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Abstract— There exist several scheduling schemes for 
parallelizing loops without dependences for shared and 
distributed memory systems. However, efficiently parallelizing 
loops with dependences is a more complicated task. This becomes 
even more difficult when the loops are executed on a distributed 
memory cluster where communication and synchronization can 
be a bottleneck. The problem lies in the processor idle time which 
occurs during the beginning and final stages of the execution. In 
this paper we propose a new scheduling scheme that minimizes 
the processor idle time and thus it enhances load balancing and 
performance. The new scheme is applied to two-dimensional 
iteration spaces with dependences. The proposed scheduling 
scheme follows a tiled wavefront pattern in which the tile size 
gradually decreases in all dimensions. We have tested the 
proposed scheme on a dedicated and homogeneous cluster of 
workstations and we verified that it significantly improves 
execution times over scheduling using traditional tiling. 

I. INTRODUCTION 
An essential step in generating efficient code for parallel 

execution of loops is to determine the optimal scheduling 
scheme of execution. The scheduling scheme defines which 
loop iterations will be executed on what processor and during 
which scheduling step. Tiling is a very popular method for 
partitioning an iteration space into scheduling tasks that can 
be assigned to processors for parallel execution. The tiling 
transformation was proposed to enhance data memory locality 
and achieve coarse-grain parallelism in multiprocessors. 
Tiling groups a number of adjacent iterations into a set, which 
is executed without interruption on a single processor. 
Communication between processors occurs only before and 
after the computations within a tile. 

An extensive amount of research has been performed in 
both the areas of scheduling and tiling. The tiling or 
supernode transformation has been proposed by Irigoin and 
Triolet in [12]. Ramanujam et al in [17] introduce tiling for 
distributed computing by minimizing communication volume. 
Xue et al [20] and Boulet et al [2] derive tile size and shape 
also with respect to minimizing communication time. Ohta et 
al determine the optimal tile size by minimizing the 
theoretical execution time [16]. Boulet et al [3] and Chen et al 

[4] extend tiling based on execution time to heterogeneous 
computing. Desprez et al in [7] determine the processor idle 
time in two dimensional tiling for various tile shapes. 
Högstedt et al in [11] is using the critical execution path to 
propose a model for calculating the execution time of tiling 
and define the optimal tile shape. Hodzic et al in [10] propose 
a new framework of defining tiling parameters for an arbitrary 
iteration space with dependences based upon minimizing 
theoretical execution time. Goumas et al in [9] propose 
efficient code generation algorithms for tiled iteration spaces 
in message passing distributed systems. There exists a lot of 
work in the area of scheduling for parallel computing as well. 
Techniques among others include static scheduling, self 
scheduling, guided self scheduling, factoring, trapezoid self 
scheduling, dynamic trapezoid self scheduling etc [1], [5], [8], 
[13], [18], [19]. Marcatos et al in [15] have performed a 
thorough theoretical and experimental comparison of several 
self-scheduling schemes. Manjikian et al in [14] study 
different scheduling techniques for wavefront computations. 
Ciorba et al in [6] use dynamic trapezoid self scheduling for 
wavefront computations on heterogeneous clusters. 

In this paper, we bring concepts from both the areas of 
tiling and scheduling together in an effort to improve the 
parallel execution performance of loops with dependences. In 
particular, we focus on two dimensional iteration spaces with 
uniform dependences. We propose a new tiling scheme that 
utilizes variable tile edges along both dimensions. We derive 
the sequences of the tile edge lengths with respect to 
minimizing the processor idle time and synchronization cost. 
We also present an experimental comparison of our proposed 
scheme against an optimally configured traditional tiling 
scheme and we demonstrate that our technique outperforms 
traditional tiling. 

