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Abstract 

 
Disk and network latency must be taken into 

account when applying parallel computing to large 
multidimensional datasets because they can hinder 
performance by reducing the rate at which data can be 
fed to the compute nodes. Existing methods aggregate 
some number of data requests from cluster nodes to 
improve overall performance by reducing the number 
of latency penalties. However, an even more significant 
reduction can be achieved by taking advantage of prior 
knowledge of the access pattern expressed as an 
iteration. 

Within the context of the Granite Scientific 
Database system, we created a new iteration aware 
data distribution system that accelerates data transfer 
between a data server and the client cluster. This 
system reduces both disk and network latency by 
transforming a large number of small requests into a 
small number of large requests that fill an n-
dimensional cache block on the cluster head node.1 
 
 
1. Introduction 
 

As new data gathering and generation methods 
produce rapidly increasing dataset volumes, parallel 
computing has been and will continue to be an 
effective method of satisfying researchers’ appetite for 
processing capacity. However, improvements in disk 
and network latency have not kept pace with the 
progress seen in processing power, storage capacity, 
and bandwidth. Thus, with idle processors hungering 
for data, disk and network latency prevents us from 
taking full advantage of a computer system’s 
processing power. This problem is made worse with 
multidimensional datasets because according to 
traditional file system semantics, a separate system call 
is required for each disjoint portion. Multidimensional 
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subsets of a data volume must be mapped to a large 
number of one dimensional disk requests. If data is 
stored remotely, many separate network transactions 
must be made. 

Thus, in an I/O intensive parallel computing 
environment without an efficient data distribution 
among compute nodes, parallelism will not be fully 
realized. We can therefore improve performance by 
creating a mechanism that can represent the multiple 
data requests made by compute nodes and transform 
them into a more efficient pattern for disk or network 
access.   

In a cluster computing environment, this mechanism 
must be able to overlap I/O operation with computation 
and must be collective so that separate data requests 
can be grouped into small numbers of longer sequential 
disk reads. Support for efficient spatial data extraction 
is necessary since scientific applications often center 
around computation on large multidimensional arrays 
[11]. This data distribution system should also support 
load balancing and minimize the intercommunication 
among the compute nodes themselves to prevent 
network latency and bandwidth from becoming a 
bottleneck.  

Each of these key requirements have separately 
been the subject of intense research but the work  
presented here combines all of them at once to support 
efficient parallel access to multidimensional datasets. 
This work, done within the Granite Scientific Database 
system [9], combines the benefits of both collective I/O 
and informed prefetching by assuming that the pattern 
of access is known in advance, and that it can be 
expressed succinctly in the form of an iterator. 

Our previous work on both local and remote large 
multidimensional data access shows that full prior 
knowledge of future access patterns can be effectively 
exploited to achieve dramatic performance gains in I/O 
by minimizing disk reads and network transaction 
numbers and eliminating repeated reloading of data 
blocks [9, 10]. This provides a strong basis for our data 
distribution system for cluster computing. In our 
iteration aware data distribution system, the iterator 
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that Granite relies on to iterate through an n-
dimensional data space also serves as an integrated 
descriptor of the access pattern for each compute node 
as well as the aggregated access pattern employed by 
the head node. This aggregated pattern is used to create 
a multi-dimensional cache block that improves 
performance by reducing the number of times disk or 
network latency penalties are paid.  

After a brief review of previous work on I/O in 
parallel computing environment, we will give an 
introduction to the Granite system, focusing on the 
issues that are related to the efficient data extraction 
and distribution. We will then describe the framework 
of our data distribution system. A sample application 
that implements this framework is demonstrated and its 
experimental results are provided to confirm our 
arguments. We end with conclusions and future work. 

 
2. Background 

 
The ever increasing discrepancy between processing 

capacity and storage I/O hinders the full realization of 
the computing power. Finding an efficient way to hide 
disk and network latencies will effectively improve the 
utilization of existing bandwidth and the data transfer 
rate to fast processing unit.  

According to Gibson [2], there are only four 
techniques available for solving disk performance 
problems. 

