Heterogeneous Parallel Computing in Remote Sensing Applications:
Current Trends and Future Perspectives

Antonio J. Plaza
Computer Science department, University of Extremadura
Avda. de la Universidad s/n, E-10071 Céceres, Spain
Contact e-mail: aplaza@unex.es

Abstract

Heterogeneous networks of computers have rapidly be-
come a very promising commodity computing solution, ex-
pected to play a major role in the design of high per-
formance computing systems for remote sensing missions.
Currently, only a few parallel processing strategies are
available in this research area, and most of them assume
homogeneity in the underlying computing platform. This
paper develops several highly innovative heterogeneous
parallel algorithms for information extraction from high-
dimensional remotely sensed images, with particular em-
phasis on target detection and land-cover mapping appli-
cations. Experimental results are presented in the con-
text of a realistic application, using real data collected by
NASA’s Jet Propulsion Laboratory over the World Trade
Center complex in New York City after September 1lth,
2001. Farallel performance of the proposed algorithms is
discussed using several (fully and partially) heterogeneous
networks at University of Maryland, and a massively paral-
lel Beowulf cluster at NASA’s Goddard Space Flight Center.
Combined, these parts deliver a snapshot of the state-of-
the-art in those areas, and a thoughtful perspective on the
potential and challenges of applying heterogeneous com-
puting practices to remote sensing problems.

1. Introduction

The interest in remote sensing applications and plat-
forms has grown dramatically in recent years. Remote
sensing technology has shifted from panchromatic (a wide
range of wavelengths merged into a single response) to hy-
perspectral data [3], with hundreds or thousands of spec-
tral bands. For example, the NASA Jet Propulsion Labo-
ratory’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) [6] records the visible and the near-infrared spec-
trum (wavelength region from 0.4 to 2.5 micrometers) of

1-4244-0328-6/06/$20.00 (©)2006 IEEE.

the reflected light of an area 2 to 12 kilometers wide and
several kilometers long —depending on the duration of the
flight— using 224 spectral bands. As a result, a hyperspec-
tral ‘image cube’ is typically a stack of hundreds of images
collected at different wavelengths, in which each pixel (vec-
tor) has an associated spectral signature or ‘fingerprint’ that
can be accurately used to uniquely characterize the under-
lying objects. The resulting data volume typically exceeds
500 MB per flight. The widespread availability of Earth
observation sensors such as AVIRIS has opened ground-
breaking perspectives in many applications, including tar-
get detection for military and defense/security deployment,
risk/hazard prevention and response including wild-land fire
tracking, biological threat detection, monitoring of oil spills
and other types of chemical contamination.

Despite the growing interest in hyperspectral imaging,
only a few efforts devoted to the design of parallel process-
ing techniques currently exist in the open literature [7, 8, 5].
In addition, most dedicated parallel machines used for hy-
perspectral imaging have been homogeneous in nature [4].
However, a current trend in the design of systems for in-
formation extraction and mining from high-dimensional re-
mote sensing data repositories is to utilize heterogeneous,
distributed platforms made up of local (user) computing
resources [17]. In particular, heterogeneous computing
[10] greatly benefits from the considerable amount of work
done in dynamic, resource-aware static and dynamic task
scheduling and load balancing in distributed platforms, in-
cluding large-scale distributed systems [18, 12, 2, 1]. To ad-
dress the need for cost-effective heterogeneous algorithms
in this emerging new area, this paper takes a necessary
first step toward the comparison of different techniques and
strategies for parallel hyperspectral image analysis on dis-
tributed, highly heterogeneous computing platforms.

The remainder of the paper is structured as follows. Sec-
tion 2 describes several new heterogeneous parallel algo-
rithms for target detection and land-cover mapping. Sec-
tion 3 first describes the hyperspectral data sets and parallel
computing platforms used in this study, and then evaluates

the parallel performance of the proposed algorithms by us-
ing several heterogeneous and homogeneous networks of
workstations. For comparative purposes, a massively paral-
lel Beowulf cluster at NASA’s Goddard Space Flight Center
is also used in experiments. The parallel algorithms are dis-
cussed in the context of a specific case study, focused on
detecting fires and mapping debris compositions on a real
hyperspectral data set collected by the AVIRIS sensor over
the World Trade Center area in New York City after Septem-
ber 11, 2001. Section 4 concludes with some remarks and
hints at plausible future research.

2. Parallel algorithm design

Before describing our parallel heterogeneous algorithms
we first formulate a general optimization problem in the
context of fully heterogeneous networks. This kind of plat-
form can be modeled as a complete graph G = (P, E),
where each node models a computing resource p; weighted
by its relative cycle-time w;. Each edge in the graph mod-
els a communication link weighted by its relative capacity,
where ¢;; denotes the maximum capacity of the slowest
link in the path of physical communication links from p;
to p; (we assume that the system has symmetric costs, i.e.,
¢ij = cj;. With the above assumptions in mind [12], pro-
cessor p; should accomplish a share of o; - W of the total
workload, denoted by W, to be performed by a certain algo-
rithm, with o; > 0 for 1 < i < Pand Y/, a; = 1. Tak-
ing into account the standard optimization problem above,
an abstract view of our proposed hyperspectral image pro-
cessing framework can be simply given in the form of a
client-server architecture, in which a server processor is re-
sponsible for the efficient distribution of work among the
P nodes, and the clients operate with the spectral signa-
tures contained in a local partition. The partitions are up-
dated locally and, depending on the considered algorithm,
the resulting calculations may also be exchanged between
the clients, or between the server and the clients.

