
The Design of MPI Based Distributed Shared
Memory Systems to Support OpenMP on Clusters

H’sien J. Wong 1 and A.P. Rendell 2

Department of Computer Science, The Australian National University
Canberra ACT Australia
1Jin.Wong@anu.edu.au

2Alistair.Rendell@anu.edu.au

Abstract— OpenMP can be supported in cluster environments
by using distributed shared memory (DSM) systems. A portable
approach for building DSM systems is to layer it on MPI. With
these goals in mind, this paper makes two contributions. The first
is a discussion about two software DSM systems that we have
implemented using MPI. One uses background polling threads
while the other uses processes that are driven only by incoming
MPI messages. Comparisons of the two approaches show the
latter to be a more scalable architecture that is better suited for
the multi-core processors that are becoming commonplace. The
second contribution recognizes that a common workaround for
sub-team synchronizations in OpenMP is to use the flush directive
on shared variables within busy-wait loops. In such a situation,
only the flush in the last iteration of the busy-wait loop will result
in the conditions necessary for exiting the loop. Thus transfer
of the shared value need only be done if there were changes.
We implement in our DSM a flush mechanism that eliminates
the unnecessary data transfers entirely without any additional
support or hints from the programmer.

I. INTRODUCTION

Software Distributed Shared Memory (DSM) systems pro-
vide an illusion of shared memory even on systems, such
as clusters, where the memory is physically distributed. A
motivation for doing this is that shared memory parallel
programming is often considered simpler to use compared to
message passing. One reason for this is that the shared memory
programmer does not need to worry about how information
gets from one cluster node to another, while the message
passing programmer needs to match every send with a suitable
receive; and this can quickly become very complicated when
the communication pattern is irregular.

To date, however, parallel programming on clusters has been
dominated by message passing, and in particular the Message
Passing Interface (MPI). There are many MPI libraries avail-
able with prominent examples being MPICH, LAM-MPI, and
Open MPI. As a result of this dominance, vendors of cluster
network components often invest considerable time and energy
in developing high performance MPI implementations that can
make best use of their underlying hardware.

Although software DSM systems have been available for
some time (e.g. [1], [2], and [3]) they have not been widely
exploited on cluster computers. Two major reasons for this
have been the lack of a standard interface (the equivalent
of MPI), and the time required to port and optimize DSM
systems to new hardware. This situation is, however, ripe for

change. Notably OpenMP is now widely recognized as the
shared memory programming paradigm of choice within the
high performance computing community. Recent work that
supports the use of OpenMP on clusters have included several
implementations that utilize DSM systems to support shared
memory programming on clusters (e.g. [4], [5], [6], and [7]).
Furthermore, the release of a commercially supported version
of OpenMP for clusters by Intel [8] has substantially raised the
profile of software DSM systems. In spite of this, portability
remains a major issue and there is a continued need for cluster
OpenMP DSM systems that are vendor neutral, open source,
and amenable to community development and research.

The goal of this work is to further the development of
a portable OpenMP DSM system that is able to run on
clusters while also exploiting the latest hardware advances.
To this end the DSM systems outlined here use MPI to
perform the underlying communication operations as this is
able to exploit the very best MPI implementation on a given
platform. Moreover, using MPI has other advantages, such as
the ability to use MPI profiling and analysis tools to examine
the performance of the DSM system, and also opens up the
possibility of exploring programming models that use both
MPI and OpenMP to share data between nodes on a cluster.

The work reported here builds on that previously reported
by Ojima et al. who developed SCASH-MPI [9], an MPI
based version of the SCASH [10] DSM system. In this
implementation, additional polling threads are created that run
alongside each MPI process to provide the one-sided memory
operations required by the DSM. Requests from remote nodes
for memory pages that reside on that node are directed to the
communication thread that sits waiting to service incoming
requests. In this respect the implementation is very similar to
the data server model that has been used to implement Global
Arrays [11] and the Distributed Data Interface [12] on some
platforms.

The use of OpenMP on clusters is then supported by using
the SCASH DSM library as a target platform for the Omni
OpenMP compiler [13]. Briefly, Omni translates OpenMP
source code into calls to various OpenMP runtimes based
on different parallel programming approaches such as Pthread
or the Unix shmem system calls. As the memory model of
SCASH is similar to the “shmem memory model”, the DSM
is weaved into the OpenMP solution by modifying the shmem

1-4244-1388-5/07/$25.00 © 2007 IEEE 2007 IEEE International Conference on Cluster Computing231

based runtime to use SCASH functions in place of shmem
ones. Using the same technique, the runtime is modified to
produce an OpenMP solution that is based on our DSM
systems.

This paper makes two contributions. First we compare two
competing approaches to implementing a DSM system over
MPI, one is similar to Ojima et al. [9] in that it uses threads
and requires polling, while the other uses only processes
and is entirely event-driven. The second contribution involves
how the OpenMP flush directive is handled in software DSM
systems. Specifically, the flush operation involves bringing
some region of locally cached memory into a consistent state
with the equivalent region of global memory. As such, a
common use of the flush directive is to implement non-
standard synchronization between tasks by way of synchro-
nizing shared variables and busy-wait loops. Taking advantage
of flush semantics, the DSM is able to apply an invalidation
protocol [2] to flushed regions. This reduces the overall impact
of the busy-wait loop on network traffic and DSM performance
by eliminating unnecessary data transfers.

