
Sequential and Parallel Implementation of a
Constraint-based Algorithm for Searching Protein

Structures
Sascha Hunold #, Thomas Rauber #, Georg Wille ∗

#Department of Mathematics and Physics
University of Bayreuth, Germany

{hunold,rauber}@uni-bayreuth.de

∗Institut für Biophysik
Goethe-Universität Frankfurt am Main, Germany

wille@biophysik.org

Abstract— Data mining in biological structure libraries can
be a powerful tool to better understand biochemical processes.
This article introduces the LISA algorithm which enables the
researcher to search substructures in PDB files describing the
3D structure of protein molecules. The use of constraints such
as atomic distances, torsion angles, or the distance of residues
within the linear amino acid sequence, allows for great flexibility
in defining and searching specific structures, which could not be
found with other tools.

Data mining in biological databases, e.g. scanning the entire
PDB database for structures that match user-defined criteria, is a
massively computation-intensive task. Thus, we present a parallel
implementation of LISA and show that the algorithm achieves
good parallel efficiency on homogeneous clusters.

I. INTRODUCTION

As of March 2007, the Protein Data Bank1 contains approxi-
mately 42000 3D structures of biological macromolecules [1].
Well over 100 new entries are being added each week, and
this rate of growth is still accelerating. Increasingly, these
structures result from structural genomics approaches with the
consequence that often the structure of a protein is known
before its function.

Automated analysis tools are needed to make full use
of the vast amount of information contained within these
structures, and many are available today, e.g. for sequence
comparison, secondary structure analysis or fold recognition
and classification. Tools are also available to search the PDB
for structures matching certain geometric criteria [2], [3], but
these are not yet as flexible as would be desirable, e.g. when
asking questions about sterical requirements within the active
sites of enzymes.

We here introduce a new application, LISA, which allows
the user to define a search pattern consisting of chemical,
geometrical, and protein sequence restraints, thereby allowing
for more flexibility than previous approaches involving more
or less static 3D point pattern matching techniques, which it

1http://www.pdb.org

could nevertheless emulate. LISA can be used to find such
diverse targets as secondary structure elements like α-helices,
the catalytic triad of serin proteases, conformationally strained
cofactors, specifically liganded metal ions, or amino acid
clusters of certain defined compositions.

The price for this improved generality is a less then optimal
performance in any particular case, i.e., for each specific
problem a program could be written that finds its structural
matches in less time. While LISA already tries to create a
search tree that takes as little time as possible to traverse, run
times for certain problems can still be long.

This paper is organized as follows: Section II gives an
overview of the sequential structure search algorithm called
LISA. In Section III we present a parallel implementation
which is evaluated in IV. Section V discusses related work
and Section VI concludes the article.

II. THE SEQUENTIAL STRUCTURE SEARCH ALGORITHM –
LISA

In this section, the LISA algorithm is introduced by a
description of the primary goals of LISA. We also discuss
performance-critical decisions which are crucial for obtaining
high performance in the sequential case.

A. Motivation

The basic idea behind LISA is to search a user-specified
structure in one or more PDB files. The user defines the search
pattern by passing a query file that contains the target atoms
and several constraints which have to be satisfied. An overview
of the software modules of LISA is shown in Figure 1. The
LISA program takes two input arguments, the query definition
file and a PDB file. The LISA parser reads the query file and
the LISA main program starts searching the specified structure
in the PDB file. A matching sub-structure can be saved into a
new PDB file.

Since there are numerous libraries and tools available for
Bioinformatics, we wanted to build upon existing software like

query file (.lin) pdb file (.pdb|.ent.Z)

lisa parser pdb parser (biopython)

lisa

pdb output

Fig. 1. Data flow of LISA.

Biopython. The Biopython Project2 is a collection of freely
available Python libraries and tools for computational molec-
ular biology [4]. Biopython combines the rapid-development
approach of Python but also provides a very mature API.
It comes with out-of-the-box PDB file support containing
a PDB parser, linear algebra functions for PDB atoms, a
PDB file writer, and more. Moreover, Biopython provides an
implementation of the kd-tree data structure which allowed
us to build a fast distance-constraint filter (neighbor search
algorithm [5]).