2.1 Data partitioning strategies

In a data-driven application environment such as the one
described above, it is important to define efficient data parti-
tioning strategies [15]. Two standard approaches have been
traditionally considered for this purpose [14]:

e Spectral-domain partitioning. This approach subdi-
vides the multi-channel remotely sensed image into
small cells or sub-volumes made up of contiguous
spectral wavelengths.

e Spatial-domain partitioning. This approach breaks the
multi-channel image into slices made up of one or sev-
eral contiguous spectral bands.

In both cases, each pixel (vector) may be split amongst sev-
eral processors, and the calculations made for each spec-
tral signature would need to originate from several proces-
sors, thus increasing the cost of communications (which
can be significant in fully heterogeneous platforms made
up of communication links with different capacities). In
this work, we adopt a hybrid strategy, in which the data is
partitioned into blocks made up of spatially adjacent pixel
vectors which retain the full spectral content associated to
them. This approach has several advantages [14]. First and
foremost, the application of a hybrid partitioning provides a
natural approach for low-level image processing, as it gen-
erally involves a kernel which is repeatedly applied to small
set of neighboring pixels within the image data structure
[15]. A second major reason has to do with the cost of inter-
processor communication, as stated above.

In order to balance the load of the processors in the het-
erogeneous environment, each processor should execute an
amount of work that is proportional to its speed. Therefore,
two major goals of our partitioning algorithm are: i) to ob-
tain an appropriate set of workload fractions {c;}%_ ;| that
best fit the heterogeneous environment, and ii) to translate
the chosen set of values into a suitable decomposition of
the input data, taking into account the properties of the het-
erogeneous system. To accomplish the above goals, we use
a workload estimation algorithm (WEA) that assumes that
the workload of each processor p; must be directly propor-
tional to its local memory and inversely proportional to its
cycle-time w;.

Algorithm 1. Workload estimation algorithm (WEA)
Input: Hyperspectral image cube F.

Output: P spatial-domain partitions of the input data.

1. Obtain necessary information about the heterogeneous
system, including the number of available processors
P, each processor’s identification number {p;}Z ,,
and processor cycle-times {w; }_ ;.

2. In order to obtain the value of «; for each processor p;,
- (1/wi) ; e
calculate o; sz;l(l/w,-)J foralli e {1,---, P}.
3. Use the calculated values of {a; } 2 to produce P par-
titions of the input hyperspectral data set F as follows:

(a) Obtain a first partitioning of F so that the num-
ber of rows in each partition is proportional to
the values of {;}f_; and assuming that no up-
per bound exists on the number of pixel vectors
that can be stored in the local memory associated
to the processor. If the number of pixel vectors
in each partition assigned to each p; is less than
the upper bound, we have an optimal distribution
and the partitioning algorithm is terminated.

(b) For each p;, check if the number of pixel vec-
tors assigned to it is greater than the upper bound
on the number of elements that it can store in its
local memory. For all the processors whose up-
per bounds are exceeded, we recursively apply
this procedure until all the elements have been
assigned. In the end, the number of pixel ele-
ments stored at each processor is proportional to
its cycle-time and memory capacity.

It should be noted that a homogeneous version of the
WEA algorithm can be obtained by simply replacing Step
3 with oy = 1/w; for all i € {1,---, P}, where w; is
assumed to be a constant cycle-time for all processors in
the homogeneous system.

2.2 Algorithm descriptions

In this section, we provide algorithmic descriptions
of parallel heterogeneous algorithms for target detection
and classification of remotely sensed hyperspectral image
scenes.

2.2.1 Target detection algorithms

Two heterogeneous parallel target detection algorithms are
described in this section: automated target detection and
classification algorithm (Hetero-ATDCA) and unsupervised
fully constrained least squares (Hetero-UFCLS) algorithm.
The HeteroATDCA algorithm [?] finds a set of spectrally
distinct target pixels vectors using orthogonal subspace pro-
jections in the spectral domain. Below, we provide a step-
by-step description of our parallel version of this algorithm,
specifically adapted to heterogeneous environments:

Algorithm 2. Hetero-ATDCA
Input: Hyperspectral image F, number of targets ¢.

Output: Set of ¢ target pixels.

1. Using the WEA algorithm, the master divides the orig-
inal image cube F into P heterogeneous partitions.
Then, the master sends the partitions to the workers.

2. Each worker finds the brightest pixel in its local par-
tition using tl(.l) = arg{maz(; ,\F(z,y)" - F(z,y)},
where the superscript 1" denotes the vector transpose
operation and ¢ = 1,2,---,P. Each worker then
sends the spatial locations of the pixel identified as the
brightest ones in its local partition back to the master.

3. Once all the workers have completed their parts, the
master finds the brightest pixel of the input scene, (),
by applying the argmax operator in step 2 to all the

pixels at the spatial locations provided by the work-
ers, and selecting the one that results in the maximum
score. Then, the master sets U = t™) and broadcasts
this matrix (with 1 x N dimensions) to all workers.