The paper is structured into the following sections. First we
describe our DSM system and the two alternative implemen-
tations. Next we consider flush operations and an observer
approach. In section IV we provide experimental data to
evaluate the different approaches, while in section V we give
our conclusions.

II. DSM-OVER-MPI IMPLEMENTATIONS

The SCASH DSM is page based as well as home based.
As a page based DSM, shared memory in SCASH is orga-
nized into fixed size chunks – called pages – that define the
granularity of sharing. The DSM is home based in the sense
that each of these pages have a home process at which the
master copy of the page is maintained. If the master copy of a
page is held at some process, then that page is a remote page
from the point of view of all other processes. Before a remote
page can be accessed (read or write), a copy of the page needs
to be fetched from the home process asynchronously. This is
done in SCASH through the Remote Memory Access (RMA)
functionality provided by the PM [14] communications li-
brary. Unfortunately, PM’s RMA capabilities are implemented
through low level modifications to the host operating system
and drivers for the relevant network cards. As such PM is not
readily ported between machines, or run on clusters that are
not under the administrative control of the user.

In contrast, the MPI standard is a common standard for
message passing that is widely ported to many different
platforms. Thus, by layering the DSM interface over MPI,
a portable DSM implementation can be achieved. In porting
SCASH to use MPI, SCASH-MPI replaces the functionality
once provided by PM (both RMA and message passing) with
a polling communication thread. The main thread which does
everything else is referred to as the computation thread. Inter-
action between the computation and communications threads
takes place via three shared queue data structures: 1) a message
send queue, 2) a message receive queue, and 3) an RMA

Fig. 1. SCASH-MPI Communications (adapted from figure 2 in [9]).
(1) Message is placed on the send queue. (2) Message is picked up from the
send queue and sent via MPI. (3) Message is received via MPI and placed on
the receive queue. (4) Message is picked up from the receive queue. (5) RMA
request is placed on the RMA queue. (6) RMA request is picked up and
the correct asynchronous MPI call is issued for data transfer. After which,
the RMA request is forwarded to the remote process. (7) The RMA request
is received and the matching MPI call is issued for data transfer. (8) The
asynchronous data transfer call has completed.

request queue. This provides the computation thread access
to asynchronous message passing as well as RMA operations.
The use of these queues is illustrated in figure 1.

One consequence of dividing responsibilities between the
computation and communication threads is that the compu-
tation thread can only check for incoming messages when it
executes the DSM library code. Especially affected by this is
the lock protocol used by SCASH-MPI. In this implementa-
tion, the status of each lock – whether free or acquired and
by whom – is maintained by a lock master. To obtain a lock,
the requester communicates its request to the master and the
master should then check the status of the lock and respond
accordingly. The fact that the master can only receive, and
thus respond to, incoming messages when it executes DSM
library code means that a successful lock acquire response can
be delayed unnecessarily. For example, when the computation
work done by the master process does not result in any page
faults, nor does it require the use of any DSM functionality for
some extended period, other processes attempting to acquire
a lock will be delayed for the length of this period even if the
lock is not held by any process.

The problem can be avoided if more DSM intelligence is
given to the communication thread, allowing the lock response
to take place in the background. Thus, in our implementations
we take an alternative approach in which responsibility is
divided according to whether a thread is fulfilling the worker
or DSM roles. The role of the worker is to perform the
computation pertaining to the application that uses the DSM,
while the DSM thread performs all the necessary DSM related
tasks. The merit of this partitioning is that one-sided DSM
protocols can now be executed in the background. Using this
role partitioning, we have implemented two DSMs over MPI.
The first uses a background polling thread that plays the role
of DSM, while the second uses an event-driven approach with
separate MPI processes for both the DSM and worker roles.

A. Polling DSM

The polling DSM is similar to SCASH-MPI in that it uses
a background thread. However, as previously mentioned, this
thread now plays the DSM role rather than just that of a

232

Fig. 2. The polling DSM. (1) An event is placed on the event queue.
(2) An event is picked up from the event queue; the event handler is
executed. (3) and (4) Inter-process communications that take place in the
background. These may be started by a local or remote event or from
other conditions which the polling DSM thread is able to monitor in
the background. (5) If an event is blocking, the worker thread waits on
pthread cond wait and (6) the DSM thread signals the blocked worker
using pthread cond signal.

communication thread. Figure 2 shows the various kinds of
communications that can take place in the DSM and that the
three inter-thread queues that exist in SCASH-MPI (figure 1)
have been replaced by a single first-in-first-out (FIFO) event
queue. It is through this queue that the worker thread is able
to request DSM services.

During each iteration of the polling loop, the event queue
is checked for events and the various opened MPI Requests
are tested (points 2 and 3 of figure 2 respectively). The
following pseudo code describes the polling loop that is done
while the “polling” state is true.

dsm_poll():
while polling:
event = dequeue_head(event_queue)
if event != NULL:
event.handler(event)

Check opened MPI asynchronous calls

If an event is blocking, then the worker thread waits using
pthread cond wait after putting the event in the queue;
resuming only when the event is over and the DSM thread
calls pthread cond signal (points 5 and 6 in figure 2).
Although the event queue is a shared data structure that is
manipulated by both the worker and DSM threads, a lock-
less implementation can and has been used as there is only
one producer (worker thread) and one consumer (DSM thread)
per queue. The sequence diagram in figure 3 illustrates the
initialization, event and message polling, and finalization of
the DSM.