B. Query language of LISA

This section introduces the query language which is used in
LISA. In a query file the user specifies the protein structure in
which he is interested. Query files are basically separated into
two section. One is the definition of the atoms that a PDB sub-
structure should contain. In the other section, the user defines
the constraints between the atoms.

Atoms can be defined by their name and optionally by their
residue name. The name of an atom or the residue name can
be defined as regular expressions as shown below. The variable
name ’id’ is a user-defined label for an atom which is used as
unique identifier within the entire query file.

• <id>.def.atom=<regex>
This line is used to define the name of the atoms.

• <id>.def.residue=<regex>
This command defines the name of the residue for atom
id.

The following list contains the currently supported constraints.
• dist.<id1>.<id2>=<value>

Specifies a distant constraint between the atoms id1
and id2.

• dist from plane.<id1>.<id2>.<id3>.<id4>
=<value>
Is used to define the distance of atom id4 from the plane which
is defined by the other three atom IDs.

• angle.<id1>.<id2>.<id3>=<value>
Defines a constraint which checks if the angle between the two
vectorsid1→id2 and id2→id3 is “value” degrees.

• torsion.<id1>.<id2>.<id3>.<id4>=<value>
Similar to angle constraint. It defines the angle between the
planes id1-id2-id3 and id2-id3-id4.

2www.biopython.org

• diff resnum.<id1><id2>=value
Defines the distance of residues within the linear amino acid
sequence of the protein to which the two different atoms id1
and id2 belong.

• same chain=[<list of ids>]
This constraint is used to define the atom IDs which should be
part of the same chain.

• same residue=[<list of ids>]
Similar to same chain, this constraint defines which of the
atoms must belong to the same residue.

An example LISA query file is given in Figure 2. This query
defines five query atoms which are nuc, his n1, his n2, asp o,
and his cg. As mentioned above, these names can be chosen
arbitrarily and are used as identifiers within a query file.

Each of these query atoms defines a PDB atom type,
e.g. nuc is a placeholder for an OG-atom in residue ’SER’.
The remaining query file contains the definition of the con-
straints. Line 18, for example, fixes the distance between
an OG in ’SER’ and an N in ’HIS’ to 2.8 Å. It is also
possible to set up a tolerance range for each constraint, e.g.
line 26 specifies that the distance of asp o to the plane of
‘his n1-his n2-his cg’ may be bigger than zero (line
25) but should be at most 1 Å (0 <= d <= 1).

C. Algorithmic details of LISA

The algorithmic structure of LISA is presented in Algo-
rithm 1. As mentioned in Section II-A LISA gets a list of
query atoms and a list of PDB atoms from the parser. The
defined constraints create virtual dependencies between query
atoms, i.e. if two query atoms are part of a distance constraint,
then we call them dependent atoms. Such a dependency is later
utilized to make a good choice when selecting a query atom
for the next computational step (building the search tree). The
dependency graph is used to order the query atoms (line 3).
This is done by using heuristics which is described later in
this article.

The algorithm starts off with an empty allocation (state-
ment 4). In our notation, an allocation is a mapping of query
atoms to PDB atoms. A candidate list is generated for the first
query atom (q0) in the atom list. This list contains all PDB
atoms which match the name and residue definition of the q0.
The candidate list of q0 and the empty allocation is then passed
as arguments to the recursive function check allocation.
This function first checks if the current allocation matches
the specification of the query file, i.e. it checks that all
defined constraints which can be applied to PDB atoms in
the allocation are satisfied. Only if the allocation matches
these constraints, the allocation is extended by one atom. This
procedure of cutting the search tree as early as possible is
the key for a fast branch-and-bound approach. A match is
found when the allocation contains a mapping for each query
atom to exactly one PDB atom. If the allocation does not
contain a mapping for each query atom, the algorithm extends
the allocation by one atom which is a PDB atom of the
candidate list (line 6 in function check allocation). After
the PDB atom is fixed, the PDB atom candidate list for the
next query atom is generated. To create a matching allocation,