4. Each worker finds (in parallel) the pixel in its lo-
cal partition with the maximum orthogonal projec-
tion relative to the pixel vectors in U, using a
projector given by Py = I — UUTU)~'U7,
where I is the identity matrix. = The orthogo-
nal space projector Pd- is now applied to all
pixel vectors in each local partition to obtain
17 = argmai){(PgF(,y)" (PEF(z,v))}.
Each worker then sends the spatial location of the re-
sulting local pixels to the master node.

5. The master now finds a second target pixel, t?), by
applying PULto the pixel vectors at the spatial locations
provided by the workers, and selecting the one which
results in the maximum score. The master now sets
U = {tMt®} and broadcasts this matrix (now with
2 x N dimensions) to all workers.

6. Repeat from step 4 until a set of ¢ target pixels
{t @) ...t} (where the value of ¢ given as an
input parameter), are extracted from a matrix U made
up of t x N dimensions.

As can be seen from the algorithmic description given
above, the Hetero-ATDCA assumes that all pixel vectors in
the input data are represented by a single underlying sub-
stance. In contrast, the Hetero-UFCLS [3] generates a set
of t targets using the concept of least square-based error
minimization.

Algorithm 3. Hetero-UFCLS
Input: Hyperspectral image F, number of targets ¢.

Output: Set of ¢ target pixels.

1. Execute steps 1-3 of the Hetero-ATDCA algorithm to
obtain t™)| the brightest pixel of the input scene, and
broadcast U = t(!) to all the workers.

2. Each worker forms a local error image E() by calcu-
lating the least squares-based error for each pixel vec-
tor in the input data represented in terms of a fully con-
strained linear mixture of all the spectra in U, as shown
in [3].

3. Each worker then finds the pixel F(z,y) in the local
partition with the largest associated score in the error
image E(*). The spatial coordinates of this pixel (and
its associated error score) are sent back to the master.

4. The master obtains a second target t(2) by selecting the
pixel vector with largest associated error score from
the pixel vectors at the spatial locations provided by
the workers and broadcasts U = {t() ¢} to the
workers.

5. Repeat from step 4 to incorporate a new target pixel
t®) @ ... t® to Uuntil a set of ¢ target pixels have
been extracted.

2.3 Classification algorithms

In this section, we first develop a heterogeneous classi-
fication algorithm based on the principal component trans-
form (PCT). This technique has been widely used as a stan-
dard spectral transformation which is used to summarize
and decorrelate the information present in the data by reduc-
ing redundancy and packing the residual information into a
small set of images, termed principal components [9]. In or-
der to implement this algorithm, we have used the spectral
angle distance (SAD) as a baseline. SAD is a widely used
metric in hyperspectral analysis [3] which can be used to
measure the spectral similarity between two pixel vectors
at different discrete spatial locations, F(x,y) and F(i, 7),
where (z,) and (i, 7) € Z2, as follows:

[E(, y)[| - 1€, 5]

SAD(F(z,y),F(i,j)) = cos ™" (1)

Algorithm 4. Hetero-PCT
Input: Hyperspectral image F, number of classes c.

Output: Classification label for each pixel F(x, y).

1. Using the WEA algorithm, the master divides the orig-
inal image cube F into P heterogeneous partitions.
Then, the master sends the partitions to the workers.

2. Each worker forms a unique spectral set by calculating
the SAD distance for all vector pairs.

3. The P unique sets are sent back to the master and com-
bined, one pair at a time. Upon completion, there will
be only one unique set left made up of c pixel vectors.

4. An N-dimensional mean vector m is calculated con-
currently, where each component is the average of the
pixel values of each spectral band of the unique set.
This vector is formed once all the processors finish
processing their respective parts.

5. All the pixel vectors in the unique set are divided into
P parts and sent to the workers. Each worker then
computes the covariance component and forms a co-
variance sum.

6. The covariance matrix is calculated sequentially as the
average of the matrices calculated in Step 5.

7. A transformation matrix T is obtained by calculating
and sorting the eigenvectors of the covariance matrix
according to their corresponding eigenvalues, which
provide a measure of their variances. Since the degree
of data dependency of the calculation is high and its
complexity is related to the number of spectral bands
rather than the image size, this step is also done se-
quentially at the master.

8. Each pixel in the original hyperspectral image us trans-
formed independently using T - (F(z,y) — m). This
step is done in parallel, where all workers transform
their respective portions of data concurrently.

9. Finally, a parallel post-processing step is applied to
perform classification in the PCT-transformed space.
First, P partitions of a reduced data cube given by the
first ¢ components of the PCT-transformed image are
sent to the workers, along with the spatial locations
of the c unique pixel vectors resulting from Step 2.
Each worker then labels each pixel in its correspond-
ing partition using a classification label given by the
most spectrally similar unique pixel vector in the PCT-
reduced space, and sends back the result to the master,
which puts together the final label image.

