Granite system, the access pattern is
represented as an iterator. The basic elements required
to construct an iterator include a data source object, an
iteration space, iteration block shape if doing block
iteration, step in each dimension and the iteration axis
ordering. An access pattern would not be complete if
any of these is missing. In this case, the corresponding
iterator can not be constructed or the access pattern can
not be expressed by an iterator and conveyed to a
datasource object. But, although the access pattern sent
to datasource object has to be complete, user doesn’t
have to specify a definite one. An indefinite access
pattern impose less restriction on the iterator
construction and leave more chances for Granite to
choose one that best match the data storage layout on
disk. This iteration ordering determines the direction
in which the iterator proceeds through the iteration
space. The iterator has a value that changes with each
invocation of the iterator’s next() method. This value
can denote either a single datum or in the case of a
block iterator, an iso-aligned n-rectangular region.

Block iterators are a natural fit for a data intensive
parallel computing environment that needs a spatial job
block distribution mechanism. Generally, the
performance of iteration over data stored on disk
depends upon the relationship between the storage
ordering and the iteration ordering. It is desired that the
iteration ordering matches storage ordering because it
would generate the longest rods and need to do fewer
disk reads while satisfying data requests. We elaborate
on this point in section 4.

3.3. Spatial prefetching

A significant component of our caching strategy is

to shape the cache blocks to most effectively improve
I/O performance. We call this approach spatial
prefetching (SP), a form of Iteration Aware
Prefetching.

(a)

(b)

(c)

Figure 1. As the image plane passes through the
volume, consecutive slices of data are blended onto the
image plane. Here, the plane has been divided among
four compute nodes.

In previous work [9], we described an algorithm for
shaping n-dimensional cache blocks for iso-aligned
datum, block and plane iterations. An important
property of those algorithms is that they produce cache

blocks that are well formed with respect to the
iteration. This means that once the iteration leaves a
cache block, it never revisits it. Therefore no
replacement policy is necessary, and often only a
single cache block is needed. In [10], we demonstrated
that the well formed property is particularly valuable
for remote access because of the expense of reloading
discarded blocks across a network.

3.4. Remote data access

The evolving high-performance Grid computing

environment requires efficient remote data access and
distribution over a long distance network.
Improvements in disk access will not result in
performance increases unless network latency is also
addressed.

Collective I/O such as two-phase I/O and DDIO
focuses on the reordering of requests for optimal disk
scheduling to hide the disk latency. They don’t pay
much attention to remote data access which is very
common in Grid computing environments where large
multidimensional datasets are shared by different
scientists. Instead, they rely on frequent network chats
to do the intercommunication among the I/O nodes,
and don’t take into account the n-dimensional nature of
spatial scientific data.

4. Application description - volume
rendering using back-to-front blending

The application that we use to demonstrate our

granite system in a cluster environment is a typical
volume rendering application using back-to-front
(BTF) alpha blending. Alpha blending is a convex
combination of two colors allowing for transparency
effects in computer graphics [12]. For example, in
figure 1, given a user specified viewing direction
relative to a transparent data volume, the blending will
start with the back of the volume and get the color data
slice by slice. Each time a new data slice comes in, the
data is assigned a color using a transfer function and is
blended with the previous slice pixel by pixel using the
following RGB alpha blending functions shown in
figure 2. When this process eventually reaches the
front surface of the volume, the final blended result
color will be displayed on the image plane.

R = AsRs + (1-As)Rb
G = AsGs + (1-As)Gb
B = AsBs + (1-As)Bb
A = As + (1-As)Ab

Figure 2. RGB Alpha blending functions

This process requires iterating through the whole
volume. However, there are many options to get the
same final result even with the same viewing direction.
To effectively implement it in a computing cluster
environment, we have to figure out a way to evenly
divide the jobs among the compute nodes while being
able to efficiently load the data into memory when the
dataset is too large to fit in the collective memory of
the compute nodes.

In the general case the viewing direction is
arbitrary, but for simplicity we have limited it here to
the three major axes, as shown in figure 1.