- increasing storage device parallelism 
- more effective caching 
- overlapping I/O with computation through 

prefetching 
- more effective scheduling by reducing or 

rearranging data accesses 
To address network latency, improvements can be 

made in the data transfer protocol, or multiple small 
requests are packed into a small number of large 
requests to reduce the number of times the latency cost 
is paid. 

 
 

2.1. Parallel I/O system 
 

Similar to the idea of introducing parallelism to 
increase computing speed, scalable I/O has been a 
topic of intense research interest and forms the basis of 
many high-performance computing systems [1]. 

The SIO Study [14] and the work of Nils and Kotz 
[6] tried to characterize file access in parallel scientific 
workloads. This provides some guidelines for high-
performance parallel file system designers. Both of 
these studies concluded that a general parallel file 
system has to deal with both small accesses and large 

ones. Since performance for small, noncontiguous 
accesses is much worse than large accesses, the file 
system interface must change because it forces the 
programmer to break down parallel I/O activities into 
small, disjoint requests.  

Little research has yet been done on I/O access 
patterns for parallel computing systems and there is no 
single, coherent model available. Most existing parallel 
file systems are architecturally dependent [4, 6]. 
Portability, if realized, is done through an abstract level 
atop multiple parallel file systems, such as ADIO in 
ROMIO [15], a portable implementation of MPI-IO. 
Similarly, PPFS [3] is a user-level library that abstracts 
away platform differences and allows various 
configuration tunings for experimental performance 
evaluation. However, it is reported that such systems 
have average I/O performance dramatically less than 
their reported peak performance [1, 5]. Parallel I/O 
system needs to be further standardized. Smirni [13] 
emphasizes that asynchronous and collective 
operations are imperative. ROMIO [15] is very 
effective in incorporating both types of operations 
through non-blocking I/O and generalized two-phase 
I/O. 

Although Granite does not yet support parallel I/O 
devices, it is a portable Java interface, and its iterator 
representation of access pattern is naturally suited to 
collective I/O via its n-dimensional caching 
mechanism, described in section 3.3. In contrast to 
systems that conduct caching via a one dimensional 
view of the file on disk, Granite’s n-dimensional data 
view allows the easy construction of caches tuned to an 
n-dimensional access pattern. 
 
 
2.2. Prefetching and caching 
 

Prefetching can be an effective way to hide or 
minimize the cost of I/O stalling since it overlaps I/O 
operations with computation. Prefetching has widely 
been used in uniprocessor file systems. For parallel file 
system, PPFS [3] allows user to specify desired 
prefetching policy and it could be an aggregated one. 
Kotz et al. [4] presented a double predictor strategy, in 
which they use separate predictors for local-pattern and 
global-pattern work loads. They judge a prefetching 
policy to be practical when it is both effective, 
choosing the correct blocks to prefetch and efficient, 
having low overhead. This criterion is similar to our 
well-formed and practical cache block construction [9].  

The accuracy of a prefetching policy will heavily 
rely on the correctness of the hints supplied to the 
prefetcher module. While other methods try to predict 
future access pattern based on the history of 
application’s I/O behavior, Granite takes advantage of 



 

 

full prior knowledge of future access pattern to 
generate caches that only contain the requested data 
and win best performance by making disk reads as 
large as possible using its rod storage model. In a 
cluster environment, this prior knowledge of access 
pattern can be further used to accurately build an 
aggregated cache block that contains the prefetched 
data for all the compute nodes. Unlike page based 
caching systems, Granite’s cache blocks are n-
dimensional, making it particularly effective for 
efficient processing of spatial data. 

Kotz et al. [4] use a prediction approach under the 
assumption that the complete access pattern is not 
available in advance. However, applications such as 
the Fast Fourier Transform, Wavelets, feature detection 
and the visualization  demonstrated in this paper have 
access patterns that are know a priori and can be 
described using a Granite iterator. In such cases, the 
next access is known with certainty and does not have 
to be guessed.  
 
 
2.3. Collective I/O 
 

Collective I/O has won much reputation in the data 
intensive parallel computing world. It is essentially an 
optimization of parallel I/O that combines application-
specified information and system-level support to 
achieve an optimal scheduling that reduces disk latency 
and increases throughput. The underlying principle of 
collective I/O operations is to aggregate multiple 
requests into a single long I/O request, thereby 
minimizing the number of disk accesses. It does this by 
sorting requests from multiple processes according to 
the location of the data on disk, which requires (non-
portable) operating system level support. 