As shown by the above algorithm, the PCT considers
the hyperspectral data not as an image, but as an unordered
listing of spectral measurements where the spatial coordi-
nates can be shuffled arbitrarily without affecting the anal-
ysis. Below, we introduce a spatial/spectral classification
algorithm which is based on the definition of a cumulative
distance between each pixel vector, F(z,y), and all pixel
vectors in the spatial neighborhood of F(z,y) given by a
spatial kernel or structuring element B as follows [?]:

DB(F($7y>) = Z

(4,7)€Z?(B)

SAM(F(z,y),F(i,5)) (2

where (i,j) are the spatial coordinates in the B-
neighborhood discrete domain, represented by Z2(B).
Based on the cumulative distance metric above, two ba-
sic morphological operations (called erosion and dilation
[16, 13]) are defined as follows:

(FOB)(z,y) = argming jyez>;yiPp(F(x +i,y+7))}
3)

(F&B)(x,y) = argmaz,jez2s){Dp(F(z+i,y+7))}
“)

These operations can be respectively used to extract the
most highly mixed and the most highly pure pixel in the
B-given spatial neighborhood. Using the two standard op-
erations above, we provide below a new parallel heteroge-
neous morphological algorithm for unsupervised classifica-
tion of hyperspectral imagery. This algorithm introduces
redundant computations (in the form of overlap borders)
to reduce inter-processor communication when the kernel
computation is split among two heterogeneous processors.

Algorithm 5. Hetero-MORPH

Inputs: Hyperspectral image F, structuring element B,
Number of iterations I,,,,,, Number of classes c.

Output: Classification label for each pixel F(x, y).

1. Using the WEA algorithm, the server divides the origi-
nal image cube F into P heterogeneous partitions with
overlap borders to avoid accesses outside the local im-
age domain at each workstation [14].

2. Using parameters I,,,., B and ¢, each worker executes
the following steps:

(a) Set 7 = 1 and initialize a morphological eccen-
tricity index score MEI(z, y) = 0 for each pixel.

(b) Update the MEI score at each pixel by calculat-
ing the SAD between the pixel vectors selected
as ‘maximum’ and ‘minimum’ by morphological
dilation and erosion operations as follows:

MEI(z,y) = SAD[(FOB)(z,y), (FOB)(z, y)]

®)

(c) Setj =35+ 1. If j = I,42, then go to step (d).
Otherwise, set F = F & B and go to step (b).

(d) Select the set of ¢ pixel vectors in the local parti-
tion with the highest associated MEI scores.

3. The master gathers all the individual pixel vectors pro-
vided by the workers and forms a unique spectral set
of p < c pixel vectors by calculating the SAD for all
vector pairs in parallel.

4. The set of p unique pixel vectors are broadcast to all
the workers, which obtain a classification label for
each pixel F(x,y) in the local partition by assigning
it to a class given by the unique pixel vector which is
most highly similar to the pixel in terms of the SAD
distance.

5. Each worker then sends the label associated with each
local pixel to the master, which gathers all the individ-
ual results and forms the final 2-dimensional classifi-
cation matrix.

3. Experimental results

Before describing our experimental results, we first pro-
vide an overview of the parallel (heterogeneous and homo-
geneous) computing architectures and hyperspectral data
sets that will be used for evaluation purposes. Then, we
thoroughly assess the parallel performance and accuracy of
the proposed algorithms.

3.1 Parallel computing architectures

The parallel computing architectures used in this study
comprise four networks of workstations distributed among
different locations at University of Maryland and the Thun-
derhead Beowulf cluster at NASA’s Goddard Space Flight
Center (see http://thunderhead.gsfc.nasa.gov). The net-
works were custom-designed in order to approximate a re-
cently proposed framework for evaluation of heterogeneous
parallel algorithms [11], which relies on the assumption that
a heterogeneous algorithm cannot be executed on a hetero-
geneous network faster than its homogeneous version on the
equivalent homogeneous network. In [11], a homogeneous
computing environment is considered equivalent to the het-
erogeneous one in light of the three following principles:

1. Both environments should have exactly the same num-
ber of processors.

2. The speed of each processor in the homogeneous envi-
ronment should be equal to the average speed of pro-
cessors in the heterogeneous environment.

3. The aggregate communication characteristics of the
homogeneous environment should be the same as
those of the heterogeneous environment.

With the above three principles in mind, a heterogeneous
algorithm may be considered optimal if its efficiency on a
heterogeneous network is the same as that evidenced by its
homogeneous version on the equivalent homogeneous net-
work. This allows using the parallel performance achieved
by the homogeneous version as a benchmark for assessing
the parallel efficiency of the heterogeneous algorithm. The
four networks are considered approximately equivalent un-
der the above framework. Their description follows:

o Fully heterogeneous network. Consists of 16 differ-
ent workstations, and four communication segments.
Table 1 shows the properties of the 16 heterogeneous
workstations, where processors {p; }%_; are attached to
communication segment sy, processors {p; }5_s com-
municate through ss, processors {p; }12, are intercon-
nected via s3, and processors {p; }18,, share the com-
munication segment s4. The communication links be-
tween the different segments {s; };*:1 only support se-

rial communication. For illustrative purposes, Table 2

Table 1. Specifications of heterogeneous processors.