4.1. Finding min and max

The data values in a real dataset have arbitrary

range, but must be mapped by the transfer function to
RGB values between 0.0 and 1.0. This mapping
requires us to know the range of data values before the
blending process begins. We must therefore iterate
through the dataset to find the minimum and maximum
values. Fortunately this kind of preprocessing of the
original dataset is only done once, and the result stored
in a metadata file.

This preprocessing step is typical of an
“embarrassingly parallel” application in which the job
distribution mode does not matter at all. In particular,
the result will be correct regardless of the order in
which we iterate through the dataset, so the best
strategy is just to choose the iteration ordering that
matches the storage ordering and use available memory
to build a cache block with the longest rods possible.
Since the application does not specify a particular
access pattern, we use the storage ordering to
determine how we proceed through the data.

4.2. Cache block shape and splitting

Given a user specified viewing direction, the

Granite system must perform two tasks in order to
maximize the performance of the cluster. First, it must
choose the shape of the n-dimensional cache block that
the head node uses to access the disk or remote server.
Second, this cache block must be split into n-
dimensional job blocks which are then distributed to
the cluster compute nodes.

The shape of the cache block on the head node will
determine the number of times disk and network
latency costs are paid. To minimize disk latency
penalties, we choose a cache block shape that
maximizes the length of the rods comprising the cache
block. Figure 1 shows the three possible cache block

shapes for an example data volume. Clearly, the cache
block shown in figure 1a has much shorter rods than in
the other two cases, so performance would suffer due
to a larger number of disk latency penalties. Since the
cache block rod lengths are the same in figures 1b and
1c, choosing between them must be done by
considering the number of cache blocks that must be
read to process the entire data volume. If the data is
stored remotely, each cache block retrieved from the
server will incur network latency costs, so we should
choose the cache block shape that minimizes the
number of network transactions. Of course, in some
cases, both disk and network latency costs will be
equal for various shapes, and any shape can be chosen.

After the cache block shape has been chosen, we
must decide how to split the block into the job blocks
that are distributed to the cluster compute nodes. It is
important that each section of the image plane be the
sole responsibility of a single compute node in order to
avoid dependencies and resource contention. For this
reason, we never split the cache block along the view
axis. Currently, we simply divide the cache block into
n job blocks along one of the remaining axes, where n
is the number of compute nodes. Since our current
application does not require compute nodes to
communicate with each other, we have found that
choice of axis along which the data is split makes little
difference to performance. However, in future we plan
to consider the more complex case where compute
nodes are not independent and the shape of the job
blocks determines the number and size of the
communications between them.

 (a) (b)
Figure 3. 3dknee images generated using our data
distribution system on Orion cluster. The knee data is
courtesy of Siemens Medical Systems, Inc.

4.3. Data processing

In our implementation, the data processing includes

two steps, slicing and blending. After the job block is
transferred to a compute node, it is still n-dimensional.
Slicing is actually a block-iteration along the viewing
axis of the in-memory data block itself. Since the slice
is of same shape, so blending can be easily done.

4.4. Image combination

As described at the end of section 4.2, each compute

node is responsible for its own section of the image
plane. In order to form a complete image, these disjoint
sections must be combined to form a single result
image.

Figure 3 shows two 3dknee images generated using
our data distribution system on a 12-node Orion
cluster. Image 3b is intentionally left as seemingly
partitioned to demonstrate the effect of job splitting
and result image combination. Image 3a is the actual
generated image.

5. Iteration Aware data distribution
prototype

The above application is based upon our iteration
aware data distribution prototype.

Figure 4. Framework of Granite IADDP – Iteration
Aware Data Distribution Prototype

5.1. Pattern converter

When the user does not know or does not care about

the exact pattern data is accessed, the user can specify
as little constraint as they want on the access pattern.
All other job is done automatically by what we call
pattern converter. A pattern converter is a facility that

accepts an indefinite access pattern and generates a
complete one by putting more constraints on it. The
new constraints would make the final access pattern
one that can create the best cache shape mode and thus
bring best I/O performance.

In cluster environment, the pattern converter takes
the responsibility of integrating job distribution into
iterator construction. After that, the iteraor not only
contains the description of the iteration, but also
contains the job distribution pattern. Armed with this
enhanced complete iterator, the datasource object
would not only extract the right data but extract it most
efficiently and distribute them evenly.