Collective I/O can be categorized as user-level or 
system-level. Examples of user-level methods include 
two-phase I/O, while system-level methods include 
Disk Directed I/O (DDIO) [5]. Both involve request 
sorting, but in two-phase I/O [8] the permutation phase 
does not overlap with I/O and it requires additional 
buffer space for the intermediate request shuffling, 
while DDIO allows the I/O nodes to sort the physical 
block request and transfer the requested blocks directly 
to the requesting processors.  

Collective I/O is generally effective in that it is 
suitable for many parallel access patterns and assumes 
no specific physical data layout on disk. However, 
collective I/O does not overlap with computation since 
there is no prefetching involved. Collective I/O also 
assumes the availability of a high-performance 
message passing network because it requires a lot of 
communication on either client or server side to realize 
the real-time sorting among the requests. 

2.4. Informed prefetching for collective I/O 
 

According to [5], further optimization of collective 
I/O can be achieved by integrating prefetching with 
collective I/O, which brings the benefit of overlapping 
I/O with computation. Also, the problem of non-
portable OS support required for request sorting can be 
avoided by using a more general framework which 
uses application supplied hints to inform the file 
system of future requests and relies on the file system 
disk queuing mechanism to implicitly do the request 
reordering according to the physical layout of the job 
blocks. This reordering delegation method is sensitive 
to the prefetching depth which takes effect by affecting 
the depth of the disk queues. The deeper the queues, 
the more reordering is possible and the higher the 
throughput. Since the prefetching depth has to be built 
up gradually based on previous data references, this 
method has a warming up phase that is used to gather 
enough hints to form deeper prefetching.  
 
 
2.5. Storage optimization of data on disk 
 

All the methods mentioned above assume that work 
is done on original datasets. But instead of adjusting 
application behavior or optimize disk scheduling to 
match the storage layout of original data, I/O 
performance can be improved in another way by 
changing data storage layout to suit the application 
requirement. For spatial scientific datasets, perhaps the 
best known method is chunking [11]. Chunking 
reorganizes a dataset into n-dimensional chunks 
according to the expected access pattern. Chunks, 
which may correspond to job blocks in a parallel 
context, are now units of data retrieval. Each chunk can 
be read with a single read operation. 

Although Sarawagi et al. describe a generic 
chunking that does not require prior knowledge of the 
access pattern, the best results are obtained when the 
file is reorganized to suit a particular pattern. 
Unfortunately, for extremely large datasets it is 
impractical to make a copy of the dataset for each 
expected access pattern. 

 
 

2.6. The advantages of granite iteration aware 
data distribution system 
 

With the exception of support for parallel I/O 
devices, our Granite iteration aware data distribution 
system for cluster computing includes the advantages 
of all other methods discussed above while avoiding 
their shortcomings.  



 

 

First, armed with full prior knowledge of future 
access pattern, our spatial prefetching excludes any 
speculation about future access pattern that is common 
to hint-based prefetching techniques. This elimination 
of guessing completely avoids loading the wrong data. 
It also greatly improves I/O performance since explicit 
knowledge of the access pattern allows optimal 
scheduling that requires the least number of disk reads 
or network transactions. Such scheduling can be done 
without relying upon non-portable OS level support. 
This accurate prefetching can be done as deeply as 
available memory allows without any warm-up phase 
as in hint-based methods. Lastly, our data distribution 
system is a special version of collective I/O that does 
not employ dynamic data request reordering and thus 
can provide efficient performance without a high-
performance message passing network.  
 
3. Granite scientific database system 
 

The work presented here is done within the context 
of the datasource component of the Granite system, 
which handles array-based data. A datasource is 
conceptually an n-dimensional array containing a set of 
sample points. The array indices define the index 
space, also called a data volume. Each index space 
location has a collection of associated data values, 
called a datum. Datasources must handle two basic 
kinds of queries. A datum query specifies a single 
index space location, and is satisfied by the return of a 
single datum. A subblock query specifies an n-
dimensional rectangular region of the index space, and 
is satisfied by the return of a data block, which is 
conceptually an n-dimensional array of datums. Since 
the spatial data distribution entails block structured 
subset extraction, the subblock query is what we use 
here to demonstrate the efficiency of our data 
distribution system in a cluster environment. 