Processor Architecture Cycle-time (secs/megaflop) Main memory (MB) Cache (KB)
p1 Free BSD - i386 Intel Pentium 4 0.0058 2048 1024
P2, P5, D8 Linux — Intel Xeon 0.0102 1024 512
P3 Linux — AMD Athlon 0.0026 7748 512
P4, D6, D7, P9 Linux — Intel Xeon 0.0072 1024 1024
P10 SunOS — SUNW UltraSparc-5 0.0451 512 2048
P11 — P16 Linux — AMD Athlon 0.0131 2048 1024

also shows the capacity of all point-to-point commu-
nications in the heterogeneous network, expressed as
the time in milliseconds to transfer a one-megabit mes-
sage between each processor pair (p;,p;) in the het-
erogeneous system. As noted, the communication net-
work of the fully heterogeneous network consists of
four relatively fast homogeneous communication seg-
ments, interconnected by three slower communication
links. Although this is a simple architecture, it is also
a quite typical and realistic one as well.

o Fully homogeneous network. Consists of 16 identi-
cal Linux workstations with processor cycle-time of
w = 0.0131 seconds per megaflop, interconnected via
a homogeneous communication network where the ca-
pacity of links is 26.64 milliseconds.

e Partially heterogeneous network. Formed by the set of
16 heterogeneous workstations in Table 1 but intercon-
nected using the same homogeneous communication
network with capacity of 26.64 milliseconds.

e Partially homogeneous network. Formed by 16 identi-
cal Linux workstations with cycle-time of w = 0.0131
seconds per megaflop, but interconnected using the
heterogeneous network shown in Table 2.

In order to test the proposed algorithms on a larger-scale
parallel platform, we have also experimented with Thun-
derhead, a 256-node Beowulf cluster at NASA’s Goddard
Space Flight Center. This system is composed of 256 dual
2.4 GHz Intel Xeon nodes, each with 1 GB of main mem-
ory, 80 GB of disk space and 512 KB of cache, intercon-
nected via 2 GHz optical fibre Myrinet. The total peak per-
formance of the system is 2457.6 Gflops. The operating
system used at the time of measurements was Linux Red-
Hat 8.0, and MPICH was the message-passing library used.

3.2 Hyperspectral data

The image scene used for experiments in this work was
collected by the AVIRIS instrument, which was flown by
NASA'’s Jet Propulsion Laboratory over the World Trade
Center (WTC) area in New York City on September 16,
2001, just five days after the terrorist attacks that collapsed

Table 2. Capacity of communication links
(in time in milliseconds to transfer a one-
megabit message).

Processor | p1 —ps ps —ps P9 —Pio P11 — Pie
1 —pa 1936 3831 96.62 154776
D5 — P8 48.31 17.65 48.31 106.45
P9 — Pio 96.62 48.31 16.38 58.14

P11 — P16 154.76 106.45 58.14 14.05

the two main towers and other buildings in the WTC com-
plex. The full data set selected for experiments consists of
2133x512 pixels, 224 spectral bands and a total size of ap-
proximately 1 GB. The spatial resolution is 1.7 meters per
pixel. Fig. 1(left) shows a false color composite of the data
set selected for experiments using the 1682, 1107 and 655
nm channels, displayed as red, green and blue, respectively,
with a detail of the WTC area shown in a red rectangle.
Vegetated areas appear green in Fig. 1(left), while burned
areas appear dark gray. Smoke coming from the WTC area
and going down to Battery Park at the south of Manhattan
appears bright blue due to high spectral reflectance in the
655 nm channel.

At the same time of data collection, a small U.S. Ge-
ological Survey (USGS) field crew visited lower Manhat-
tan to collect spectral samples of dust and airfall debris de-
posits from several outdoor locations around the WTC area
(see http://speclab.cr.usgs.gov/wtc). These spectral sam-
ples were then mapped into the AVIRIS data using re-
flectance spectroscopy and chemical analyses in specialized
USGS laboratories. For illustrative purposes, Fig. 1(right)
shows a thermal map centered at the region where the build-
ings collapsed. The map shows the target locations of the
thermal hot spots, shown as bright red, orange and yel-
low spots on Fig. 1(right). The temperatures range from
700F (marked as ‘F’) to 1300F (marked as ‘G’). This ther-
mal map, along with a USGS dust/debris map (available
online from http://pubs.usgs.gov/of/2001/0fr-01-0429) are
used in this work as ground-truth to validate the detec-
tion/classification accuracy of the parallel algorithms.

Figure 1. False color composite of an AVIRIS hyperspectral image collected over lower Manhattan
on Sept. 16, 2001 (left) and location of thermal hot spots in the World Trade Center fires (right).

3.3 Performance evaluation

Before empirically investigating the parallel perfor-
mance of the proposed heterogeneous parallel algorithms,
we first evaluate their target detection and classification ac-
curacy in the context of the considered application. Table 3
shows the SAD between the most similar target pixels de-
tected by Hetero-ATDCA and Hetero-UFCLS and the pixel
vectors at the known target positions given in Fig. 1(right).
In both cases, the number of target pixels to be detected, ¢,
was set to 18 after calculating the intrinsic dimensionality
of the data [3]. As shown by Table 3, the Hetero-ATDCA
was always able to extract pixel vectors which were identi-
cal (or very close, spectrally) to the known targets. In Table
3, the closer the SAD score is to zero, the more similar the
two pixel vectors are. Quite opposite, the Hetero-UFCLS
could not accurately detect several target pixels, including
the one labeled as ‘F” which corresponds to the thermal hot
spot with 700F temperature. For illustrative purposes, Table
3 also gives processing times in seconds (between parenthe-
sis) for the sequential versions, respective to ATDCA and
UFCS (implemented using the GNU-C/C++ compiler in its
4.0 version) executed on a single processor of the Thunder-
head Beowulf cluster. Here, the tested versions were really
sequential (not parallel versions running on one processor).