At the same time, it also generates a coordinate
system that is used to combine the results later.

5.2. Optimizing scheduling of job distribution

Our data distributor is responsible for satisfying the

data requests from compute nodes as requested. But the
processing speeds of different nodes might be different
though not of a quite high probability in cluster
environment. Since our system does not support
parallel device yet, the datasource object relies on an
iterator calling next() to specify the job block bounds
and then issue jobs to compute nodes. Since this call
can only be made one at a time, latter nodes will have
to wait until all other front nodes are satisfied. To
avoid this non-frequent but existing waiting, we use a
data pool to hold the extracted data for each compute
node even the data requests are not received yet. The
earliest request for each round of data distribution will
spark the data assignment and extraction from disk if
not in memory. We call this data pre-allocation. This is
an optimization with an assumption that the compute
nodes are not so heterogeneous in terms of their speed,
because that would cause much memory overhead.
That can speed up the prefetching and increase the
overlapping between disk I/O and data processing with
a reasonable amount of memory overhead in cluster
environment. Actually, it might be better to
parameterize it whether using this or not.

5.3. In memory job block splitting and data
processing

Once each compute node gets a job block, there is a

in-memory data block splitter which is actually a
worker datasource object that takes the new job block,
updates its content and generates further application
specific data iteration and distribution in arbitrary
ways. So, this two-level datasource design enables the

reconciliation between the iteration ordering that is
suitable for disk data extraction and the iteration
ordering suitable for application when they conflict.
Since the data is already in the high speed main
memory, different data splitting methods for in
memory data block do not show much performance
difference anymore, as confirmed in the results. So, the
main performance gain using spatial prefetching is on
hiding disk latency.

Generally speaking, low level memory hierarchy is
the bottleneck of whole I/O system. The more
expensive data extraction is delayed to later high level
memory hierarchy, the more performance increase we
will get. Our goal is to transform the more detailed data
splitting, which otherwise means more operations on
high latency device, to large efficient I/O from
secondary storage and network. This has to be realized
by knowing the exact access pattern beforehand and
supporting collective I/O operations. So, we believe
our spatial prefetching and caching apply to the whole
storage hierarchy.

5.4. Result combiner

As explained in section 4.2, our current

implementation does not yet support interdependent
processing. Each compute node is responsible for
producing results without communicating with other
nodes. Unless the user requires them be stored
separately, all the partial results will be combined into
one single result.

When required to combine partial results, the
Granite system will maintain the relative position of
the results using a coordinate system to ensure proper
assembly of the final result. The final whole result
could have a 2D plane shape as in our sample
application, or a 3D volume as with a volume filtering
or feature detection program.

When the user wants to keep the partial results
stored separately, our system can generate the
corresponding metadata so that the final result can be
constructed at a later time.

Such a facility is of particular interest with
extremely large datasets where the results of
processing are inconveniently large. For example,
researchers in a Grid computing environment might
prefer to locate and retrieve selected subsets of the
result of a computation, rather than have to download
the entire volume of results. Such functionality
requires metadata support for n-dimensional subsets of
data volumes, an area that we are currently
investigating [7].

Table 1. Local cluster data distribution performance
results using Granite spatial prefetching and caching.
All results are in seconds.

256MB SP Cache
Case A Case B Case C

View
Axis

H V H V H V
0 65 63 164 152 84 79
1 83 81 163 153 65 62
2 161 163 88 88 72 72

Table 2. Local cluster data distribution performance
results without using Granite spatial prefetching. All
results are in seconds.

File System Cache Only
Case A Case B Case C

View
Axis

H V H V H V
0 82 78 988 227 93 198
1 94 72 999 149 82 60
2 234 152 190 80 85 67

6. Experimental results

In order to verify that Granite makes the correct
choices when choosing the cache and job block shapes,
we ran tests for a variety of different configurations.
The tests were performed on a 12-node Orion cluster
with a Seagate Barracuda drive with 11.5ms average
seek time. The number of working compute nodes is
adjustable. Remote tests transferred data between a
client at the University of Mississippi and a server at
the University of New Hampshire. The server is a
single processor Pentium 4 machine with a 2.4Ghz
CPU and 2GB of RAM running the Linux operating
system. The server has a 7200 RPM disk with a 9.3ms
average read seek time.