1 nuc . def . atom=OG
2 nuc . def . r e s i d u e =SER
3
4 h i s n 1 . def . atom=N . .
5 h i s n 1 . def . r e s i d u e =HIS
6
7 h i s n 2 . def . atom=N . .
8 h i s n 2 . def . r e s i d u e =HIS
9

10 a s p o . def . atom=OD.
11 a s p o . def . r e s i d u e =ASP
12
13 h i s c g . def . atom=CG
14 h i s c g . def . r e s i d u e =HIS
15
16 t o l e r a n c e . d i s t = 0 . 2
17
18 d i s t . nuc . h i s n 1 =2 .80
19 d i s t . h i s n 1 . h i s n 2 =2 .12
20 d i s t . h i s n 2 . a s p o =2 .65
21
22 d i s t f r o m p l a n e . h i s n 1 . h i s n 2 . h i s c g . nuc = 0 . 0
23 t o l e r a n c e . d i s t f r o m p l a n e . h i s n 1 . h i s n 2 . h i s c g . nuc = 1
24
25 d i s t f r o m p l a n e . h i s n 1 . h i s n 2 . h i s c g . a s p o = 0 . 0
26 t o l e r a n c e . d i s t f r o m p l a n e . h i s n 1 . h i s n 2 . h i s c g . a s p o = 1
27
28 c o n s t r a i n t . same res idue =[h i s n 1 , h i s n 2 , h i s c g]

Fig. 2. Example query file for searching serine proteases.

the LISA algorithm only needs to consider all the PDB atom
candidates which match the user-defined constraints. Thus,
the PDB candidate list (next candidate list) is filtered
by applying all constraint rules. In general, filtering PDB
candidates leads to a much shorter list of PDB candidates
which results in a faster search due to a reduction of the width
of the search tree.

The function check allocation is then called recur-
sively with the new allocation and the filtered candidate list
for the next query atom as parameters.

An important performance factor is the order in which
the query atoms are visited/traversed. The following section
discusses our approach for ordering the query atoms.

D. Building the search tree efficiently

The speed of the implementation strongly depends on the
search tree. Since we use a branch-and-bound-strategy it is
very important to cut off as many leaves as possible and as
early as possible. In particular, whenever a constraint can be
applied to the current atom allocation this constraint rule has
to be exploited for reducing the number of nodes in the search
tree.

Another important criterion is the structure of the search
tree, i.e. the configuration of each level. To find a substructure
of a protein, e.g. A0, A1, A2 (Ai are arbitrary atoms), it does
not matter in which order the algorithm checks the atoms,
e.g. A0-A1-A2 or A1-A2-A0. This means that the result is
independent of the search order. However, the search speed
does depend on the search order. In Figure 3 shows two
different search trees which could be generated for one query.
In the tree on the left-hand side, 100×1000 nodes (number of
possible checks) would be cut off if stepping down into node
A1 was avoided. In the right-hand tree, the algorithm could

Fig. 3. Two possible search trees for the same query file.

cut off at most 5 × 100 nodes below C1. Thus, for reducing
the search time the number of nodes per level should increase
with tree depth.

E. Fast reduction of PDB atom candidates

To achieve a fast search (quick response time), the primary
objective of the algorithm must be to minimize the number
of nodes at each tree level. As shown above, LISA uses
constraint-based filters to reduce the number of candidates for
an allocation of PDB atoms.

The distance constraint is one of the possibilities to filter
the candidate list. In order to avoid computing the distance
between each pair of PDB atoms Ai and Aj which match a
corresponding query atom pair Qi and Qj , LISA exploits the
neighbor search algorithm that is bundled with Biopython. The
neighbor search returns all PDB atoms which are located in
the sphere with center Ai and the radius which is defined by
the distance constraint. Internally, the neighbor search stores
PDB atoms in a kd-tree data structure which is an efficient
data structure for range queries. The neighbor search of LISA
proceeds as follows. For a distance constraint dj between
atoms Qi and Qj , LISA uses the neighbor search algorithm to