On the other hand, Table 4 shows the classifica-
tion accuracies obtained by Hetero-PCT and Hetero-
MORPH for all the classes available in a reference
dust/debris map available from USGS (additional in-
formation on the classes displayed in Table 4 is
available online from http://pubs.usgs.gov/of/2001/ofr-01-

Table 3. Spectral similarity between target
pixels detected by heterogeneous algorithms
and the known ground targets. Single-
processor times given in the parentheses.

Hot Hetero-ATDCA Hetero-UFCLS

spot (1263) (916)
N 0.002 0.123
‘B’ 0.001 0.005
«c 0.005 0.012
‘D 0.003 0.002
‘B 0.008 0.026
P 0.001 0.169
kel 0.001 0.001

0429/dustplume.html). The number of classes to be de-
tected by Hetero-PCT and Hetero-MORPH, ¢, was empir-
ically set to seven in both cases after observing the num-
ber of classes in the online USGS dust/debris map. For the
Hetero-MORPH algorithm, the number of iterations .4
was set to five after previous studies [14]. As shown by
Table 4, Hetero-MORPH substantially improved the classi-
fication accuracies obtained by Hetero-PCT. This is because
morphological processing uses spatial and spectral informa-
tion as opposed to PCT-based processing, which only uses
spectral information. Table 4 also includes (between paren-
theses) the processing times obtained after executing the se-
quential versions in a single Thunderhead processor. As
shown by Table 4, the computational cost was higher when
Hetero-MORPH was used, but this algorithm consistently
produced much better classification results for all the con-
sidered classes.

Table 4. Classification accuracies (percent-
age) obtained by heterogeneous algorithms
for the USGS dust/debris classes. Single-
processor times given in the parentheses.

Dust/debris Hetero-PCT (1884) Hetero-MORPH (2334)
Concrete (WTCO01-37B) 93.56 0.123
Concrete (WTC01-37Am) 90.23 0.005
Cement (WTCO01-37A) 81.64 0.012
Dust (WTCO1-15) 79.23 0.002
Dust (WTCO01-28) 76.67 0.026
Dust (WTCO01-36) 85.02 0.169
Gypsum wall board 82.99 0.001
Overall 80.45 0.001

In order to improve computational performance, we
tested the parallel heterogeneous versions above on the five
considered parallel platforms. The algorithms were im-
plemented using C++ with calls to message passing inter-
face (MPI). We made use of MPI derived datatypes to di-
rectly scatter hyperspectral data structures, which may be
stored non-contiguously in memory, in a single communi-
cation step. To investigate their parallel properties, the algo-
rithms were first tested by timing the parallel versions on the
four equivalent networks of computers. Table 5 shows the
measured execution times for the proposed parallel hetero-
geneous algorithms and their respective homogeneous ver-
sions.

As expected, the execution times reported on Table 5
show that the heterogeneous algorithms were able to adapt
much better to fully (or partially) heterogeneous environ-
ments than the homogeneous versions, which only per-
formed satisfactorily on the fully homogeneous network.
Table 5 also reveals that the performance of the heteroge-
neous algorithms on the fully heterogeneous platform was
almost the same as that evidenced by the equivalent ho-
mogeneous algorithms on the fully homogeneous network.
This indicated that the proposed heterogeneous algorithms
were always close to the optimal heterogeneous modifica-
tion of the basic homogeneous ones. One can also see from
Table 5 that processor heterogeneity has a more significant
impact on algorithm performance than network heterogene-
ity, which is not surprising the type of algorithms being ex-
ecuted, in which the amount of communication is much less
than the amount of computation required. Finally, Table 5
also shows that the homogeneous versions only slightly out-
performed the heterogeneous algorithms in the fully homo-
geneous network. This demonstrates the flexibility of het-
erogeneous algorithms, which were able to adapt efficiently
to the four considered environments.

In order to further explore the parallel properties of the
considered algorithms in more detail, an in-depth analysis
of computation and communication times achieved by the
different methods is also highly desirable. Table 6 shows the

total time spent by the tested algorithms in communications
and computations in the four networks, where two types of
computation times were analyzed, namely, sequential (those
performed by the root node with no other parallel tasks ac-
tive in the system, labeled as SEQ in the table) and parallel
(the rest of computations, i.e., those performed by the root
node and/or the workers in parallel, labeled as PAR in the
table). The latter includes the times in which the workers
remain idle. It can be seen from Table 6 that, among all con-
sidered heterogeneous parallel algorithms, SEQ scores were
particularly significant for the Hetero-PCT algorithm. This
is mainly due to the fact that this algorithm involves several
steps based on sequential computations. SEQ scores were
also relevant for the Hetero-ATDCA. It should be noted
that Hetero-ATDCA involves several gather/scatter opera-
tions followed by compute-intensive orthogonal space pro-
jections at the master, which need to be completed in se-
quential fashion before a new parallel operation can be ac-
complished by the workers. Similar issues are also present
in Hetero-UFCLS (see Step 3 of this algorithm). Quite op-
posite, although the Hetero-MORPH is the only technique
that introduces redundant information (expected to slow
down computations a priori), Table 6 reveals that the SEQ
scores measured for this algorithm were much lower than
those reported by the other tested algorithms, in particular,
in the fully heterogeneous network. This comes at no sur-
prise, since the Hetero-MORPH algorithm is a windowing-
type approach with very few data dependencies. Finally,
the cost of parallel (PAR) computations clearly dominated
that of communications (COM) in all the considered paral-
lel algorithms. For instance, the PAR scores achieved by
the homogeneous algorithms executed on the (fully or par-
tially) heterogeneous network were extremely high, due to
a less efficient workload distribution among the heteroge-
neous workers.