 
 
3.1. Storage ordering 
 

A datasource is responsible for satisfying queries 
expressed in its n-dimensional index space by reading 
data from the file that is a one dimensional entity. It 
must therefore map its index space to file offsets, and 
does this with the help of an axis ordering. An axis 
ordering is simply a ranking of axes from outermost to 
innermost. The innermost axis of a storage ordering is 
known as the rod axis, where rods are series of 
elements that are contiguous in both the data volume 
and the one dimensional file. We call the axis ordering 
that maps the datasource to the file a storage ordering. 

From I/O point of view, a rod represents a single 
sequential disk read and the rod length represents the 
size of that sequential read. So the number of rods and 
their length contained in a cache block are the keys to 
measure the I/O performance of a prefetching and 
caching technique that uses an n-dimensional cache 
block. For example, to iterate through the same data 
volume with same amount of cache memory, the 
algorithm that generates cache blocks with longer and 
fewer rods is better because it needs fewer disk reads 
and generates better scheduling. 
 
 
3.2. Access pattern and iterator 
 

In the Granite system, the access pattern is 
represented as an iterator. The basic elements required 
to construct an iterator include a data source object, an 
iteration space, iteration block shape if doing block 
iteration, step in each dimension and the iteration axis 
ordering. An access pattern would not be complete if 
any of these is missing. In this case, the corresponding 
iterator can not be constructed or the access pattern can 
not be expressed by an iterator and conveyed to a 
datasource object. But, although the access pattern sent 
to datasource object has to be complete, user doesn’t 
have to specify a definite one. An indefinite access 
pattern impose less restriction on the iterator 
construction and leave more chances for Granite to 
choose one that best match the data storage layout on 
disk. This iteration ordering determines the direction 
in which the iterator proceeds through the iteration 
space. The iterator has a value that changes with each 
invocation of the iterator’s next() method. This value 
can denote either a single datum or in the case of a 
block iterator, an iso-aligned n-rectangular region.  

Block iterators are a natural fit for a data intensive 
parallel computing environment that needs a spatial job 
block distribution mechanism. Generally, the 
performance of iteration over data stored on disk 
depends upon the relationship between the storage 
ordering and the iteration ordering. It is desired that the 
iteration ordering matches storage ordering because it 
would generate the longest rods and need to do fewer 
disk reads while satisfying data requests. We elaborate 
on this point in section 4.  
 
 
3.3. Spatial prefetching 

 
A significant component of our caching strategy is 

to shape the cache blocks to most effectively improve 
I/O performance. We call this approach spatial 
prefetching (SP), a form of Iteration Aware 
Prefetching. 
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Figure 1. As the image plane passes through the 
volume, consecutive slices of data are blended onto the 
image plane. Here, the plane has been divided among 
four compute nodes. 
 

In previous work [9], we described an algorithm for 
shaping n-dimensional cache blocks for iso-aligned 
datum, block and plane iterations. An important 
property of those algorithms is that they produce cache 

blocks that are well formed with respect to the 
iteration. This means that once the iteration leaves a 
cache block, it never revisits it. Therefore no 
replacement policy is necessary, and often only a 
single cache block is needed. In [10], we demonstrated 
that the well formed property is particularly valuable 
for remote access because of the expense of reloading 
discarded blocks across a network.  
 
3.4. Remote data access 

 
The evolving high-performance Grid computing 

environment requires efficient remote data access and 
distribution over a long distance network. 
Improvements in disk access will not result in 
performance increases unless network latency is also 
addressed.   

Collective I/O such as two-phase I/O and DDIO 
focuses on the reordering of requests for optimal disk 
scheduling to hide the disk latency. They don’t pay 
much attention to remote data access which is very 
common in Grid computing environments where large 
multidimensional datasets are shared by different 
scientists. Instead, they rely on frequent network chats 
to do the intercommunication among the I/O nodes, 
and don’t take into account the n-dimensional nature of 
spatial scientific data. 
 