Algorithm 1 LISA
1: input ⇐ { PQ – list of atoms in PDB file, QQ – list of atoms in query file }
2: build dependency graph of atoms in QQ
3: QQ ⇐ create ordered list of atoms in QQ // defines structure of search tree
4: allocation ⇐ {}
5: q0 ⇐ QQ[0]
6: candidate list ⇐ get PDB candidates(q0)
7: check allocation(allocation, candidate list, 0)

function check allocation(allocation, candidate list, query atom id)
1: if is match(allocation) then
2: if length(allocation) == length(QQ) then
3: print ”match found” + allocation
4: else
5: for all PDB atom in candidate list do
6: allocation[query atom id] ⇐ PDB atom
7: next query atom ⇐ QQ[query atom id + 1]
8: next candidate list ⇐ get PDB candidates(next query atom)
9: next candidate list ⇐ filter candidate list by constraints(

next candidate list, query atom, next query atom)
10: check allocation(allocation, next candidate list, query atom id + 1)
11: end for
12: end if
13: end if

determine the PDB atoms which are in the sphere with center
Ai and radius dj + tolerance. In a second step, the PDB atoms
which are located in the sphere at Ai and radius dj− tolerance
and which do not match type Qj are erased from the list. The
remaining PDB atoms are the possible candidates for Aj . This
procedure leads to a faster reduction of the candidate list by
exploiting the distance constraints.

III. PARALLEL FRAMEWORK FOR LISA

The sequential algorithm takes a lot of computation time
if user-defined constraints do not help to reduce the list of
PDB candidates for a given query atom. Furthermore, the
entire PDB database contains about 7 GB of protein data.
Hence, a parallel version of LISA would reduce the search
time of protein structures tremendously which could make the
program more attractive for the daily use by researchers.

The remaining section describes the selection of the target
platform and the approach for parallelizing LISA.

a) The granularity question: As in most parallel imple-
mentations of algorithms, the granularity of the parallel task
plays an important role to achieve good parallel speedup.

There are basically two ways to parallelize the sequential
LISA algorithm:

1) A single processor processes a single LISA request for
multiple PDB files. The number of PDB files is variable.
Each participating processors receives a portion of the
data set (PDB files).

2) All processors work simultaneously on searching a query
pattern in one PDB file.

The second option has a higher granularity, but it is a real
challenge to find a well-scalable solution to this problem.
It is difficult to equally balance the workload of the search
considering the irregular access pattern in the tree. The
prototype implementation of this option did not show good
parallel scalability for many PDB files because of the extra
communication for exchanging sub-results.

Therefore, this article presents the parallel implementation
of option (1).

b) Choosing the target platform: We had two major
concerns for the parallel implementation of LISA; it should
be well-scalable, and it should also be easy to install and
easy to use for researchers. We decided to use PC clusters
as target platform. At first glance, the problem seems to
be embarrassingly parallel which raises the question of grid
applicability. The major drawback, however, is the size of the
PDB database. For a concurrent computation in the grid, data
from the PDB database has to be fetched by the computation
nodes which is very costly. Another problem is the use of
Python/Biopython for the sequential LISA implementation.
Python is a good choice for rapid development but it is
not completely platform-independent since most of the used
Python modules (numpy, kdtree) are implemented in C. In
contrast, in a single cluster environment the availability of
the necessary libraries and also a shared access to the PDB
database from the computation nodes can be easily ensured.

c) The parallel algorithm in depth: The parallel algo-
rithm uses a master/slave approach to obtain the result. The
master node contains the information about all PDB files and

distributes files among the requesting slaves. In the current
implementation, the master and the slave nodes share one file
system. Hence, the master node only distributes the names of
the PDB files. On the one hand, the communication amount of
the master slave is massively reduced. On the other hand, the
IO bandwidth of the shared file system is a potential bottleneck
if all slave nodes are accessing the PDB database at the same
time.

A centralized approach (master and slaves) has to fulfil two
criteria to be efficient in such a cluster environment. First, the
time for executing a task must be large enough to avoid steady
requests by the clients (slaves). For slaves, the time to receive
a task should be as short as possible to achieve good parallel
efficiency.