B. Event-driven DSM

The previous DSM needed to do polling because it had
to serve requests from an event queue as well as messages
from remote DSM threads. The event-driven DSM avoids the
need to do polling by transmitting all requests to the DSM as
MPI messages. To do this only MPI processes are created
that are then assigned either worker or DSM roles during
DSM initialization. Figure 4 shows the communications that
can take place in the event-driven DSM. Figure 5 depicts
a sequence diagram involving a pair of worker and DSM
processes. As shown, the DSM process never returns from the

Fig. 3. Initializing and finalizing the polling DSM. The polling DSM
thread is created during the initialization of the DSM. Its first task is to
prepare the necessary DSM data structures (e.g. page table). After which it
synchronizes with the worker thread using Pthread’s conditional signal; this
ends the init() call of the worker thread. From this point on, the event
queue can be used. During polling, the DSM thread has to check the event
queue and for other MPI calls as part of the various DSM protocols (e.g.
page server, locks, and flushes). When the Finalize event is received, the
DSM thread exits the polling loop. This returns execution to the rest of the
dsm main() function where various finalization tasks are performed before
the DSM thread is destroyed.

call to the initialization function. Instead, it enters the infinite
event loop and only terminates when it executes the Finalize
event handler. A simple example of an event loop follows (the
function pointer of the event handler is sent as part of the
event message).

event_loop:
forever:
MPI_Recv(event)
event.handler(event)

It should be noted that an event often gives rise to a number
of subsequent operations and events. For example, a read fault
for a remote page might play out as follows:

1) Worker process sends the Read Fault event to its local
DSM process (the one in the same cluster node), and
then blocks on MPI Recv waiting for the page to be
fetched.

2) On receipt of the Read Fault event the local DSM
process posts an MPI Irecv to receive the page data
from the relevant remote DSM process. It then sends a
Fetch event to that remote DSM process requesting a
copy of the page.

3) The remote DSM on receipt of the Fetch event identifies
the relevant page and sends it using a synchronous
MPI Send call that matches the MPI Irecv given in 2.
When this transfer is complete the remote DSM process
sends a Page Ready event to the local DSM process.

4) The local DSM process receives the Page Ready event,

233

Fig. 4. The Event-driven DSM. (1) Events are sent by worker processes to
DSM processes using MPI. (2) and (3) DSM processes receive events from
both workers and other DSM processes at the same point. (4) If an event is
blocking, the DSM process sends a synchronization message. This may also
be a result such as a memory address. (5) If an event is blocking, worker
processes wait for a synchronization message or result.

updates the page table, and issues an MPI Send to
match the receive call given in 1 above.

5) On completion of the MPI Recv the worker process
checks the state of new page, adjusts its memory pro-
tection to the appropriate setting, and then resumes
execution.

It is important to note that the Fetch and Page Ready events
given in step 2 and 3 above must be sent using asynchronous
send calls otherwise the DSM system may deadlock. Thus, a
background event sending mechanism has been incorporated
into the DSM’s event loop. This allows event handlers to
enqueue asynchronous send events. In order to send and re-
ceive events simultaneously while still maintaining the event-
driven characteristic, the event loop uses the MPI Waitsome
function as follows:

event_loop:
MPI_Irecv(event)
forever:
MPI_Waitsome(on Irecv and Isend (if any))
if Irecv completed:
event.handler(event)
MPI_Irecv(event)

if Isend completed:
dequeue head of background event queue

if background event queue is not empty:
MPI_Isend(background event)

III. OPENMP FLUSH, AN OBSERVER MODEL

The OpenMP flush directive is used to ensure that a thread’s
local view of memory is consistent with global memory [15].
Flush is used to ensure that a write by one thread is made
visible to all other threads. For this to happen, the thread
modifying its local view of memory memory needs to call
flush so that global memory will be updated with these
changes, meanwhile another thread interested in those changes
must call flush to ensure that those changes are propagated into
its local view of global memory. And, from the perspective of
global memory the reader’s call to flush must happen after the
writer’s call to flush.

The OpenMP flush allows simple busy-wait synchronization
schemes to be implemented. The LU benchmark in NPB-
3.2.1 [16], for example, uses the flush directive to implement
synchronization between neighbouring threads in order to
achieve a pipelined solution in its computation.

Fig. 5. Event-driven DSM Sequence Diagram showing initialization and
finalization. During the init() function negotiations take place that de-
termines if a process should play the Worker or DSM roles. Those that
become DSM processes never return the init() call; instead they enter the
event loop() and wait for events in an infinite loop. The DSM process
terminates only within handler for the Finalize event.