The content of the rest of paper is organized as follows. In 
Section II, we briefly discuss the optimal configuration of 
traditional tiling schemes in iteration spaces with dependences. 
Our analysis is based on a theoretical execution time model. 
In Section III, we incorporate trapezoid scheduling into tiling 
as a means of reducing processor idle time. Consequently, we 
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n2 derive a new tiling scheme that minimizes the inter-processor 
synchronization cost produced by the trapezoid scheduling. In 
Section IV, we describe how our technique can be 
implemented as a well defined tiling transformation and how 
we can determine the optimal parameters. In Section V we 
present our experimental results and show that the proposed 
scheme outperforms the traditional optimal tiling scheme. In 
Section VI, we present our conclusions and we discuss future 
work. 

II. OPTIMAL STATIC TILING 
Deriving the optimal tiling for parallel execution is a topic 

that has been studied extensively. Researchers have been 
trying to determine the optimal tile size and shape with respect 
to minimizing cost functions such as communication volume, 
execution time, idle time etc. In this section we investigate 
tiling for minimal execution time. 

Our execution platform is a cluster of workstations 
connected through a high-speed network. Our model of 
computation and communication is similar to the one 
introduced in [4]. Assume a two dimensional rectangular 
iteration space N1×N2 with uniform dependences and 
dependence distance vectors [19] of the form (a, 0), (0, b) 
and/or (c, d) where a, b, c, d > 0. For such iteration spaces, the 
optimal tiling shape is a rectangular tiling scheme of rise zero 
[21], and the resulting tile dependences have dependence 
distance vectors (1, 0), (0, 1), and/or (1, 1) respectively. 
Figure 1 displays a tiled iteration space with dependence (1, 0) 
and (0, 1). The execution time of a single iteration of the 
innermost loop is denoted by t and it is application dependent. 
The serial computation time of the algorithm therefore is: 

 Tcomp = N1N2t     (1) 

When the loops run in parallel on P processors the 
execution follows a wavefront pattern. Before the execution of 
a tile each processor receives data from the previous peer and 
after the tile is computed it sends data to the next peer. The 
tile size determines both the computation and the 
communication volume. 

Given a message of N elements with size of s bytes, we 
define the communication time between two processors in a 
network of P nodes [4] as: 

 Tcomm = a + bsN + γ(P – 1)    (2) 

where a is the communication latency, b is the inverse of the 
communication bandwidth, and γ is the network contention 
factor. Parameter a represents the initial startup cost of 
communication between two workstations. Parameter b 
represents the cost of transferring a single byte of data 
between two nodes. Parameter γ captures the network 
contention. The nodes on a network often share physical 
medium and equipments, such as cables and switches. 
Collisions may occur when more than one node attempt to 
communicate at the same time. Intuitively, the more nodes we 
use in the network, the higher the network contention will be. 

We define the tile edges as n1, n2 along N1 and N2 
dimensions respectively. The iteration space is allocated to P 

processors along N1 dimension in equal chunks. There exist a 
total of N1/n1 chunks each one containing a single pile of 
N2/n2 tiles. For the sake of simplicity we will ignore the 
ceiling operators without compromising our results. During 
each tile execution, the processor who is assigned that 
particular tile will receive n2 elements from the previous 
processor, it will compute n1n2 elements within the tile, and 
finally it will send n2 elements to the next processor. By (1) 
and (2) we determine that the time required, in order to 
receive and compute data in a single tile, is: 

 Ttile = n1n2t + a + bsn2 + γ(P – 1)  (3) 

Assuming that the algorithm executes in parallel in K 
scheduling phases and taking into account that the sending 
and the receiving operations overlap, the total parallel 
execution time is: 

 Tp = K Ttile    (4) 

A tiling scheme is called multi-pass [21] if each processor 
is allocated more than one chunk of tiles, i.e. block-cyclic 
distribution, or single-pass if each processor is allocated 
exactly one chunk of tiles, i.e. block distribution. In addition a 
tiling is defined as pass-idle if a processor has to wait between 
the execution of two consecutive chunks, or pass-free 
otherwise. Single-pass tiling is always pass-free. In 
rectangular tiling with dependences the tiling scheme is multi-
pass if the number processors is less than the number of 
chunks, i.e. if P < N1/n1, and single-pass otherwise. It is also 
pass-idle if the number of processors is greater than the 
number of tiles in a chunk, ie. P > N2/n2, and pass-free 
otherwise. Figure 2 displays the scheduling phases for pass-
idle and pass free tiling. The gray tiles denote the critical path 
of execution. The time required to compute the tiles across the 
critical path is equal to the parallel execution time. The 
number of phases can be determined as: 