In this approach, the master node is responsible for finding
well-suited task sizes to obtain a good load balance and hence,
a good parallel speedup. As mentioned before, the minimum
task granularity in our implementation is one PDB file. The
question is how many and which of the available PDB files
should be sent to a requesting client. After experimenting with
different scheduling strategies we observed that a guided self-
scheduling approach leads to best results [6]. A first approach
for filling tasks is to select n random files of the PDB database,
where n is determined by guided self-scheduling. In this
case, clients which request data within a short time frame
would retrieve almost the same number of PDB files. The
problem is that the collective file size of both sets may strongly
differ. Since the computation time for one file is in general
proportional to its file size, this approach will lead to work
imbalance. Hence, a task is not determined simply by the
number of remaining files but by considering their file sizes
as well.

Thus, the master node holds a list of PDB files sorted by
file size. Whenever a client is requesting PDB files, the master
node determines the task size by using guided self-scheduling
considering the overall size of the PDB database and the size
of the remaining PDB files. After computing the task size,
the master node has to fill the task with PDB files and has
to ensure that the task size is not exceeded. For efficiency
reasons, we introduce two additional parameters. One is the
minimum task size MTS, the other is the task filling factor
TFF . The MTS is simply a lower bound for the task size
which is introduced to avoid that the guided self-scheduling
approach creates too many very small tasks at the end of the
computation. The TFF is used to stop searching when the task
has been filled up to a certain amount of data. The parameter
TTF prevents from iterating over the entire list of remaining
PDB files once a certain task capacity has already been reached
(e.g. 90%).

d) Implementation details: The parallel algorithm was
implemented using MPI and Python. The Python implementa-
tions of MPI are neither standardized nor complete. However,
bindings exist and it was possible to find workarounds for
problems which were caused by missing functionality (like
the absence of non-blocking directives). We decided in fa-
vor of PyMPI [7] which has shown good communication

performance and compatibility with the installed MPICH in
evaluation tests.

IV. EXPERIMENTAL RESULTS

The experiments have been carried out on a 64 processor
Opteron-cluster running Linux (2.6.11). The nodes were con-
nected by a GBit Ethernet switch. We used MPICH 1.2.7,
Python 2.4.4, Biopython 1.42, and pyMPI 2.4b4.

In the first experiment we tested the parallel algorithm by
searching serine proteases in a specific subset of the PDB
database. For this experiment, we downloaded all proteases
with enzyme classification 3.4.x.y from www.pdb.org with
close homologues removed at the level of 95% sequence
identity. At the time of the experiments, this PDB subset
contained about 290 proteases (148 MB in total). This subset
was mainly used because

1) a set of 290 files has enough parallel potential for
evaluation purposes, and

2) the results can be validated by hand, and
3) it is important to know in advance that the subset must

contain several matches if the algorithm works correctly.
Figure 4 illustrates the search pattern by presenting a matching
sub-structure for the query file of Figure 2.

The speedup of the parallel version of LISA which has been
obtained for searching the protease subset of 290 files is shown
in Figure 5.

Fig. 4. Example: matching structure (serine protease) in 4cha.pdb.

In this experiment, the time for searching the subset has
dropped from 148 seconds on one processor to about 8 seconds
on 64 processors. Even though there is a significant time gain
the parallel speedup and therefore the parallel efficiency is not
optimal. This is due to fact, that the subset of PDB files used
in this test is relatively small, and so the inherited overhead
(e.g. the task retrieval contention overhead when all hosts are
requesting tasks at program start) has a bigger impact on the
overall performance of the parallel implementation.

In another experiment, we evaluated the parallel efficiency
and applicability by performing a PDB query against the entire
PDB database. The entire PDB library contains about 42000

1 4 8 16 32 64
0

2

4

6

8

10

12

14

16

18

Lisa, parallel, pyMPI, serine protease

Number of processors

S
pe

ed
up

1 4 8 16 32 64
0

10

20

30

40

50

60

Lisa, parallel, pyMPI, serine protease

Number of processors

S
pe

ed
up

Fig. 5. Speedup of the parallel LISA algorithm for different data sets, left: subset of 290 PDB files, right: entire PDB database

structures and requires about 6.9 GB disk space. The following
set of parameters has been used in this experiment:

• minimum task size (MTT) = 1024 kB,
• task filling factor (TFF) = 0.9.