To analyze the issue of load balance in more detail, Table
7 shows the imbalance scores achieved by the parallel algo-
rithms on the four networks. The imbalance is defined as
D = Riuaz/Rimin, Where Rp,q, and R, are the maxima
and minima processor run times, respectively. Therefore,
perfect balance is achieved when D = 1. In the table, we
display the imbalance considering all processors, D,;;, and
also considering all processors but the root, D, ,in.s. As we
can see from Table 7, only the Hetero-MORPH algorithm
was able to provide values of D 4;; close to 1 in all con-
sidered networks, with Hetero-ATDCA being able to pro-
duce results which are also relatively close to 1. Further, the
Hetero-MORPH provided almost the same results for both
D a5 and D 5045 While, for the other tested methods, load
balance was generally better when the root processor was
not included. Interestingly enough, despite the fact that con-
ventional hyperspectral imaging algorithms do not take into
account the spatial information explicitly into the computa-

Table 5. Execution times (seconds) of heterogeneous algorithms and their homogeneous versions.

Algorithm Fully heterogeneous Fully homogeneous Partially heterogeneous Partially homogeneous
Hetero-ATDCA 84 89 87 88
Homo-ATDCA 667 81 638 374
Hetero-UFCLS 51 56 55 56
Homo-UFCLS 506 50 497 253
Hetero-PCT 132 136 133 135
Homo-PCT 562 129 547 330
Hetero-MORPH 171 177 172 174
Homo-MORPH 2216 168 2203 925

Table 6. Communication (COM), sequential computation (SEQ) and parallel computation (PAR) times
(in seconds) measured for the heterogeneous algorithms and their homogeneous versions.

Fully heterogeneous

Fully homogeneous

Partially heterogeneous Partially homogeneous

COM __SEQ PAR _COM SEQ PAR COM SEQ PAR _ COM SEQ PAR
Hetero-ATDCA 7 9 58 1 6 62 8 18 61 8 20 60
Homo-ATDCA 14 19 634 6 16 59 9 18 611 12 20 342
Hetero-UFCLS 4 7 30 7 14 35 6 7 32 8 16 32
Homo-UFCLS 9 17 480 3 14 33 5 17 475 13 16 224
Hetero-PCT 6 27 99 9 28 9 8 26 99 8 27 100
Homo-PCT 12 27 523 5 28 96 7 26 514 9 27 294
Hetero-MORPH 9 6 136 13 8 156 10 7 155 10 8 156
Homo-MORPH 17 6 2201 7 8 153 9 7 2187 11 8 906
tions (which has traditionally been perceived as an advan- 258 Hero ATDCA
tage for the development of parallel implementations) and 2247 —=—Hetero-UFCLS
. . . 1 —o— -
taking into account that Hetero-MORPH introduces redun- 192 :::: :g,;%TRPH
dant information expected to slow down the computation, £ —Linear
. w 128
results in Table 7 indicate that this heterogeneous algorithm g
P o 96
is indeed effective in terms of workload distribution among o |
heterogeneous processors. s

Taking into account the results presented above, and with
the ultimate goal of exploring the scalability of heteroge-
neous algorithms, we have also compared their performance
on NASA’s Thunderhead Beowulf cluster. Fig. 2 plots the
speedups achieved by multi-processor runs of the heteroge-
neous parallel algorithms over their corresponding single-
processor runs on Thunderhead. It can be seen that Hetero-
MORPH scaled much better than Hetero-PCT. This has to
do with the high number of sequential computations in-
volved in Hetero-PCT (see Table 6). On the other hand, the
Hetero-ATDCA scaled slightly better than Hetero-UFCLS.

For the sake of quantitative comparison, Table 8 also re-
ports the execution times achieved by the heterogeneous
parallel algorithms on Thunderhead. For instance, using
256 processors, the Hetero-MORPH algorithm provided a
high-quality (more than 93% accuracy) debris/dust map of
the full AVIRIS scene in only 11 seconds (with only 2
seconds spent in SEQ computations), while the Hetero-
ATDCA algorithm was able to accurately detect the spa-
tial location of the most significant thermal hot spots in the
WTC area in only 7 seconds (with 1 second in SEQ com-
putations). The above results represent significant improve-
ments over the single-processor versions of the same algo-
rithms, which can take up to more than one hour of compu-

0 3z 64 98 128 160 192 224 258
Number of CPUs

Figure 2. Scalability of heterogeneous paral-
lel algorithms on NASA’s Thunderhead.

tation for the considered problem size, as indicated by tables
3 and 4. The processing times above were also deemed suit-
able for rapidly providing emergency response teams with
information on the presence of fires and the distribution of
debris and other materials in the dusts deposited around the
WTC area in this particular case study.

4. Conclusions

In this paper, we have discussed the role of heteroge-
neous parallel computing in remote sensing applications.
Specifically, we have presented several highly innovative
parallel techniques for target detection and classification of
hyperspectral imagery, and implemented them on various
homogeneous, heterogeneous and massively parallel plat-
forms. In order to address several important issues involved

Table 7. Load balancing rates for the heterogeneous algorithms and their homogeneous versions.