 K =



 N1

n1
 + 

N2

n2
 – 1      if P > N2/n2

P – 1 + 
N1N2

n1n2
P      otherwise

   (5) 

 
Figure 1: Two-dimensional rectangular tiling with uniform dependences 
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Note that for the single-pass tiling, when n1 = N1/P, the 
formula for both pass-idle and pass-free cases is the same, i.e. 
P – 1 + N2/n2. It has been proven that single-pass tiling is 
optimal with respect to the execution time [21]. Therefore, for 
n1 = N1/P by (3), (4) and (5), we can derive the optimal 
parallel time as: 

 Tp = [N1n2t/P + a + bsn2 + γ(P – 1)] 
         ( P – 1 + N2/n2)    (6) 

Minimizing the formula above for n2, using differentiation 
or discreet methods, we can derive the optimal tile size as: 

 n1 = 
N1

P , n2 = 
P(a + γ(P – 1))N2

 (P – 1)( N1t + bsP) (7) 

III. TILING FOR MINIMAL PROCESSOR IDLE TIME 
Assigning processors the same amount of work throughout 

the parallel execution is referred to as Chunk Scheduling (CS). 
Therefore, traditional tiling partitioning is by definition chunk 
scheduling. Chunk scheduling has an inherent disadvantage. It 
does not deal with load balancing issues. In iteration spaces 
with dependences, both in the beginning and at the end of the 
execution, many processors remain idle. In single-pass 
scheduling (block distribution) each processor remains idle for 
(P – 1)Ttile time throughout the parallel execution. The 
processor idle time can be reduced by using multi-pass 
scheduling (block-cyclic) distribution but at the expense of 
communication volume. Furthermore, as we discussed in the 
previous section, block-cyclic distribution is less efficient, in 
terms of execution time, than block distribution in rectangular 
tiling with dependences. 

It has been shown [18] that the best tradeoff between 
communication and load balancing can be achieved by 
assigning processors with chunks of linearly decreasing sizes. 
This type of scheduling is termed Trapezoid Scheduling (TS). 
It is primarily used as a dynamic (self) scheduling scheme 
(TSS) in shared memory and distributed memory systems, and 
it has been shown to reduce workload imbalance and 
subsequently processor idle time. 

In trapezoid scheduling the allocated chunks start from an 
initial size F and each time are decremented by D until a final 

size L. In TS chunk sizes form a decreasing arithmetic 
progression. Assume that we divide an iteration space of size 
N into chunk according to TS with initial chunk size F and 
final chunk size L. The TS algorithm produces k chunks of 
size n(i), i = 1, …, k where n(1) = F, n(k) = L, and n(i + 1) = 
n(i) – D. It turns out that: 

 k = 
 

 

2N
F + L

 

 
, D = 

 

 

F – L
k – 1

 

 
,  

 n(i) = F – (i – 1)D   (8) 

Trapezoid scheduling was designed to schedule loops 
without dependences. When dependences are introduced then 
TS needs to take into account processor synchronization [6]. 
This can be achieved by utilizing the tiling transformation. 
Figure 3(a) displays the tile allocation using trapezoid 
scheduling. Chunks are allocated to processors along 
dimension N1 according to the TS algorithm. The length of the 
tile edge along dimension N1 is represented by the sequence 
n1(i) i = 1, …, k. The length of the tile edge along dimension 
N2 is constant and equal to n2. 