4. Application description - volume 
rendering using back-to-front blending 

 
The application that we use to demonstrate our 

granite system in a cluster environment is a typical 
volume rendering application using back-to-front 
(BTF) alpha blending. Alpha blending is a convex 
combination of two colors allowing for transparency 
effects in computer graphics [12]. For example, in 
figure 1, given a user specified viewing direction 
relative to a transparent data volume, the blending will 
start with the back of the volume and get the color data 
slice by slice. Each time a new data slice comes in, the 
data is assigned a color using a transfer function and is 
blended with the previous slice pixel by pixel using the 
following RGB alpha blending functions shown in 
figure 2. When this process eventually reaches the 
front surface of the volume, the final blended result 
color will be displayed on the image plane.  
 

R = AsRs + (1-As)Rb 
G = AsGs + (1-As)Gb 
B = AsBs + (1-As)Bb 
A = As + (1-As)Ab 

 
Figure 2. RGB Alpha blending functions 



 

 

This process requires iterating through the whole 
volume. However, there are many options to get the 
same final result even with the same viewing direction. 
To effectively implement it in a computing cluster 
environment, we have to figure out a way to evenly 
divide the jobs among the compute nodes while being 
able to efficiently load the data into memory when the 
dataset is too large to fit in the collective memory of 
the compute nodes.  

In the general case the viewing direction is 
arbitrary, but for simplicity we have limited it here to 
the three major axes, as shown in figure 1. 
 
 
4.1. Finding min and max 

 
The data values in a real dataset have arbitrary 

range, but must be mapped by the transfer function to 
RGB values between 0.0 and 1.0. This mapping 
requires us to know the range of data values before the 
blending process begins. We must therefore iterate 
through the dataset to find the minimum and maximum 
values. Fortunately this kind of preprocessing of the 
original dataset is only done once, and the result stored 
in a metadata file. 

This preprocessing step is typical of an 
“embarrassingly parallel” application in which the job 
distribution mode does not matter at all. In particular, 
the result will be correct regardless of the order in 
which we iterate through the dataset, so the best 
strategy is just to choose the iteration ordering that 
matches the storage ordering and use available memory 
to build a cache block with the longest rods possible. 
Since the application does not specify a particular 
access pattern, we use the storage ordering to 
determine how we proceed through the data.  

 
 
4.2. Cache block shape and splitting 

 
Given a user specified viewing direction, the 

Granite system must perform two tasks in order to 
maximize the performance of the cluster. First, it must 
choose the shape of the n-dimensional cache block that 
the head node uses to access the disk or remote server. 
Second, this cache block must be split into n-
dimensional job blocks which are then distributed to 
the cluster compute nodes. 

The shape of the cache block on the head node will 
determine the number of times disk and network 
latency costs are paid. To minimize disk latency 
penalties, we choose a cache block shape that 
maximizes the length of the rods comprising the cache 
block. Figure 1 shows the three possible cache block 

shapes for an example data volume. Clearly, the cache 
block shown in figure 1a has much shorter rods than in 
the other two cases, so performance would suffer due 
to a larger number of disk latency penalties. Since the 
cache block rod lengths are the same in figures 1b and 
1c, choosing between them must be done by 
considering the number of cache blocks that must be 
read to process the entire data volume. If the data is 
stored remotely, each cache block retrieved from the 
server will incur network latency costs, so we should 
choose the cache block shape that minimizes the 
number of network transactions. Of course, in some 
cases, both disk and network latency costs will be 
equal for various shapes, and any shape can be chosen. 

After the cache block shape has been chosen, we 
must decide how to split the block into the job blocks 
that are distributed to the cluster compute nodes. It is 
important that each section of the image plane be the 
sole responsibility of a single compute node in order to 
avoid dependencies and resource contention. For this 
reason, we never split the cache block along the view 
axis. Currently, we simply divide the cache block into 
n job blocks along one of the remaining axes, where n 
is the number of compute nodes. Since our current 
application does not require compute nodes to 
communicate with each other, we have found that 
choice of axis along which the data is split makes little 
difference to performance. However, in future we plan 
to consider the more complex case where compute 
nodes are not independent and the shape of the job 
blocks determines the number and size of the 
communications between them. 