The chart on the right hand side of Figure 5 shows the speedup
obtained for searching the proteins in the entire PDB library
which match the serine protease pattern. In this experiment,
the time for processing the query was reduced from more than
500 minutes on a single processor to about 8 minutes on 64
processors. For up to 32 processors the algorithm achieves
almost a perfect speedup and for 64 processors the speedup is
still bigger than 63. According to these numbers we can say
that the parallel implementation of the LISA algorithm scales
well for homogenous PC clusters. This high parallel efficiency
can only be reached with a good scheduling strategy. During
the experiments we have seen that the guided self-scheduling
approach as described above (using the file size as basic unit)
leads to best results (speedup).

V. RELATED WORK

Previous work has mostly been focussed on the matching
of given protein structures to more or less rigid 3D sets of
atoms or ”virtual atoms”, the latter derived from amino acid
functional groups or even representing entire amino acids (e.g.
[2], [8], [9] , [10]). To our knowledge, only one approach,
JESS, would have eventually allowed the inclusion of arbitrary
geometric restraints in the search pattern ([3]), but at the
moment this project seems to be dormant, without having
seen the completion of the essential extensible search pattern
generator.

Therefore, no program is currently available that allows the
search for easily defined flexible patterns like an arrangement
of atoms A-B-C-D, where the torsion angle around the central
connection is completely free - even though such cases with
strict local geometry restraints (like bond lengths A-B, B-C
and C-D, or angles A-B-C and B-C-D), but relaxed remote
restraints (like the spatial relation of A and D in the above
example), are quite relevant for chemical reaction mechanisms.

VI. CONCLUSIONS

In this article, we have presented a novel approach for
searching protein sub-structures based on constraints. We have
shown that LISA achieves good sequential performance and
have also presented a parallel implementation of LISA. The
experimental results have shown that the parallel version of
LISA obtains a good parallel speedup for large PDB data sets
on homogeneous PC clusters.

For the future, we plan to extend the LISA query language
with further constraint types within a new plug-in framework
that also enables user-defined constraints. Moreover, we will
make the serial and parallel version available for public use.

REFERENCES

[1] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The Protein Data Bank,”
Nucleic Acids Res, vol. 28, no. 1, pp. 235–242, January 2000. [Online].
Available: http://nar.oxfordjournals.org/cgi/content/abstract/28/1/235

[2] A. C. Wallace, N. Borkakoti, and J. M. Thornton, “TESS: a geometric
hashing algorithm for deriving 3D coordinate templates for searching
structural databases. Application to enzyme active sites,” Protein Sci-
ence, vol. 6, no. 11, pp. 2308–2323, November 1997.

[3] J. A. Barker and J. M. Thornton, “An algorithm for constraint-based
structural template matching: application to 3D templates with statistical
analysis,” Bioinformatics, vol. 19, no. 13, pp. 1644–1649, 2003.

[4] B. Chapman and J. Chang, “Biopython: Python tools for computational
biology,” SIGBIO Newsl., vol. 20, no. 2, pp. 15–19, 2000.

[5] T. Hamelryck and B. Manderick, “PDB file parser and structure class
implemented in Python.” Bioinformatics, vol. 19, no. 17, pp. 2308–2310,
2003.

[6] C. D. Polychronopoulos and D. J. Kuck, “Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers.” IEEE Trans.
Computers, vol. 36, no. 12, pp. 1425–1439, 1987.

[7] P. Miller, “pyMPI An Introduction to Parallel Python Us-
ing MPI,” http://www.llnl.gov/computing/develop/python/pyMPI.pdf,
September 2002.

[8] G. J. Kleywegt, “Recognition of spatial motifs in protein structures,”
Journal of Molecular Biology, vol. 285, no. 4, pp. 1887–1897, 1999.

[9] M. Jambon, O. Andrieu, C. Combet, G. Deleage, F. Delfaud, and
C. Geourjon, “The SuMo server: 3D search for protein functional
sites,” Bioinformatics, vol. 21, no. 20, pp. 3929–3930, October 2005.
[Online]. Available: http://dx.doi.org/10.1093/bioinformatics/bti645

[10] J.-C. Nebel, “Generation of 3D templates of active sites of proteins with
rigid prosthetic groups,” Bioinformatics, vol. 22, no. 10, pp. 1183–1189,
2006.