Trapezoid scheduling provides a good tradeoff between 
processor idle-time and communication cost. Its application to 
iteration spaces with dependences, however, introduces a 
processor synchronization issue. Assuming that the iteration 
space is divided into k×l tiles, let the sequence ti,j, i = 1, …, k, 
j = 1, …, l  represent the starting execution time of Tile(i, j) as 
shown in Figure 3(a). Ideally, in wavefront parallel 
computations at the end of each scheduling phase, each 
processor communicates with its peers and immediately 
proceeds with the computation of the next phase without 
waiting. Note that each Tile(i, j) executes during scheduling 
phase i + j – 1. In the ideal scenario ti,j = ti´,j´ for all i, j, i´, j´ 
such that i + j = i´ + j´, i.e. all tiles in the same scheduling 
phase start execution at the same time. The ideal scenario 
occurs when the tile size is constant. When the tile size is 
variable, such as in the TS case, processors consume idle time 
waiting for synchronization. We assume that the time required 
to complete Tile(i, j), including communication, is Ti,j. The 
earliest time that Tile(i + 1, j, + 1) can start execution depends 
upon the finishing times of its peer tiles, Tile(i, j + 1) and 

 
(a)   (b) 

Figure 2: Critical execution path in (a) pass-idle (b) pass-free scheduling. 

(a)   (b) 

Figure 3: Execution pattern in (a) trapezoid by constant tiling  
(b) trapezoid by variable tiling. 

n2 n2(j) n2(j + 1)
N2 

N1 

n1(i) 

N2 

N1 

n1(i + 1) 

n1(i) 

TS 

constant 

TS 

variable 

 

Ti+1,j

t1,1 t1,2 

t2,1 ti,j+1 

ti+1,j ti+1,j+1

N2 

N1 

N1/n1 

N2/n2 – 1  

N2 

N1 

P 

N2/n2 – P 
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Tile(i + 1, j), and therefore ti+1, j+1 = max(ti, j+1 + Ti, j+1, ti+1, j + 
Ti+1, j), where t1,1 = 0. Assuming that all processors were well 
synchronized during scheduling phase i + j, i.e ti, j+1 ≈ ti+1, j, 
then the idle processor time for the execution of Tile(i + 1, j, + 
1) during scheduling phase i + j + 1 will be minimal if |Ti, j+1 – 
Ti+1, j| ≈ 0. 

It is easy to see that in order to reduce the synchronization 
idle time between scheduling phases, the length of the tile 
edge along dimension N2 must be variable in size and 
decreasing just like the length of the tile edge along dimension 
N1, Figure 3(b). We are looking for a sequence n2(j) such that 
for each j, j = 1, …, l, the absolute difference |Ti, j+1 – Ti+1, j| is 
minimized for all i = 1, …, k. In mathematical terms we want 
to minimize either of the following functions: 

 C1(n2(j), n2(j + 1)) = ∑
i =1

 k – 1
 | |Ti, j+1– Ti+1, j  

or C2(n2(j), n2(j + 1)) = ∑
i =1

 k – 1
 ( )Ti, j+1– Ti+1, j

2 

We will work with C2 because it is easier to manipulate. 
From (3) we derive: 

C2(n2(j), n2(j + 1)) = 

 ∑
i =1

 k – 1
 ( )n1(i)n2(j + 1)t – n1(i + 1)n2(j)t + n2(j + 1)b – n2(j)b 2 

Function C2 is still complicated and more importantly 
depends on system and program parameters such as the 
network bandwidth b, and time per iteration t. Our goal is to 
define a sequence n2(j) that is independent of such parameters 
as the TS sequence is. We make the assumption that |Ti, j+1 – 
Ti+1, j| is minimized if both tiles execute the same number of 
iterations. This will allows us to derive tile sizes that are 
independent of the system and problem size parameters. We 
define the number of iterations of Tile(i, j) as Ii,j = n1(i)n2(j). 
Given the trapezoid sequence n1(i) i = 1, …, k, as defined in (8) 
we are going to determine a sequence n2(j), j = 1, …, l that 
minimizes the following function: 

 C(n2(j), n2(j + 1)) = ∑
i =1

 k – 1
 ( )Ii, j+1– Ii+1, j

2 =  

 ∑
i =1

 k – 1
 ( )n1(i)n2(j + 1) – n1(i + 1)n2(j) 2  (9) 

where n1(i) = F – (i – 1) 
F2 – L2

2N1 – F – L , for i = 1, …, k. 