INITIALIZE
flag = 0

PRODUCER THREAD CONSUMER THREAD
data = ... do
!$omp flush (data) !$omp flush (flag)
flag = 1 while (flag .eq. 0)
!$omp flush (flag) !$omp flush (data)

... = data

Fig. 6. An example of how a busy-wait loop synchronization can be
constructed using the OpenMP flush directive (reproduced from [17] p.165).

A simpler but similar example is shown in figure 6. In the
example, the producer thread first writes to data, flushes it,
updates flag and then flushes flag. The consumer thread sits in
a busy loop, where it flushes flag during each iteration. This
continues while flag is equal to zero. When flag is not zero,
the implication is that data has been updated by the producer.
Hence, it can get the value of data by flushing data and then
reading it.

Flush is an expensive operation for home-based DSMs. If a
similar approach to some hardware caches is used on a copy
of a globally shared page, then flush involves diffing the page,
sending those diffs to the home location, and then invalidating
the copy (leaving a new copy to be retrieved if and when
that page is next accessed). In the context of the busy-wait
loop case, this ultimately means sending an empty diff, and
re-fetching the page during each iteration. A slightly better
approach is to refresh only the region of the page that is being
flushed (see figure 7). However, this approach still suffers from
the same problem because when used in the busy-wait loop
most of the refreshes would be redundant as all but the last
call to flush would contain the same information; that it should
not exit the loop.

To solve the redundant refresh problem we implemented an
observer flush model in our event-driven DSM. The model is

234

Fig. 7. A region specific flush involves: (1) sending the changes made to
the region for (2) application on the home node followed by (3) refreshing
the local copy from the updated global shared page. Only the flush region is
refreshed.

so called because each time a refresh is requested from a DSM
process, the requesting process becomes an “observer” of that
region. Thus, the next time there is a change to the region,
observers of the region can be notified of the change. From
the observer’s perspective, a region only really needs to be
refreshed on a flush if a change notice was received for that
region.

To implement the observer model two bookkeeping data
structures are used. On the observer side, a set of subscribed
regions is maintained; each with a has changes boolean
field that indicates if the remote region has changes. This field
is set to true when the region is initialized because the observer
would not have received change notification for changes that
take place between fetching the remote page and flushing the
region (and thus becoming an observer). Meanwhile at where
the master copy of the region resides, a set of observed regions
is maintained, each of which contains a list of observers and
an ack counter (initialized to zero).

There are five different flush communication patterns that
can arise. All of them begin with a flush request from a worker
process. This is because the OpenMP memory model only
requires a thread’s (OpenMP thread) local view of memory to
be consistent after a flush. That is, a DSM process only needs
to update its local view of memory when a call to flush is
made.

CASE-1: A remote region is flushed and differences were
detected.

• The encoded diff data is sent to the home process using
MPI Isend, and an MPI Irecv is posted to receive
the refreshed data. Next, the has changes field is set
to false, and a Diff event is sent to the DSM process
where the modified data resides.

• When the Diff event arrives at the relevant DSM process,
the encoded diff data is received by posting an MPI Recv
that matches the MPI Isend issued by the flushing
process in the previous step. The diff is then decoded
and applied. When this is done, the refreshed data is sent
by issuing an MPI Send to match the MPI Irecv call
made earlier by the flushing process. Next, Change Notice
events are sent to all observers of the region (except for

the flushing process) and the ack counter incremented
by one as each notice is sent. All notified observers are
also removed from the observer list leaving the flushing
process as the only observer of the region. If ack is
zero, then a Refresh is sent to the flushing process imme-
diately, skipping the notification and acknowledgement
handshake protocol described in the subsequent two steps.

• Upon receipt of a Change Notice, the Observer updates
the has changes field of the region, for which the
notice is intended, to true. Once this is done, an Ack event
has to be sent back in reply to complete the handshake.

• Back at the DSM process that is home to the flush
region, the ack counter is decremented for every Ack
event that is received. On receiving an Ack event that
decrements ack to zero, the Refresh event can be sent
back to all waiting flushing processes. There may be
more than one flushing process waiting for handshakes to
complete as more flushes to the region may have begun
during the handshake process. Flushes 3 and 6 of figure 8
shows how CASE-1 and CASE-5 (described below) may
intertwine and have to complete together at the end of
both handshakes.

• When the Refresh event arrives at the flushing process,
MPI Wait is used to ensure that both asynchronous MPI
calls from the first step have completed. When this is
done, the flushing DSM process can synchronize with its
worker.

CASE-2: A remote region is flushed and no differences were
detected. However the has changes field is true.

• In this case, the flushing process has no diffs to send.
Thus, it only needs to post an MPI Irecv call to receive
the refresh data. When this is ready, the has changes
field is set to false and a refresh is requested from the
relevant DSM process.

• When the request arrives at the relevant DSM process,
the refresh data is transferred using an MPI Send that
matches the MPI Irecv above. As there are no changes,
this does not trigger any change notices. Thus, the refresh
event can be sent to the flushing process immediately. The
flushing process is also recorded to be an observer of the
region.

• Handling the receipt of the refresh event is as in CASE-1.

CASE-3: A remote region is flushed and no differences were
detected. The has changes field in this case is false.

• Since there are no diffs to send and no changes have been
made to the region, nothing needs to be done. This is
where the observer model makes substantial savings over
the traditional approach to implementing flush operations.