 
 
 
 
 
 
 
 
 
 

            (a)              (b)  
Figure 3. 3dknee images generated using our data 
distribution system on Orion cluster. The knee data is 
courtesy of Siemens Medical Systems, Inc. 
 
4.3. Data processing 

 
In our implementation, the data processing includes 

two steps, slicing and blending. After the job block is 
transferred to a compute node, it is still n-dimensional. 
Slicing is actually a block-iteration along the viewing 
axis of the in-memory data block itself. Since the slice 
is of same shape, so blending can be easily done. 



 

 

4.4. Image combination 
 
As described at the end of section 4.2, each compute 

node is responsible for its own section of the image 
plane. In order to form a complete image, these disjoint 
sections must be combined to form a single result 
image. 

Figure 3 shows two 3dknee images generated using 
our data distribution system on a 12-node Orion 
cluster. Image 3b is intentionally left as seemingly 
partitioned to demonstrate the effect of job splitting 
and result image combination. Image 3a is the actual 
generated image.  

 
5. Iteration Aware data distribution 
prototype 
 

The above application is based upon our iteration 
aware data distribution prototype. 

 

 
     
Figure 4. Framework of Granite IADDP – Iteration 
Aware Data Distribution Prototype 

 
 
5.1. Pattern converter 

 
When the user does not know or does not care about 

the exact pattern data is accessed, the user can specify 
as little constraint as they want on the access pattern. 
All other job is done automatically by what we call 
pattern converter. A pattern converter is a facility that 

accepts an indefinite access pattern and generates a 
complete one by putting more constraints on it. The 
new constraints would make the final access pattern 
one that can create the best cache shape mode and thus 
bring best I/O performance.  

In cluster environment, the pattern converter takes 
the responsibility of integrating job distribution into 
iterator construction. After that, the iteraor not only 
contains the description of the iteration, but also 
contains the job distribution pattern. Armed with this 
enhanced complete iterator, the datasource object 
would not only extract the right data but extract it most 
efficiently and distribute them evenly.  

At the same time, it also generates a coordinate 
system that is used to combine the results later. 

 
 
5.2. Optimizing scheduling of job distribution 

 
Our data distributor is responsible for satisfying the 

data requests from compute nodes as requested. But the 
processing speeds of different nodes might be different 
though not of a quite high probability in cluster 
environment. Since our system does not support 
parallel device yet, the datasource object relies on an 
iterator calling next() to specify the job block bounds 
and then issue jobs to compute nodes. Since this call 
can only be made one at a time, latter nodes will have 
to wait until all other front nodes are satisfied. To 
avoid this non-frequent but existing waiting, we use a 
data pool to hold the extracted data for each compute 
node even the data requests are not received yet. The 
earliest request for each round of data distribution will 
spark the data assignment and extraction from disk if 
not in memory. We call this data pre-allocation. This is 
an optimization with an assumption that the compute 
nodes are not so heterogeneous in terms of their speed, 
because that would cause much memory overhead. 
That can speed up the prefetching and increase the 
overlapping between disk I/O and data processing with 
a reasonable amount of memory overhead in cluster 
environment. Actually, it might be better to 
parameterize it whether using this or not. 

 
 
5.3. In memory job block splitting and data 
processing 

 
Once each compute node gets a job block, there is a 

in-memory data block splitter which is actually a 
worker datasource object that takes the new job block, 
updates its content and generates further application 
specific data iteration and distribution in arbitrary 
ways. So, this two-level datasource design enables the 



 

 

reconciliation between the iteration ordering that is 
suitable for disk data extraction and the iteration 
ordering suitable for application when they conflict. 
Since the data is already in the high speed main 
memory, different data splitting methods for in 
memory data block do not show much performance 
difference anymore, as confirmed in the results. So, the 
main performance gain using spatial prefetching is on 
hiding disk latency.  