Our goal is to derive a relationship between n2(j) and n2(j + 
1). Assuming that n2(j) is known we want to find the value of 
n2(j + 1) that minimizes the function in (9). Using 
differentiation of function C(x, y) for variable x and solving 
the equation dC(x, y)/dx = 0 for y, we determine that: 

 n2(j + 1) = (1 – λ)n2(j)   (10) 

 where λ = 
(F + L)2(F – L)

6FL(2N1 – F – L) + (F – L)2(4N1 – F – L) 

It is obvious that λ is positive. Furthermore, if we assume 
that λ ≥ 1 by the inequality N1 ≥ F + L we can derive that F2 + 
2L2 ≤ 0, which is not true. Consequently 0 ≤ λ < 1 and 
therefore the sequence in (10) is a decreasing geometric 
progression. 

In order to determine the starting value of the sequence, 
namely n2(1) we first need to define the ending value, namely 
n2(l). A good assumption is that the ending value of the 
geometric sequence should be the same as the ending value of 
the trapezoid sequence, namely L. Under this assumption the 
starting parameter n2(1) can be determined by solving the 
following system: 

 




n2(l) = L

∑
j =1

 l
n2(j) = N2

  ⇔ 


(1 – λ)l–1n2(1) = L

(1 – λ)l – 1
(1 – λ) – 1 n2(1) = N2

 (11) 

Solving the equations in (11) we determine that: 

 n2(1) = λN2 + (1 – λ)L   (12) 

The formulas in (10) and (12) define a sequence n2(j) where 
j = 1, …, l, as a decreasing geometric progression. We have 
shown that when the length of tile edges along dimensions N1 
and N2 are equal to n1(i) and n2(j) respectively, then the 
processor idle time between synchronization phases is 
minimized. 

IV. IMPLEMENTATION AS A TILING SCHEME 
In this section we define a new kind of tiling scheme in two 

dimensional iteration spaces with variable edge lengths. On 
one dimension the tile size follows the trapezoid arithmetic 
progression defined in (8) and on the other dimension it 
follows the geometric progression defined in (10). We term 
this type of tiling as Trapezoid-Geometric Scheduling (TGS). 

Formally, tiling is defined as a loop transformation. Given a 
point p in an iteration space subset of Zn, where Z is the set of 
integers, we define an invertible transformationϒ: Zn → Z2n 
such that (t, e) = ϒ(p), where t, e, p ∈ Zn. Vector t represents 
the coordinates of the tile and vector e represents the 
coordinates of an element inside the tile. For every legal tiling 
transformation there exist an inverse denoted as ϒ-1. For 
example in two dimensional rectangular tiling with tile size 
n1× n2 given a point p = (p1, p2) ∈ Z2 the tiling transformation 
is as follows: 

 ϒ(p1, p2) = (p1/n1, p2/n2, p1 mod n1, p1 mod n2) 

Subsequently given a tile t = (t1, t2) and an element in the tile e 
= (e1, e2)  

 ϒ-1(t1, t2, e1, e2) = (n1t1 + e1, n2t2 + e2) 

For tiled spaces with variable tile size the tiling 
transformation is not as trivial. Fortunately in TGS the length 
of the tile edge on each dimension is independent of the length 
on other dimension. Let us consider each dimension 
separately. We will start with the trapezoid sequence n1(i), i = 
1, …, k. Given the tile number t1 and the element position e1 
inside the tile along dimension N1 we can determine the point 
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coordinate p1 = n1(t1) + e1. In order to determine the tile 
number t1 given the point coordinate p1 we need to find the 
smallest t1 that satisfies the following inequality: 

 ∑
i =1

 t1

n1(i) = ∑
i =1

 t1

(F – (i – 1)D) ≥ p1  ⇔  

 –Dt1
2 + (2F + D)t1 – 2p1 ≥ 0 

The expression of the inequality represents a parabola 
whose sign starts negative at -∞, then changes to positive and 
then back to negative before reaching again -∞. We are 
looking for the value of t1 where the quadratic expression 
changes from negative to positive. This is the smallest root of 
its respective equation and therefore: 

 t1 = 
 

 

2F – (2F + D) – 8Dp1

2D  
 

 
  (13) 

From the value of t1 we can easily determine the position of 
the element in the tile as e1 = p1 – n1(t1). 