CASE-4: A local region is flushed and no changes have been
made locally.

• Nothing needs to be done in this case. However, a
penalty has been incurred by the local DSM process
in that it has to check for differences. In the busy-wait
scenario however, this cost is incurred by the process
that is waiting in the busy-loop (i.e. the home of the

235

Fig. 8. Example communication sequence from the observer flush model
showing all five cases. At the end of the sequence, DSM-0 and DSM-1 can
see both write-1 and write-2. DSM-2, however, has not called flush since
receiving the change notice and so only sees write-1 (which it contributed).
Note that the full-line arrows represent event communication and the dotted
arrows are synchronization messages within the cluster node. These do not
represent when the diff or refresh data are communicated (see text for details).

synchronizing variable is the busy-waiting process). Thus,
its impact on the overall performance is minimal if any.

CASE-5: A local region is flushed and there have been
changes made to the region.

• In this case, change notices are sent to all observers of
the region. As in CASE-1, the flush can only end if ack
is zero.

The sequence diagram in figure 8 shows a possible interac-
tion of all five flush cases. The example revolves around the
flushing of region r, whose home is DSM-1. In the diagram,
flushes 4 and 5 represent the communication cost savings
achieved by the observer model when redundant refreshes are
avoided.

It is also interesting to note that although the change notice
received by DSM-0 was a result of flushing write-1, it gets a
refresh that includes both write-1 and write-2 (from flushes 3
and 6 respectively). This explains why there only needs to be
one change notice between the flush that registers the DSM as
an observer and the one that requests for the refresh. This is
why we can safely remove observers from the observers list

upon sending a change notice.
The use of acknowledgements prevents a writer from com-

pleting its flush before all change notices have been received.
For a busy-wait loop, the significance of this cannot be more
important. Acknowledgements are needed so the writer knows
that the reader has received the change notice for the data it has
written. In the example in figure 6, this ensures that the change
notice for flag does not get ahead of those for data. This is
possible without the handshake because MPI only guarantees
the order of messages sent from one process to another, and
not the order of messages sent from two processes to one [18].
Since if the region homes are on different processes, notices
may arrive in different orders. If that does happen then the
reader may exit the busy-wait, and because the notice for data
has not arrived, skips the refresh for data thinking that it is
up-to-date.

IV. EVALUATION

The previous sections introduced two alternative DSM-over-
MPI implementations. The first takes a polling approach by
running a thread in the background that performs the DSM
tasks. The second requires the user to launch additional MPI
processes, with a subset of these becoming DSM related
processes. In this second model since MPI is used to handle
all inter-process communication events it is possible to avoid
polling and instead develop an event-driven approach. In
addition we have also detailed a new observer model for
implementing OpenMP flush that reduces the cost of these
operations and is likely to be beneficial in situations where
flush is used in combination with busy-wait loops to provide
inter-thread (OpenMP thread) synchronization.

In order to evaluate our DSM implementations, we modify
the Omni OpenMP compiler to also target our DSM interface
(both DSMs use the same interface). The Omni OpenMP com-
piler is capable of targeting several different shared memory
models. For instance, it can compile OpenMP into a Pthread
implementation or into one that uses shmem system calls. The
latter is implemented in a runtime library called OMPSM. The
library contains preprocessor commands to switch between
using shmem, SCASH, or SCASH-MPI. Taking advantage of
this, we add our DSMs to this list of compile options. As our
DSMs share the same interface, this work only has to be done
once.

A. Cluster Specifications

Our experimental environment is a cluster of six AMD
Athlon dual-core processors. These are connected via a gigabit
ethernet network. Full details are given in table I.

B. Experiment #1 – Polling vs. Event-Driven

The hypothesis is that the polling DSM will require more
overheads as the DSM thread has to run continuously. How-
ever if the number of DSM events is high, this may not be an
issue as the worker is likely to spend a significant fraction of
the total time waiting for the DSM anyway. In this scenario,

236

TABLE I

CLUSTER SPECIFICATIONS

HARDWARE

CPU AMD AthlonTM 64 X2 Dual Core Processor 4200+
Clock 2.2GHz
Cores 2
No. of nodes 6
Network Gigabit Ethernet

SOFTWARE

Operating System Linux
Kernel 2.6.11
MPI MPICH2-1.0.5p4
GCC 3.3.5

there will be less polling and, therefore, less of a difference
in performance.

To test this, we use the Embarrassingly Parallel (EP)
benchmark from NAS Parallel Benchmarks (NPB-3.2.1) [16]
to represent the case with light DSM load. For the heavy
DSM load, the Block Tridiagonal (BT) benchmark is used.
To increase the DSM workload, the BT benchmark is not
optimized in any way. Also, a round robin page placement
is used so that a page access has a n − 1 out of n chance of
resulting in a page fetch; where n is the number of different
page homes. Both benchmarks are run using class size A.

These benchmarks are run under two different load con-
ditions. The first is the normal dual-core set up, while the
second is with a “busy-core” environment in which a “core
filler” process that executes a small group of instructions in
an infinite loop is used to keep one of the cores busy.