6.1. Local test results

In all result tables, cases A, B and C correspond to
the different cache block shapes as shown in figure 1.
H and V denote horizontal and vertical splitting for the
same cache block shape.

Tables 1 and 2 show the times for a 512x512x1024
subset volume rendering of a 1024x1024x1024 4GB
float data volume using 256MB SP Cache and 8
compute nodes. These results confirm that by using
spatial prefetching and caching, our data distribution
system outperforms file system caching alone when
dealing with large n-dimensional datasets.

The exception comes when the job splitting does
not break the original long rods otherwise formed by
our spatial caching. In this case, spatial prefetching

offers no advantage, and incurs some additional
overhead. In the other cases, however, the benefit of
collective I/O and spatial prefetching in our
distribution system beats file system caching. We are
speeding up the rate of data transfer from head node to
compute nodes by minimizing the number of read
operations made to disk. This optimization is made
possible by maintaining an n-dimensional view of the
data throughout the system.

Figure 5. Case 0BH. Without spatial prefetching and
caching, total disk reads increase 4 times since the rod
is split into 4 separate disk reads.

Figure 6. Case 1CH. Without spatial prefetching and
caching, the total disk reads do not change since the
rod is not split.

It is also apparent that the spatial prefetching results
show little sensitivity to the splitting mode. By using
collective spatial prefetching and caching, the cache
block is now the logical unit of I/O operation. So, the
overall I/O performance is determined mostly by how
fast the collective cache block can be loaded into
memory and how many cache blocks are required for
the whole data volume. Since the job splitting is done

in memory after the data is extracted from disk or
received from network, the total I/O time is not
affected by splitting modes very much. A specific
example is shown in the comparison of the two cases
in figure 5 and figure 6, which correspond respectively
to case 0BH and 1CH respectively in the result table.

 In the data distribution without spatial prefetching,
job blocks read directly from disk result in a large
number of small read requests. If the rod length is
much shorter than before, as shown in case 0BH, the
performance would also drop strikingly (e.g. a factor of
six) compared with spatial prefetching.

In other cases the magnitude of performance gains
due to spatial prefetching are not quite so big. This is
because the job blocks given to the compute nodes are
fairly large. So, even without spatial prefetching, the
read requests made to disk are relatively long, and have
good locality. In such cases, the marginal benefit of
spatial prefetching is lower, but still noticeable.
Performance gains are determined largely by the ratio
between length of the rods used to fill the cache block
on the head node and the rods used to fill job blocks
read without the benefit of spatial prefetching. This
ratio can be improved either by allocating more
memory to the spatial prefetching cache on the head
node, or by reducing the size of job blocks, perhaps
due to the addition of more compute nodes. In this
second case, benefits should be even more apparent
because the additional computational power will make
I/O costs a larger part of the total execution time.

6.2. Remote test results

The dramatic performance gains in our iteration
aware remote data access encourage us to integrate our
data distribution system with remote data access. This
is very important direction because Grid computing is
more and more popular since it advocates resource
sharing. Efficient data access within Grid environment
will improve the exploitation of the whole Grid’s
computing capacity.

Tables 3 and 4 on next page show the times for a
512x512x512 subset volume rendering of
518x518x518 556MB float data volume using 128MB
SP Cache and 8 compute nodes.

As seen from these two tables, using Granite
collective spatial prefetching and caching for remote
data access is also very effective for hiding network
latency and increasing the utilization of network
bandwidth. As in local tests, greater performance gains
are achieved when the collective prefetching forms a
cache block that would otherwise be broken into many
small data requests requiring small separate network
transfers. Granite realizes this by creating a

multidimensional cache block that groups multiple
separate data requests into a small number of large
requests and thus reduces the number of payment of
network latency penalties.

Without using our spatial prefetching and caching,
the data distribution is realized by sending separate
request for each job, greatly increasing the number of
network transactions. This greatly slows down the
whole data transfer rate and the speed to feed data to
compute nodes.

Table 3. Cluster data distribution performance results
using Granite spatial prefetching and caching to cache
data on client side for remote data access. All results
are in seconds.