Let us now consider the geometric sequence n1(j), j = 1, …, 
l. Similarly, given the tile number and the element position 
inside the tile along dimension N2 we can determine the point 
coordinate p2 = n2(t2) + e2. In order to compute tile position 
for a point of coordinate p2 we consider the following 
inequality: 

 ∑
j =1

 t2

n2(j) = [λN2 + (1 – λ)L]∑
j =1

 t2

(1 – λ)j–1 ≥ p2  ⇔  

  [λN2 + (1 – λ)L] 
(1 – λ)t2 – 1
 (1 – λ) – 1  – p2 ≥ 0 

The above exponential expression is increasing for t2. The 
smallest value of t2 that satisfies the inequality is: 

t2 = 
 

 

log(λN2 + (1 – λ)L – λp2) – log(λN2 + (1 – λ)L)
log(1 – λ)

 

 
  (14) 

Because all the computed values need to be integers and 
because of the lose in precision due to round-off errors, it is 
better to pre-compute and store the sequences n1(i) and n2(j) in 
advance and use formulas in (13)   (14) as a guide to search 
for the coordinate of the tile in the recomputed ranges. 

It is clear that all tiling parameters are based upon the 
choice of the parameters F and L as well as the problem size, 
namely parameters N1 and N2. The conservative choice for F 
that reduces the chance of imbalance, [18], due to large size of 
the first chunk is: 

 F = N1/2P    (15) 

For the choice of L we need to take into consideration the 
computation versus the communication cost. Dividing a chunk 
further than a predefined threshold size and employing 
additional processors will not improve performance if the 
amount of communication exceeds the amount of computation 
namely if Ln2t ≥ a + bsn2 + γ(P – 1). We can determine the 
smallest value of L that satisfies the inequality as: 

L = 
 

 
 
a + bsn2 + γ(P – 1)

n2t

 

 
   (16) 

For TGS the smallest tile size is L×L. In order to determine 
the minimum value of L for which the computation time is 
bigger than the communication time we need to solve the 
previous inequality for n2 = L, namely tL2 – bsL – a – γ(P – 1) 
≥ 0. The smallest positive value of L that satisfies the above 
quadratic inequality is: 

 L = 
 

 

bs + (bs)2 + 4[a + γ(P – 1)]
2t

 

 
  (17) 

The value of L derived from (17) guaranties that the 
communication cost will never exceed the computation cost 
for any single tile. 

V. 5. EXPERIMENTAL RESULTS 
For our experiments we use a numerical method that solves 

the elliptic differential equation problem. Even though we 
consider this special problem case, our approach applies to 
any type of two dimensional wavefront computation including 
all SOR algorithms. 

The numerical method solves the problem on a rectangular 
grid (aX, aY) to (bX, bY) of nX by nY points. The following 
code is the serial version of the algorithm in C. 

hX = (bX - aX)/(nX - 1); 
hY = (bY - aY)/(nY - 1); 
k= 0; 
while (error > errormax && k < itermax) { 

error = 0.0; 
for (int j = 1; j < nY - 1; j++) { 

y = aY + j*hY; 
for (int i = 1; i < nX - 1; i++) { 

x = aX + i*hX; 
v = u(i + 1, j) + u(i - 1, j) + 
    u(i, j + 1) + u(i, j - 1); 
u_old = u(i, j); 
u_new = (v- (hX*hY)*g(x,y))/  
    (4.0 - (hX*hY)*f(x,y)); 
u(i, j) = u_new; 
error += (u_old - u_new)*(u_old - u_new); 

} 
} 
error = sqrt(error); 
k++; 

} 

Within the same iteration of the variable k there exist 
dependences between the definition and use of the solution 
array u with dependence distance vectors {(1, 0), (0, 1)}. The 
iteration space of for the loop nest (j, i) is similar to the one 
depicted in Figure 1. Our problem size is a grid of 1024×1024 
points. We perform only 100 k-iterations in order to get 
comparable results in reasonable time but our conclusions are 
valid for as many k-iterations are required to solve the 
problem within the desired error tolerance. 