By comparing the performance under dual-core and busy-
core conditions, we can determine to what degree each DSM
implementation is affected by the loss of one core. This
tells us how dependent an implementation is on background
processing. Furthermore, as we are comparing each DSM with
itself, this cancels out the effects of the other minor differences
in the implementation.

Table II lists the timings for the light DSM load benchmark
for the polling and event-driven DSMs. The dual-code and
busy-core performances of each DSM is listed with ratios
between these times calculated. A ratio that is close to 1.0
tells us that the performance has not been affected much
by a reduction to one usable core. Conversely, a higher
ratio indicates the higher dependency of the system on extra
computing cycles. It is calculated as:

ratio =
busy-core time
dual-core time

From the light DSM load ratios listed in table II, we can
tell that the polling DSM has been greatly affected by the loss
of one usable core. The event-driven DSM, however, does not
see much of a change in performance with ratios that are very
close to 1.0.

With the heavy DSM load, table III shows that the event-
driven DSM is now a little more affected by the lost of one
core. Other than the case of one OpenMP thread (which really
is a low DSM usage case), the ratios for the polling DSM
are higher than the event-driven DSM, but not by much. The

TABLE II

LIGHT DSM LOAD – RUNTIMES OF EP

No. of Polling DSM Event-Driven DSM
OpenMP (seconds) (Busy

Dual
) (seconds) (Busy

Dual
)

Threads Dual Busy Ratio Dual Busy Ratio
1 31.63 64.06 2.03 31.77 31.85 1.00
2 15.79 31.16 1.97 15.94 16.04 1.01
3 10.58 23.57 2.23 10.61 10.75 1.01
4 7.97 18.08 2.27 7.98 8.05 1.01
5 6.42 14.99 2.33 6.46 6.50 1.01
6 5.38 12.37 2.30 5.34 5.38 1.01

TABLE III

HEAVY DSM LOAD – RUNTIMES OF BT (UNOPTIMIZED)

No. of Polling DSM Event-Driven DSM
OpenMP (seconds) (Busy

Dual
) (seconds) (Busy

Dual
)

Threads Dual Busy Ratio Dual Busy Ratio
1 154 339 2.20 224 226 1.01
2 790 822 1.04 603 638 1.06
3 875 951 1.09 605 628 1.04
4 810 876 1.08 522 546 1.05
5 765 845 1.10 475 497 1.05
6 727 805 1.11 435 456 1.05

reason for this is that with the heavy DSM load, the DSM is
handling more events and does much less polling. With the
DSM role overwhelmed by incoming events, the runtime of
the benchmark is likely to be dominated by the DSM overhead
rather than the computation work; i.e. the worker spends much
of its time waiting for the DSM. More critically, however, the
overall time for the event driven approach is significantly less
than for the polling approach.

Not surprisingly the overall conclusions of these tests is
that the cost of polling depends on how busy the DSM is;
an overworked DSM that is handling event after event does
little polling. In such situations the event-based DSM will have
similar performance to the polling DSM.

Although the cost of polling can be hidden by using a
second core, this does not make good use of computing
resources. The poor performance of the polling DSM when
running the light DSM load benchmark with a busy second
core indicates that the polling thread is likely to reduce the
effectiveness of any optimizations made to reduce the number
of DSM requests (e.g. better page placement).

C. Experiment #2 – Observer Flush (event counts)

This experiment is designed to demonstrate the operation
and effectiveness of the observer flush implementation as com-
pared to the “basic flush” illustrated in figure 7. A synthetic
benchmark is used to obtain deterministic event counts from
our event-driven DSM. The benchmark is divided into four
phases – numbered 0 to 3.

Phase 0 is an initialization phase to setup the state of shared
memory correctly. During this phase, a shared variable x that
resides at DSM-HOME is allocated and initialized to 0. The
barrier at the end of the phase ensures that the state of the
local page (at DSM-HOME) will be reset to read-only.

237

----- PHASE-0 -----
Allocate memory for integer x on DSM-HOME
if DSM-HOME:
x = 0

barrier()

In phase 1, the remote DSM performs 10000 flushes on x,
reads the value of x into a local variable y and then flushes x

for another 10000 iterations. Event counts (table IV) for the
basic flush implementation are 10000 Flush events from the
remote worker to its DSM, 10000 Diffs (empty), and 10000
Refreshes. The observer model fairs much better, encountering
only 10000 Flush events, 1 Refresh Request and 1 Refresh of
data (1 CASE-2 and 999 CASE-3). Both models ignore flushes
on regions that are in unmapped pages. Thus, the first 10000
flushes do not result in any action. The event counts only occur
after the page is fetched by the y=x assignment statement that
triggers a read fault. The sync() function at the end of this
phase synchronizes the worker processes only. It is a light-
weight version of the barrier() which does not deal with
memory consistency.

----- PHASE-1 -----
if DSM-REMOTE:
for 10000 iterations:
flush(x)

y = x /* y is local */
for 10000 iterations:
flush(x)

sync(1)

In phase 2, the DSM-HOME increments x 10000 times.
Each time, the new value of x is flushed. In this phase, the
basic model does nothing since the flushed region is in a
local page. The observer model has more overhead, requiring
10000 flush events, but since these occur within a box this
communication can happen very quickly. The only inter-DSM
communication is the change notice that is triggered by the
flush in the first iteration (CASE-5 communication pattern).