Fully heterogeneous

Fully homogeneous

Partially heterogeneous

Partially homogeneous

Dau Dminus Dau Dminus Dau Dminus Daut Dminus
Hetero-ATDCA 1.19 1.05 1.16 1.03 1.24 1.06 1.22 1.03
Homo-ATDCA 1.62 1.23 1.20 1.06 1.67 1.26 1.41 1.05
Hetero-UFCLS 1.49 1.06 1.51 1.05 1.69 1.06 1.54 1.08
Homo-UFCLS 1.68 1.25 1.54 1.11 1.75 1.34 1.77 1.09
Hetero-PCT 1.69 1.06 1.58 1.03 1.72 1.05 1.68 1.07
Homo-PCT 1.81 1.28 1.56 1.05 1.82 1.39 1.83 1.08
Hetero-MORPH 1.05 1.01 1.03 1.02 1.06 1.02 1.06 1.04
Homo-MORPH 1.59 1.21 1.05 1.01 1.62 1.24 1.28 1.13

Table 8. Execution times (seconds) for the
heterogeneous versions of the parallel algo-
rithms using different numbers of processors
on Thunderhead.

CPUs ATDCA UFCLS PCT MORPH

1 1263 916 1884 2334

4 493 286 460 741

16 141 63 154 191

36 49 36 73 74

64 26 18 36 40
100 16 12 26 26
144 11 9 21 18
196 9 7 17 13
256 7 6 15 11

in the exploitation of such heterogeneous algorithms in real
applications, we have also provided a detailed discussion on
the effects that platform heterogeneity has on degrading par-
allel performance of hyperspectral imaging algorithms. The
evaluation strategy conducted in this work was based on ex-
perimentally assessing heterogeneous algorithms by com-
paring their efficiency on (fully or partially) heterogeneous
networks of workstations with the efficiency achieved by
their homogeneous versions on equally powerful homoge-
neous networks. Our study reveals that the combination of
the (readily available) computational power offered by het-
erogeneous platforms with the recent advances in parallel
algorithm design is likely to introduce new perspectives in
the systems currently used by NASA and other agencies for
exploiting sheer volumes of Earth and planetary remotely
sensed data, now being collected on a daily basis.

References

[1] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Ma-
trix multiplication on heterogeneous platforms. /EEE Trans.
Parallel and Distributed Systems, 12:1033-1055, 2001.

H. Casanova, M. Thomason, and J. Dongarra. Stochas-
tic performance prediction for iterative algorithms in dis-
tributed environments. Journal of Parallel and Distributed
Computing, 58:68-91, 1999.

C.-I. Chang. Hyperspectral imaging: Techniques for spec-
tral detection and classification. Kluwer: New York, 2003.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

J. Dorband, J. Palencia, and U. Ranawake. Commodity clus-
ters at Goddard Space Flight Center. Journal of Space Com-
munication, 3:227-248, 2003.

T. El-Ghazawi, S. Kaewpijit, and J. L. Moigne. Parallel and
adaptive reduction of hyperspectral data to intrinsic dimen-
sionality. Cluster Computing, pages 102-110, 2001.

R. O. Green. Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS). Remote Sens-
ing of Environment, 65:227-248, 1998.

K. Itoh. Massively parallel fourier-transform spectral imag-
ing and hyperspectral image processing. Optics and Laser
Technology, 25:202, 1993.

S. Kalluri, Z. Zhang, J. JaJa, S. Liang, and J. Townshend.
Characterizing land surface anisotropy from AVHRR data at
a global scale using high performance computing. Interna-

tional Journal of Remote Sensing, 22:2171-2191, 2001.
D. A. Landgrebe. Signal theory methods in multispectral

remote sensing. Wiley: Hoboken, NJ, 2003.

A. Lastovetsky. Parallel computing on heterogeneous net-
works. Wiley-Interscience: Hoboken, NJ, 2003.

A. Lastovetsky and R. Reddy. On performance analysis
of heterogeneous parallel algorithms. Parallel Computing,
30:1195-1216, 2004.

A. Legrand, H. Renard, Y. Robert, and F. Vivien. Mapping
and load-balancing iterative computations on heterogeneous
clusters with shared links. IEEE Trans. Parallel and Dis-
tributed Systems, 15:549-558, 2004.

A. Plaza, P. Martinez, J. Plaza, and R. Perez. Dimensionality
reduction and classification of hyperspectral image data us-
ing sequences of extended morphological transformations.

IEEE Trans. Geosci. Remote Sensing, 43:466-479, 2005.
A. Plaza, D. Valencia, J. Plaza, and P. Martinez. Commodity

cluster-based parallel processing of hyperspectral imagery.
Journal of Parallel and Distributed Computing, 66(3):345—

358, 2006.
F. J. Seinstra, D. Koelma, and J. M. Geusebroek. A software

architecture for user transparent parallel image processing.

Parallel Computing, 28:967-993, 2002.

P. Soille. Morphological image analysis: Principles and
applications. Springer: Berlin, 2003.

S. Tehranian, Y. Zhao, T. Harvey, A. Swaroop, and
K. Mckenzie. A robust framework for real-time distributed
processing of satellite data. Journal of Parallel and Dis-

tributed Computing, 66:403—418, 2006.
T. Yang and C. Fu. Heuristic algorithms for scheduling it-

erative task computations on distributed memory machines.
IEEE Trans. Parallel and Distributed Systems, 8:608-622,
1997.