The above loop nest can be parallelized by a wavefront 
computation pattern. Note that there exists a global 
synchronization point where the error is evaluated before 
proceeding to the next k-iteration. Our implementation of the 
wavefront computation uses tiling for parallel execution on a 
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distributed memory system. Our underlying communication 
platform is MPI and we performed our experiments on a 
cluster of 16 homogeneous nodes. Each node in the cluster is a 
Sun UltraSparc II computer with a 500 Mhz cpu and 512 MB 
of memory. The nodes are connected via a 100 Mbit Ethernet 
switch. 

Before we start our experiments we had to determine the 
computation and communication parameters of the system 
with respect to the algorithm, as defined in (1) and (2). From 
the serial execution of the algorithm we determined 
computation cost per iteration t = 1.596 µsec. Using the ping-
pong technique for varying message size and number of 
processors we were able to determine the communication 
parameters latency a = 155.38 µsec, transfer time b = 0.254 
µsec/byte, and network congestion factor γ = 8.252 µsec. The 
calculation of the above parameters is based on a linear-
regression model using the equation in (2) and applying the 
least-squares method. 

In the first part of our experiments we measured the 
performance of the chunk scheduling scheme (CS) for 
different tile sizes. The iteration space N1×N2 consists of 
1024×1024 iterations. It is distributed in chunks to P 
processors and each processor is assigned 1024×1024/P 
elements. The tile size is statically as n1n2 throughout each 
program execution. The length of tile edge n1 is always 
1024/P while the length of tile edge n2 varies between 4 and 
64 per each run. We gathered and analyzed results for 
execution on 2, 4, 8, 12, and 16 processors. Figure 4 displays 
the results. The graph in Figure 4 depicts the execution time 
for different tile sizes according to the length of edge n2. The 
enlarged markers in the graph denote the fastest execution 
time for different number of processors. Taking into account 
the fastest execution time, we determined the optimal 
experimental value for n2 and compared it against the optimal 
theoretical value derived from (7) for each processor 
configuration. From the experimental results the optimal tile 

edge n2 is 12 on 2, 4, 8, 12, or 16 processors and optimal 
parallel time 206, 135, 101, 86, and 78 seconds respectively. 
From the results displayed in the table of Figure 4 we 
conclude the theoretical optimal tiling parameters (n2-theor) 
are very close if not identical with the experimental (n2-exp). 

In the second part of our experiments we performed a 
similar procedure in order to determine the optimal value of n2 
for the trapezoid scheduling scheme (TS). Figure 5 displays 
the results. The graph in Figure 5 depicts the execution time 
for different tile sizes according to the length of edge n2. 
Using these values we measured the best execution time and 
determined the optimal experimental length of tile edge n2 on 
2, 4, 8, 12 and 16 processors. The table in Figure 4 displays 
the optimal experimental value of n2 (n2-exp) and the optimal 
parameters of F and L which are computed by (15) and (16). 
For different number of processors the starting and ending 
values of the trapezoid sequence (F, L) vary significantly. For 
each trapezoid sequence we have determined the optimal 
value of n2 as 60, 44, 28, 20, and 16 with parallel execution 
time 191, 127, 90, 75 and 63 seconds on 2, 4, 8, 12, and 16 
processors respectively. We clearly see that trapezoid 
scheduling outperforms chunk scheduling especially when 
more processors are utilized. We also see that the optimal 
length of tile edge n2 varies significantly according to the 
number of processors utilized. However, using the trial and 
error method, to determine the optimal tile parameters for 
each processor configuration is not practical in real 
applications. 