----- PHASE-2 -----
if DSM-HOME:
for 10000 iterations:
x = x + 1
flush(x)

sync(2)

In phase 3, the remote DSM enters a while-loop with the
condition being x==y. Given that x has been changed in the
previous phase, only one iteration and therefore one flush will
be executed here. Total event counts for both models are equal
in phase 3. Both incur one within-the-box communication –
the Flush event; and two between-boxes communication – Diff
and Refresh for the basic model, and Request and Refresh for
the observer model.

----- PHASE-3 -----
if DSM-REMOTE:
while x == y:
flush(x)

The final totals in table IV shows that the observer model
results in more worker-to-DSM communication than the basic

TABLE IV

FLUSH EVENTS RECEIVED

– Basic – – Observer –
Received Event Home Remote Home Remote

PHASE-1
Flush 10000 10000
Diff 10000
Refresh Data 10000 1
Refresh Request 1

PHASE-2
Flush 10000
Change Notice 1
Notice Ack 1

PHASE-3
Flush 1 1
Diff 1
Refresh Data 1 1
Refresh Request 1
Total 10001 20002 10003 10004
Total-inter-DSM 10001 10001 3 3

model. This is because the DSM has to check if there are
changes to notify observers about even for local flushes;
whereas the basic model has no such requirements. When we
consider the many redundant refreshes suffered by the basic
model however, the conclusion is that the observer model is a
success in this respect.

D. Experiment #3 – Slowdown Caused by Busy-wait Flushes

When flushes are used within the context of busy-wait loops,
it is not the slowdown of the loop that we are interested
in improving. Processes within busy-wait loops are afterall
waiting! Instead, it is the slowdown induced by the busy-wait
loop on the processes doing useful computation work – which
the rest are waiting for – that is of interest. A slowdown is
induced by flooding the DSM process at which the useful
work is being done with flush related events so that the DSM
requests from the local worker process (that is performing the
useful work) get delayed. To test this, we design an experiment
(see figure 9) with the following components: useful work,
page server, and busy-wait.

The useful work component is a finite-difference approxi-
mation of the 2D Laplace Equation that uses a 5-point stencil
operation. The memory access profile of this calculation is a
series of writes to one grid and reads from another grid. In
short, the useful work here is a memory touching exercise with
some calculation.

The second component is the page server. All memory
allocated for the grid is mapped directly onto a separate
cluster node. Thus, as our useful work is being done, it will
require the services of the DSM subsystem to fetch its pages
as well as perform the necessary record keeping tasks (e.g.
twinning). To ensure that the useful work will require this
service throughout its computation, the Laplace calculation is
only performed for one iteration. We then adjust the size of the
grid to give longer running times. Also the initialization phases
of the Laplace are skipped to prevent pages from being fetched
during initialization instead of during the main computation (as
there is only one writer, the pages will not be invalidated at a

238

Fig. 9. Experiment #3 setup. One worker does useful work, one DSM
serves pages, and the other worker/DSM pairs busy-wait and issue flush related
events to the first DSM.

barrier).
The last component of our experiment is the busy-wait loop.

All other processes, that are not doing useful work or serving
pages, will busy-wait on a shared synchronizing variable. This
variable will be mapped to the node at which the useful work
is being done so that the busy-wait loop may have a chance
to induce a slowdown.

Table V lists the timings obtained when the test is run with
six cluster nodes – one doing useful work, one serving pages,
and four busy-waiting. Shared memory is allocated for two
8192 × 8192 grids of double datatype quantities. The page
size used is the system page size of 4096 bytes. Thus, both
grids will require 262144 pages in total. However as the edge
quantities of the grid being written to are not accessed, the
total number of page fetches is 262112 = (8192 + 8190) ×
(16 pages per row). Note that the timings for the “no busy-
wait” case is identical regardless of flush model as it does not
involve any flushing. These timings are done for both dual-
core and busy-core (see Experiment #1 in section IV-B for
details) cases. For each set of “with busy-wait” timings we
include the average flush-related event counts.

Table V shows that the observer model has successfully
reduced the number of flush related events that the working
node has had to deal with to a deterministic amount (2 refresh
requests and 1 notice acknowledgement from each busy-wait
process). In stark contrast, the DSM in the working node under
the basic model has to field 1.5 million flush related events
on the average. This difference explains the larger slowdowns
we see in both the dual-core and busy-core timings.

V. CONCLUSIONS

The study on MPI based DSMs compares the performance
of polling and event-driven DSMs under different DSM load-
ing and shows that the event-driven DSM is a more scalable
model. While both architectures perform equally under heavy
DSM load, the decrease in light DSM load performance
of the polling DSM when tested under busy-core situations

TABLE V

EFFECT ON PERFORMANCE DUE TO REMOTE BUSY-WAIT FLUSHES

– DUAL-CORE –
Average time in seconds Basic Observer
No busy-wait 87.76 87.76
With busy-wait 95.91 88.67
Slowdown 9.29% 1.04%
Average flush related event counts Basic Observer
Diff (empty) 1506221
Refresh request 8
Notice Ack 4
Total 1506221 12

– BUSY-CORE –
Average time in seconds Basic Observer
No busy-wait 90.87 90.87
With busy-wait 105.44 91.97
Slowdown 16.03% 1.21%
Average flush related event counts Basic Observer
Diff (empty) 1642811
Refresh request 8
Notice Ack 4
Total 1642811 12

indicates that the background polling thread would reduce
the effectiveness of optimization efforts such as proper page
placement. The polling approach will therefore not be ideal
for effective utilization of the multi-core processors that are
becoming commonplace. In contrast, the light DSM load
performance of the event-driven DSM demonstrates that it
would be a scalable architecture with respect to optimization
efforts.