128MB Client Side Cache

Case A Case B Case C
View
Axis

H V H V H V
0 387 369 392 386 392 370
1 404 381 397 395 381 373

2 401 393 421 382 436 385

Table 4. Cluster data distribution performance results
without using Granite spatial prefetching and caching
for remote data access. All results are in seconds.

No Client Side Cache
Case A Case B Case C

View
Axis

H V H V H V
0 529 492 660 518 523 481
1 524 480 668 517 541 521
2 509 498 484 485 506 488

7. Conclusion and future work

 We present an iteration aware data distribution
system for computing cluster environment. This system
takes advantage of full prior knowledge of future
access pattern and can greatly reduce disk and network
latency that hinders the I/O performance to increase the
speed of feeding data to compute nodes. Our system
encompasses the advantages of collective I/O,
informed prefetching without the need for data storage
optimization.

In the near future, we are going to explore the data
distribution within environments that enforce data
interdependency and thus the communication among
compute nodes. Also, we need to put more efforts into
the specification of application iteration constraint, and
establish a standard model for our pattern converter
based on the specification.

8. References

[1] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D.
Culler, J. Hellerstein, D. Patterson, K. Yelick, "Cluster I/O
with River: Making the Fast Case Common", Proceedings of
the sixth workshop on I/O in parallel and distributed systems,
May 1999
[2] G. Gibson, J. Vitter and J. Wilkes, "Strategic directions in
storage I/O issues in large-scale computing", ACM
Computing Surveys, Volume 28 , Issue 4 , December 1996
[3] J. Huber, C. Elford, D. Reed, A. Chien and D.
Blumenthal, "PPFS: A high performance portable parallel
file system", Conference proceedings of the 1995
International Conference on Super-computing, pages 385-
394, ACM Press, July 1995
[4]D. Kotz and C. Ellis, "Practical Prefetching Techniques
for Parallel File Systems", Proceedings of the First
International Conference on Parallel and Distributed
Information Systems, 1991
[5] T. Madhyastha, G. Gibson, and C. Faloutsos, "Informed
Prefetching of Collective Input/Output Requests",
Proceedings of SC99: High Performance Networking and
Computing, 1999
[6] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, M.
Best, "File-Access Characteristics of Parallel Scientific
Workloads", IEEE Transactions on Parallel and Distributed
Systems, Volume 7 Issue 10, October, 1996
[7] S. Ramakrishnan and P. Rhodes, "Multidimensional
Replica Selection in the Data Grid", Proc. 15th IEEE
International Symposium on High Performance Distributed
Computing, pp. 373-374, 2006
[8] J. del Rosario, R. Bordawekar, and A. Choudhary,
"Improved parallel I/O via a two-phase run-time access
strategy", IPPS '93 Workshop on Input/Output in Parallel
Computer Systems, pp 56-70, 1993
[9] P. Rhodes, X. Tang, R. D. Bergeron, and T. M. Sparr,
"Iteration Aware Prefetching for Large Multidimensional
Scientific Datasets", Proc. SSDBM '05
[10] P. Rhodes and S. Ramakrishnan, "Iteration Aware
Prefetching for Remote Data Access", Proc. 1st International
IEEE Conference on e-Science and Grid Technologies (e-
Science05)
[11] S. Sarawagi, M. Stonebraker, "Efficient Organizations
of Large Multidimensional Arrays", Proc. of the Tenth
International Conference on Data Engineering, Feb. 1994
[12] W. Schroeder, K. Martin, and B. Lorensen, The
Visualization Toolkit: An Object Oriented Approach to 3D
Graphics, Kitware, 2002
[13] E. Smirni, R. Aydt, A. Chien, and D.Reed, "I/O
Requirements of Scientific Applications: An Evolutionary
View", Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing, pp
49-59, August 1996
[14] E. Smirni, and D. Reed. "Workload characterization of
input/output intensive parallel applications", Proceedings of
the Fifth IEEE International Symposium on High
Performance Distributed Computing, pp 49-59, August 1996
[15] R. Thakur, W. Gropp, and E. Lusk. "Optimizing
noncontiguous accesses in MPI-IO", Parallel Computing,
28(1):83-105, Jan. 2002