Generally speaking, low level memory hierarchy is 
the bottleneck of whole I/O system. The more 
expensive data extraction is delayed to later high level 
memory hierarchy, the more performance increase we 
will get. Our goal is to transform the more detailed data 
splitting, which otherwise means more operations on 
high latency device, to large efficient I/O from 
secondary storage and network. This has to be realized 
by knowing the exact access pattern beforehand and 
supporting collective I/O operations. So, we believe 
our spatial prefetching and caching apply to the whole 
storage hierarchy. 

 
 
5.4. Result combiner 

 
As explained in section 4.2, our current 

implementation does not yet support interdependent 
processing. Each compute node is responsible for 
producing results without communicating with other 
nodes. Unless the user requires them be stored 
separately, all the partial results will be combined into 
one single result. 

When required to combine partial results, the 
Granite system will maintain the relative position of 
the results using a coordinate system to ensure proper 
assembly of the final result. The final whole result 
could have a 2D plane shape as in our sample 
application, or a 3D volume as with a volume filtering 
or feature detection program. 

When the user wants to keep the partial results 
stored separately, our system can generate the 
corresponding metadata so that the final result can be 
constructed at a later time.  

Such a facility is of particular interest with 
extremely large datasets where the results of 
processing are inconveniently large. For example, 
researchers in a Grid computing environment might 
prefer to locate and retrieve selected subsets of the 
result of a computation, rather than have to download 
the entire volume of results. Such functionality 
requires metadata support for n-dimensional subsets of 
data volumes, an area that we are currently 
investigating [7]. 

 
 

Table 1. Local cluster data distribution performance 
results using Granite spatial prefetching and caching. 
All results are in seconds.   

256MB SP Cache 
Case A Case B Case C 

View 
Axis 

H V H V H V 
0 65 63 164 152 84 79 
1 83 81 163 153 65 62 
2 161 163 88 88 72 72 

 
Table 2. Local cluster data distribution performance 
results without using Granite spatial prefetching. All 
results are in seconds. 

File System Cache Only 
Case A Case B Case C 

View 
Axis 

H V H V H V 
0 82 78 988 227 93 198 
1 94 72 999 149 82 60 
2 234 152 190 80 85 67 

 
6. Experimental results 
 

In order to verify that Granite makes the correct 
choices when choosing the cache and job block shapes, 
we ran tests for a variety of different configurations.   
The tests were performed on a 12-node Orion cluster 
with a Seagate Barracuda drive with 11.5ms average 
seek time. The number of working compute nodes is 
adjustable. Remote tests transferred data between a 
client at the University of Mississippi and a server at 
the University of New Hampshire.  The server is a 
single processor Pentium 4 machine with a 2.4Ghz 
CPU and 2GB of RAM running the Linux operating 
system. The server has a 7200 RPM disk with a 9.3ms 
average read seek time. 
 
6.1. Local test results 
 

In all result tables, cases A, B and C correspond to 
the different cache block shapes as shown in figure 1. 
H and V denote horizontal and vertical splitting for the 
same cache block shape. 

Tables 1 and 2 show the times for a 512x512x1024 
subset volume rendering of a 1024x1024x1024 4GB 
float data volume using 256MB SP Cache and 8 
compute nodes. These results confirm that by using 
spatial prefetching and caching, our data distribution 
system outperforms file system caching alone when 
dealing with large n-dimensional datasets.  

The exception comes when the job splitting does 
not break the original long rods otherwise formed by 
our spatial caching. In this case, spatial prefetching 



 

 

offers no advantage, and incurs some additional 
overhead. In the other cases, however, the benefit of 
collective I/O and spatial prefetching in our 
distribution system beats file system caching. We are 
speeding up the rate of data transfer from head node to 
compute nodes by minimizing the number of read 
operations made to disk. This optimization is made 
possible by maintaining an n-dimensional view of the 
data throughout the system. 

 

 
Figure 5. Case 0BH. Without spatial prefetching and 
caching, total disk reads increase 4 times since the rod 
is split into 4 separate disk reads. 
 

 
Figure 6. Case 1CH. Without spatial prefetching and 
caching, the total disk reads do not change since the 
rod is not split. 
 