The second part observed that if the OpenMP flush is im-
plemented as a simple flush-and-refresh protocol in the DSM,
a large volume of network communication would arise when
the OpenMP flush is used in a busy-wait loop. Worst of all,
most of the refreshes would contain the same information and
are therefore redundant. Under the observer model described,
the redundant refreshes are effectively eliminated by having
the process holding the master copy notify observers only
when a change has been made to the region. The experiment
shows that the amount of communication is reduced from
something that is dependent on the wait duration to one that
is deterministic.

ACKNOWLEDGMENT

This work is funded in part by Australian Research Council
Linkage Grant LP0669726 and Alexander Technology. We are
grateful to Y. Ojima, M. Sato and T. Boku for providing us
with a copy of SCASH-MPI and for helpful discussions. APR
is grateful to Japanese Society for the Promotion of Science
for the award of a short-term fellowship.

REFERENCES

[1] K. Li, “IVY: A shared virtual memory system for parallel computing,”
Proceedings of the 1988 International Conference on Parallel Process-
ing, Vol. II Software, pp. 94–101, Aug. 1988.

[2] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proc.
2nd ACM SIGPLAN Symp. Principles and Practices of Parallel Pro-
gramming, Seattle, Mar. 14-16 1990.

239

[3] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel, “TreadMarks:
Distributed memory on standard workstations and operating systems,” in
Proceedings of the 1994 Winter Usenix Conference, 1994, pp. 115–131.

[4] M. Sato, H. Harada, and A. Hasegawa, “Cluster-enabled openMP: An
openMP compiler for the SCASH software distributed shared memory
system,” Scientific Programming, vol. 9, no. 2-3, pp. 123–130, 2001.

[5] S. Karlsson, S.-W. Lee, and M. Brorsson, “A fully compliant OpenMP
implementation on software distributed shared memory,” in High Per-
formance Computing - HiPC 2002, 9th International Conference, Ban-
galore, India. Springer, Dec. 2002, pp. 195–208.

[6] Y.-S. Kee, J.-S. Kim, and S. Ha, “ParADE: An openMP programming
environment for SMP cluster systems,” in SC. ACM, 2003, p. 6.

[7] L. Huang, B. M. Chapman, and Z. Liu, “Towards a more efficient
implementation of OpenMP for clusters via translation to global arrays,”
Parallel Computing, vol. 31, no. 10-12, pp. 1114–1139, 2005.

[8] J. P. Hoeflinger, “Extending OpenMP to clusters.” [Online]. Available:
http://www.intel.com/

[9] Y. Ojima, M. Sato, T. Boku, and D. Takahashi, “Design of software
distributed shared memory system using MPI communication layer,” in
Proc. The 4th International Workshop on OpenMP: Experiences and
Implementations WOMPEI 2005, Tsukuba, Japan, Jan. 2005, pp. 18–25.

[10] H. Harada, H. Tezuka, A. Hori, S. Sumimoto, T. Takahashi, and
Y. Ishikawa, “SCASH: Software DSM using high performance network
on commodity hardware and software,” in Eighth Workshop on Scalable
Shared-memory Multiprocessors. ACM, May 1999, pp. 26–27.

[11] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
portable “shared-memory” programming model for distributed memory
computers,” in Proceedings of Supercomputing’94. Washington DC:
IEEE, Nov. 1994, pp. 340–349.

[12] R. M. Olson, M. W. Schmidt, M. S. Gordon, and A. P. Rendell,
“Enabling the efficient use of SMP clusters: The GAMESS/DDI model,”
in SC. ACM, 2003, p. 41.

[13] K. Kusano, S. Satoh, and M. Sato, “Performance evaluation of the omni
openMP compiler,” in ISHPC, ser. Lecture Notes in Computer Science,
M. Valero, K. Joe, M. Kitsuregawa, and H. Tanaka, Eds., vol. 1940.
Springer, 2000, pp. 403–414.

[14] H. Tezuka, A. Hori, and Y. Ishikawa, “PM: A high-performance commu-
nication library for multi-user parallel environments,” RWC, Technical
Report TR-96015, Nov. 1996.

[15] OpenMP Application Program Interface version 2.5, OpenMP
Architecture Review Board, May 2005. [Online]. Available:
http://www.openmp.org/drupal/mp-documents/spec25.pdf

[16] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
nas parallel benchmarks and its performance.” [Online]. Available:
http://www.nas.nasa.gov/News/Techreports/1999/PDF/nas-99-011.pdf

[17] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. Academic Press, 2001.

[18] W. Gropp, E. Lusk, and A. Skjellum, Using MPI – Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. The MIT
Press, 1999.

240

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