In the final part of our experiments, we compare our 
proposed tiling scheme (TGS) against the optimally 
configured CS and TS. TGS is using trapezoid scheduling 
along dimension N1 and geometric scheduling along 
dimension N2. In order to apply the TGS algorithm we first 
compute the values of F and L using formulas (15) and (17). 
As an example consider the case where P = 4, F = 128 and L 
= 11. Using the values of F, L, N1 and N2 we compute λ and 
n2(1) according to formulas in (10) and (12). For our example 
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Figure 4: Execution times of CS for different tile edge sizes. 
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Figure 5: Execution times and parameters of TS for different tile edge sizes. 
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λ = 0.032158 and n2(1) = 44. Using these parameters and the 
formulas in (8) and (10) we compute sequences n1(i) and n2(j). 
For our example we compute 15 values for sequence n1(i) 
namely {128, 119, 111, 102, 94, 85, 77, 68, 60, 51, 43, 34, 26, 
17, 9} and 44 values for sequence n2(j) namely {44, 42, 41, 40, 
38, 37, 36, 35, 34 ,32, 31, 30, 29, 28, 28, 27, 26, 25, 24, 23, 23, 
22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 16,15, 15, 14, 14, 13, 13, 
13, 12, 12, 11, 11, 2}. Figure 6 displays an experimental 
comparison of TGS against CS and TS in terms of execution 
performance and speedup. The graphs in Figure 6 display the 
execution times and the produced speedup. The table in Figure 
6 displays the execution times in tabular form as well as the 
tiling parameters (F, L, λ) for TGS. From the results we 
conclude that TGS outperforms the optimal CS tiling and 
produces significantly more speedup. It also outperforms the 
optimally configured TS tiling. Especially when more 
processors are utilized the TGS scheme produces a speedup of 
6.7 on 16 processors compared to 4.9 for the TS scheme and 
4.0 for the CS scheme. 

VI. CONCLUSIONS AND FUTURE WORK 
Tiling for parallel execution in iteration spaces with 

dependences has been studied extensively in the past with 
significant contributions. The problem lies in the trade-off 
between the processor idle-time, the communication volume 
and the cost of synchronization. Single pass chunk scheduling 
(such as block distribution) reduces communication and 
synchronization but at the expense of processor idle-time. 
Multi-pass chunk scheduling (such as block-cyclic distribution) 
reduces processor idle time but at the expense of 

communication volume. Variable chunk scheduling schemes 
(such as TSS) provide a good trade-off between processor idle 
time and communication volume but at the expense of 
processor synchronization when it comes to iteration spaces 
with dependences. 

In this paper we introduce the notion of variable tiling. We 
apply our method in two dimensional iteration spaces with 
uniform dependences. In our scheme both tile edges gradually 
decrease along the iteration space axis. Decreasing tile sizes 
proved to be beneficial when it comes to facilitating load 
balancing and reducing processor idle time. This is 
particularly true in iteration spaces with dependences where 
processors spend a considerable amount of time in the idle 
state during the beginning and the end of the execution. In our 
scheme, we apply a trapezoid partitioning sequence on one 
dimension in order to minimize the processor idle time and a 
geometric partitioning sequence on the other in order 
minimize the resulting inter-processor synchronization cost. 
The new scheduling, which we term TGS, is independent of 
the underline system computation and communication 
parameters and it can be easily implemented as a well defined 
tiling transformation. Our experimental results determined 
that it outperforms the optimally configured traditional tiling 
scheme and proved that variable size tiling on both edges is 
more effective than any constant tile edge configuration for 
waterfront computations on a cluster of workstations. These 
properties make an ideal scheduling algorithm for iteration 
spaces with dependences. 

In future work we plan to extend our results to non-
rectangular tile shapes and higher dimension iteration spaces. 
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Figure 6: Execution times and speedup of TGS against optimally configured CS and TS. 
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We also want to extend our method to heterogeneous clusters 
for non-dedicated execution. 
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