It is also apparent that the spatial prefetching results 
show little sensitivity to the splitting mode. By using 
collective spatial prefetching and caching, the cache 
block is now the logical unit of I/O operation. So, the 
overall I/O performance is determined mostly by how 
fast the collective cache block can be loaded into 
memory and how many cache blocks are required for 
the whole data volume. Since the job splitting is done 

in memory after the data is extracted from disk or 
received from network, the total I/O time is not 
affected by splitting modes very much. A specific 
example is shown in the comparison of the two cases 
in figure 5 and figure 6, which correspond respectively 
to case 0BH and 1CH respectively in the result table. 

 In the data distribution without spatial prefetching, 
job blocks read directly from disk result in a large 
number of small read requests. If the rod length is 
much shorter than before, as shown in case 0BH, the 
performance would also drop strikingly (e.g. a factor of 
six) compared with spatial prefetching. 

In other cases the magnitude of performance gains 
due to spatial prefetching are not quite so big. This is 
because the job blocks given to the compute nodes are 
fairly large. So, even without spatial prefetching, the 
read requests made to disk are relatively long, and have 
good locality. In such cases, the marginal benefit of 
spatial prefetching is lower, but still noticeable. 
Performance gains are determined largely by the ratio 
between length of the rods used to fill the cache block 
on the head node and the rods used to fill job blocks 
read without the benefit of spatial prefetching. This 
ratio can be improved either by allocating more 
memory to the spatial prefetching cache on the head 
node, or by reducing the size of job blocks, perhaps 
due to the addition of more compute nodes. In this 
second case, benefits should be even more apparent 
because the additional computational power will make 
I/O costs a larger part of the total execution time. 
 
 
6.2. Remote test results 
 

The dramatic performance gains in our iteration 
aware remote data access encourage us to integrate our 
data distribution system with remote data access. This 
is very important direction because Grid computing is 
more and more popular since it advocates resource 
sharing. Efficient data access within Grid environment 
will improve the exploitation of the whole Grid’s 
computing capacity. 

Tables 3 and 4 on next page show the times for a 
512x512x512 subset volume rendering of 
518x518x518 556MB float data volume using 128MB 
SP Cache and 8 compute nodes. 

As seen from these two tables, using Granite 
collective spatial prefetching and caching for remote 
data access is also very effective for hiding network 
latency and increasing the utilization of network 
bandwidth. As in local tests, greater performance gains 
are achieved when the collective prefetching forms a 
cache block that would otherwise be broken into many 
small data requests requiring small separate network 
transfers. Granite realizes this by creating a 



 

 

multidimensional cache block that groups multiple 
separate data requests into a small number of large 
requests and thus reduces the number of payment of 
network latency penalties.  

Without using our spatial prefetching and caching, 
the data distribution is realized by sending separate 
request for each job, greatly increasing the number of 
network transactions. This greatly slows down the 
whole data transfer rate and the speed to feed data to 
compute nodes.  
 
Table 3. Cluster data distribution performance results 
using Granite spatial prefetching and caching to cache 
data on client side for remote data access. All results 
are in seconds. 

128MB Client Side Cache 

Case A Case B Case C 
View 
Axis 

H V H V H V 
0 387 369 392 386 392 370 
1 404 381 397 395 381 373 

2 401 393 421 382 436 385 
 
Table 4. Cluster data distribution performance results 
without using Granite spatial prefetching and caching 
for remote data access. All results are in seconds. 

No Client Side Cache 
Case A Case B Case C 

View 
Axis 

H V H V H V 
0 529 492 660 518 523 481 
1 524 480 668 517 541 521 
2 509 498 484 485 506 488 

 
7. Conclusion and future work 
 

 We present an iteration aware data distribution 
system for computing cluster environment. This system 
takes advantage of full prior knowledge of future 
access pattern and can greatly reduce disk and network 
latency that hinders the I/O performance to increase the 
speed of feeding data to compute nodes. Our system 
encompasses the advantages of collective I/O, 
informed prefetching without the need for data storage 
optimization.  

In the near future, we are going to explore the data 
distribution within environments that enforce data 
interdependency and thus the communication among 
compute nodes. Also, we need to put more efforts into 
the specification of application iteration constraint, and 
establish a standard model for our pattern converter 
based on the specification. 
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